On the Security of Edwards Curves

Watson Ladd

April 28, 2014

The Problem

■ Short Weierstrass curves are secure

The Problem

■ Short Weierstrass curves are secure

- Slow

The Problem

■ Short Weierstrass curves are secure

- Slow
- Implementations difficult

The Problem

■ Short Weierstrass curves are secure

- Slow
- Implementations difficult

■ Standardized curves make these worse

The Problem

- Short Weierstrass curves are secure
- Slow
- Implementations difficult

■ Standardized curves make these worse
■ Security-performance tradeoff

Problem Redux

- $y^{2}=x^{3}+a x+b$ has addition law

Problem Redux

- $y^{2}=x^{3}+a x+b$ has addition law
- Addition law cannot be extended to all points

Problem Redux

- $y^{2}=x^{3}+a x+b$ has addition law
- Addition law cannot be extended to all points

■ Can define ladder: costs 19 M per step

Problem Redux

- $y^{2}=x^{3}+a x+b$ has addition law
- Addition law cannot be extended to all points

■ Can define ladder: costs 19 M per step

- Best addition 14M, doubling 9M

Problem Redux

- $y^{2}=x^{3}+a x+b$ has addition law
- Addition law cannot be extended to all points

■ Can define ladder: costs 19 M per step

- Best addition 14M, doubling 9M

■ RFC 6090 got the addition law wrong

Problem Redux

- $y^{2}=x^{3}+a x+b$ has addition law
- Addition law cannot be extended to all points

■ Can define ladder: costs 19 M per step

- Best addition 14M, doubling 9M

■ RFC 6090 got the addition law wrong
■ Probably not only case

Problem Redux

- $y^{2}=x^{3}+a x+b$ has addition law
- Addition law cannot be extended to all points

■ Can define ladder: costs 19 M per step

- Best addition 14M, doubling 9M

■ RFC 6090 got the addition law wrong

- Probably not only case

■ Identity is not in the plane: cannot be represented

Problem Redux

- $y^{2}=x^{3}+a x+b$ has addition law
- Addition law cannot be extended to all points

■ Can define ladder: costs 19 M per step

- Best addition 14M, doubling 9M

■ RFC 6090 got the addition law wrong

- Probably not only case

■ Identity is not in the plane: cannot be represented
■ Branches driven by secret data: deep analysis required

Solution

- Use curve shapes with complete addition law

Solution

■ Use curve shapes with complete addition law
■ Twisted Edwards: $a x^{2}+y^{2}=1+d x^{2} y^{2}$

Solution

■ Use curve shapes with complete addition law
■ Twisted Edwards: $a x^{2}+y^{2}=1+d x^{2} y^{2}$
■ Introduced in 2007, generalized 2010

Solution

- Use curve shapes with complete addition law
- Twisted Edwards: $a x^{2}+y^{2}=1+d x^{2} y^{2}$

■ Introduced in 2007, generalized 2010
■ When d is not a square no division by zero

Solution

- Use curve shapes with complete addition law
- Twisted Edwards: $a x^{2}+y^{2}=1+d x^{2} y^{2}$

■ Introduced in 2007, generalized 2010
■ When d is not a square no division by zero

- Identity is $(0,1)$.

Solution

- Use curve shapes with complete addition law
- Twisted Edwards: $a x^{2}+y^{2}=1+d x^{2} y^{2}$

■ Introduced in 2007, generalized 2010
■ When d is not a square no division by zero

- Identity is $(0,1)$.
- 9 M addition, 7 M doubling

Solution

- Use curve shapes with complete addition law
- Twisted Edwards: $a x^{2}+y^{2}=1+d x^{2} y^{2}$

■ Introduced in 2007, generalized 2010
■ When d is not a square no division by zero

- Identity is $(0,1)$.

■ 9M addition, 7 M doubling

- Addition has no exceptional cases

Solution

- Use curve shapes with complete addition law

■ Twisted Edwards: $a x^{2}+y^{2}=1+d x^{2} y^{2}$
■ Introduced in 2007, generalized 2010
■ When d is not a square no division by zero

- Identity is $(0,1)$.
- 9M addition, 7 M doubling
- Addition has no exceptional cases

■ Code can get correct answer every time without data-dependent branches

Solution

- Use curve shapes with complete addition law

■ Twisted Edwards: $a x^{2}+y^{2}=1+d x^{2} y^{2}$
■ Introduced in 2007, generalized 2010
■ When d is not a square no division by zero

- Identity is $(0,1)$.
- 9M addition, 7 M doubling
- Addition has no exceptional cases

■ Code can get correct answer every time without data-dependent branches
■ Easier to analyze for correctness

Security

- Every curve is a twisted Edwards curve over a small extension

Security

- Every curve is a twisted Edwards curve over a small extension

■ Solving DLP on Edwards curve equivalent on short Weierstrass curve

Security

■ Every curve is a twisted Edwards curve over a small extension

■ Solving DLP on Edwards curve equivalent on short Weierstrass curve

■ Cofactor not 1: protocols need slight adjustment in some cases

Security

■ Every curve is a twisted Edwards curve over a small extension

■ Solving DLP on Edwards curve equivalent on short Weierstrass curve

■ Cofactor not 1: protocols need slight adjustment in some cases

■ To avoid wrong-curve attacks compress points: twist secure

Security

■ Every curve is a twisted Edwards curve over a small extension

- Solving DLP on Edwards curve equivalent on short Weierstrass curve

■ Cofactor not 1: protocols need slight adjustment in some cases

■ To avoid wrong-curve attacks compress points: twist secure

■ Can also use Montgomery form for all Edwards curves: fast ladder

Security

■ Every curve is a twisted Edwards curve over a small extension

- Solving DLP on Edwards curve equivalent on short Weierstrass curve

■ Cofactor not 1: protocols need slight adjustment in some cases

■ To avoid wrong-curve attacks compress points: twist secure
■ Can also use Montgomery form for all Edwards curves: fast ladder

- Montgomery form is $y^{2}=x^{3}+A x^{2}+x$
- Twist security removes checks from Montgomery form

Security

■ Every curve is a twisted Edwards curve over a small extension

- Solving DLP on Edwards curve equivalent on short Weierstrass curve

■ Cofactor not 1: protocols need slight adjustment in some cases

■ To avoid wrong-curve attacks compress points: twist secure
■ Can also use Montgomery form for all Edwards curves: fast ladder

- Montgomery form is $y^{2}=x^{3}+A x^{2}+x$
- Twist security removes checks from Montgomery form

Life with cofactors

■ Solution 1: Write Diffie-Hellman as ahG, bhG deriving abhhG

Life with cofactors

■ Solution 1: Write Diffie-Hellman as ahG, bhG deriving abhhG

■ Solution 2: Order checks

Life with cofactors

■ Solution 1: Write Diffie-Hellman as ahG, bhG deriving abhhG

■ Solution 2: Order checks

- Solution 1 is faster

Life with cofactors

■ Solution 1: Write Diffie-Hellman as ahG, bhG deriving abhhG

■ Solution 2: Order checks

- Solution 1 is faster
- Because identity is representable, no issues

Life with cofactors

■ Solution 1: Write Diffie-Hellman as ahG, bhG deriving abhhG

■ Solution 2: Order checks

- Solution 1 is faster

■ Because identity is representable, no issues
■ Naive implementations work again

Picking the right curves

■ Same security considerations as Weierstrass curves

Picking the right curves

■ Same security considerations as Weierstrass curves

- Need to permit a cofactor of 4 over base field: standards allow it

Picking the right curves

■ Same security considerations as Weierstrass curves

- Need to permit a cofactor of 4 over base field: standards allow it
■ High embedding degree, prime order twist, not supersingular

Picking the right curves

■ Same security considerations as Weierstrass curves

- Need to permit a cofactor of 4 over base field: standards allow it
■ High embedding degree, prime order twist, not supersingular

■ Best known attack is Pollard rho method or variations

Picking the right curves

■ Same security considerations as Weierstrass curves

- Need to permit a cofactor of 4 over base field: standards allow it
■ High embedding degree, prime order twist, not supersingular
- Best known attack is Pollard rho method or variations

■ Generally use small constants to speed up calculations

Picking the right curves

■ Same security considerations as Weierstrass curves

- Need to permit a cofactor of 4 over base field: standards allow it
■ High embedding degree, prime order twist, not supersingular
- Best known attack is Pollard rho method or variations

■ Generally use small constants to speed up calculations
■ Security picture very well understood on \mathbb{F}_{p}

Which curves?

■ Pick security levels: fastest curve at each security level

Which curves?

■ Pick security levels: fastest curve at each security level
■ Curve25519 clear winner at 128 bit level

Which curves?

■ Pick security levels: fastest curve at each security level
■ Curve25519 clear winner at 128 bit level
■ Use Montgomery form alongside: already proposed and implemented for TLS

Which curves?

■ Pick security levels: fastest curve at each security level
■ Curve25519 clear winner at 128 bit level
■ Use Montgomery form alongside: already proposed and implemented for TLS

- All other curves only twisted Edwards form

Which curves?

■ Pick security levels: fastest curve at each security level
■ Curve25519 clear winner at 128 bit level
■ Use Montgomery form alongside: already proposed and implemented for TLS

- All other curves only twisted Edwards form
- Primes not congruent to 1 modulo 8

Which curves?

■ Pick security levels: fastest curve at each security level
■ Curve25519 clear winner at 128 bit level
■ Use Montgomery form alongside: already proposed and implemented for TLS

- All other curves only twisted Edwards form
- Primes not congruent to 1 modulo 8
- Point Compression: patent expires in July

Which curves?

■ Pick security levels: fastest curve at each security level
■ Curve25519 clear winner at 128 bit level
■ Use Montgomery form alongside: already proposed and implemented for TLS

- All other curves only twisted Edwards form
- Primes not congruent to 1 modulo 8

■ Point Compression: patent expires in July
■ Send only y coordinate, use in ECDH: Montgomery ladder interop

How big?

■ Hash your points!

How big?

■ Hash your points!

- All protocols do this

How big?

■ Hash your points!

- All protocols do this

■ Reduction to DDH (not SDH)

How big?

■ Hash your points!

- All protocols do this
- Reduction to DDH (not SDH)

■ Cheon paper completely irrelevant

How big?

■ Hash your points!

- All protocols do this
- Reduction to DDH (not SDH)

■ Cheon paper completely irrelevant
■ If you are happy with P256, Curve25519 will be same security

How big?

■ Hash your points!

- All protocols do this
- Reduction to DDH (not SDH)

■ Cheon paper completely irrelevant
■ If you are happy with P256, Curve25519 will be same security
■ But much faster: makes deployment easier

How big?

■ Hash your points!

- All protocols do this
- Reduction to DDH (not SDH)

■ Cheon paper completely irrelevant
■ If you are happy with P256, Curve25519 will be same security
■ But much faster: makes deployment easier
■ Same story at larger security levels

