Software Defined Monitoring: Research Platform for High Speed Network Monitoring (31st NMRG Meeting – Zürich, Switzerland)

Lukáš Kekely, Viktor Puš, Jan Kořenek (kekely,pus,korenek@cesnet.cz)

14. 10. 2013

Czech NREN Cesnet

metering points on the edges of the network (highlighted)

Current Metering Point

- commodity server running Linux
- SW flow exporter (NetFlow/IPFIX) from SME Invea-Tech
 - support for creation of traffic processing plugins
- our own hardware probe from COMBOv2 family
 - PCI-Express card with two 10 GbE ports and Virtex5 FPGA
 - HaNic over NetCope as firmware packet capture, precise timestamps (ns), flow based traffic division ...

®CESNET

Higher speed

- constant advances in the network bandwidth
- monitored links are going to be upgraded to 40/100 Gbps

e Higher quality

- more than just classical NetFlow statistics
- flexible additional data according to actual need
- application protocol parsing and deep packet inspection

Higher speed

- constant advances in the network bandwidth
- monitored links are going to be upgraded to 40/100 Gbps

e Higher quality

- more than just classical NetFlow statistics
- flexible additional data according to actual need
- application protocol parsing and deep packet inspection

Problem: Current CPUs are not fast enough to process whole traffic all alone!

Higher speed

- constant advances in the network bandwidth
- monitored links are going to be upgraded to 40/100 Gbps

e Higher quality

- more than just classical NetFlow statistics
- flexible additional data according to actual need
- application protocol parsing and deep packet inspection

Problem: Current CPUs are not fast enough to process whole traffic all alone! **Solution:** We created new approach to monitoring acceleration called Software Defined Monitoring!

What is it?

- new approach to acceleration of network monitoring
- brings HW accelerated, application controlled reduction of traffic (packet processing offload)
- still performs packet capture, precise timestamps, flow based traffic division

What does it do?

- Hardware provides various methods of packet preprocessing and aggregation – The Muscles
- Software controls the actual usage of preprocessing on flow basis – The Controller
- User applications request the acceleration and perform advanced monitoring tasks The Intelligence

What is it?

- new approach to acceleration of network monitoring
- brings HW accelerated, application controlled reduction of traffic (packet processing offload)
- still performs packet capture, precise timestamps, flow based traffic division

What does it do?

- Hardware provides various methods of packet preprocessing and aggregation – The Muscles
- Software controls the actual usage of preprocessing on flow basis – The Controller
- User applications request the acceleration and perform advanced monitoring tasks The Intelligence

Applications adjust acceleration of traffic processing according to their actual needs!

- fully controlled by rules from software
- four basic methods of frames preprocessing:
 - Send preserve the whole frame (with payload)
 - Extract preserve only basic data about the frame
 - Aggregate update selected flow (NetFlow) record maintained in HW memory
 - **Drop** simply ignore the frame

SDM Layered Scheme

SDM Use Cases

- Basic NetFlow statistics
- Application protocol parsing
- Specific Non-NetFlow statistics
- Lawfull interceptions
- Forensic analysis of network traffic
 - "zoom-in" on suspicious data
- Active SW networking device
 - accelerated switch, firewall, router ...
- Acceleration of your research application?

Basic NetFlow statistics

- useless payload of frames, but must have information about all incoming frames
 - default: use Extract on all traffic
 - rules: use Aggregate for selected (the heaviest) flows
- CPU performance savings:
 - no packet parsing at all
 - NetFlow aggregation computed only partially
- need to decide when to use NetFlow in HW based on the first X packets of flows

• the number of frames reduced to $\frac{1}{5}$ and data load to $\frac{1}{100}$

Application protocol parsing

- needs payload of selected frames, but do not have to see all incoming frames
 - default: use Send on interesting traffic, Drop the rest
 - rules: Drop rules for already processed flows
- CPU performance savings:
 - processing of interesting flows only
 - not all packets from interesting flows must be processed
- easy deployment in combination with UC1

UC2: Results

HTTP: ¹/₄ of frames and ¹/₄ of data load
DNS: ¹/₁₀₀ of frames and ¹/₂₀₀ of data load

UC3: SDM Firmware as Processor

- update of stored record based on the frame data
 - consist of operation code and record address
 - delimited by 2 memory accesses (read and write back)
 - update process can vary
- new instructions without changes in existing modules
- new instructions created in C/C++ with HLS
 - consumes less time and allows faster implementation
 - verification during implementation
 - even software guy can create accelerated solutions

NetFlow (I1)

- basic NetFlow aggregation (basic Aggregate)
- packet/byte counters, start/end timestamps, TCP flags
- part of the basic SDM infrastructure

NetFlow Extended (I2)

- I1 with TCP flags of the first 5 packets of the flow
- demonstrates easy NetFlow extending using plain C
- TCP Flag Counters (I3) (Non-NetFlow)
 - counts the number of observed TCP flags
 - support advanced flow analysis
- Timestamp Diff (I4) (Non-NetFlow)
 - inter-arrival times of the first 11 packets
 - flow based classification or identification of L7 protocols

Instruction	Regs	LUTs	Freq. [MHz]
(I1)NetFlow (handmade)	1754	325	425.134
(I1)NetFlow	1846	824	308.641
(I2)NetFlow Extended	2070	1113	308.641
(I3)TCP Flag Counters	0	1046	327.868
(I4)Timestamp Diff	5199	2556	306.748

- all modules meet the frequency requirement for 100 Gb/s
- HLS do not beat hand-written VHDL, but is good enough
- instruction creation in C/C++ is very simple and fast
- even non-VHDL programmer can accelerate his monitoring

- commodity server running Linux
- SW flow exporter (NetFlow/IPFIX) from SME Invea-Tech
 - support for creation of traffic processing plugins
 - plugins utilizing the SDM acceleration capabilities
- our own hardware probe for up to 100 GbE
 - new PCI-Express card with powerful Virtex7 FPGA
 - 1×100 GbE or 2×40 GbE or 8×10 GbE interfaces
 - SDM over NetCope as firmware

Future NREN Cesnet

all metering points doubled (production and testing)

Thank you for your attention.