Revisiting Discrete-Log Based Random Number Generators

(or: How to Fix EC-DRBG?)

René Struik (Struik Security Consultancy)

e-mail: rstruik.ext@gmail.com

Outline

- 1. Notation
- 2. NIST EC-DRBG
 - Description of Generator
 - Security Caveats
- 3. EC-DRBG "Fixes"
 - Main Objectives
 - Five Constructions
- 4. Conclusions

Notation

 $E(\mathbf{F}_q)$: elliptic curve over field \mathbf{F}_q

G: cyclic subgroup of $E(\mathbf{F}_q)$, of prime-order n

G: base point of G

h: co-factor (usually, small)

One has $|E(\mathbf{F}_q)| = n \cdot h$

x(P): x-coordinate of point P on the curve (not being point at infinity), when represented in affine coordinates

NIST EC-DRBG Generator

Algorithm 1: EC-DRBG Generator Input: $k \in \mathbb{Z}_q$, $b \le q$, $l \ge 0$ Output: l pseudorandom numbers in \mathbb{Z}_b for i:=1 to l do Set $(R,S) \leftarrow (kG,kQ)$; Set $(k,out_i) \leftarrow (x(R) \pmod{q}, x(S) \pmod{b})$; end for Return $(out_1, ..., out_l)$

NIST EC-DRBG:

- -b: a power of two (i.e., output obtained via truncation of x-coordinate)
- -b: at least $13 + \log_2 h$ bits less than bit-size of order of finite field \mathbf{F}_q (byte-oriented) (recommendation was to pick b as large as possible, for efficiency reasons)
- $-E(\mathbf{F}_q)$: NIST prime curves P-256, P-384 (and others)
- -G, Q: default values specified for NIST prime curves P-256, P-384 (alternative values allowed, provided generated *verifiably at random*)

Security of NIST EC-DRBG

1. Potential back-door EC-DRBG

Unknown whether default base point G and public key Q generated verifiably at random Unknown if $\log_G(Q)$ known to those who specified G and Q

- If $d := \log_G(Q)$, one can determine internal state R from S, since $R := d^{-1}S$
- One can determine S from x(S), since only two points with same x-coordinate
- One can determine x(S) from truncated version, since only roughly 16 bits removed So, if $\log_G(Q)$ known, then internal state leaked from observed output out_i
- 2. Output EC-DRBG distinguishable from random bit string
- Set of x-coordinates of valid point forms subset of \mathbf{F}_q of cardinality roughly q/2 and easy to check whether $x \in \mathbf{F}_q$ is in this set. So, output of EC-DRBG (without truncation) is easily distinguished from random element of \mathbf{F}_q
- Distinguishability remains with truncation, if one does not remove sufficiently many bits from x(S)

3. Loose security reduction

Hardness of so-called *x*-Logarithm Problem, on which security of core EC-DRBG relies, is hard to quantify and security reduction of related security problem (AXLP) to Diffie-Hellmann problem (DDH) is rather loose

NIST EC-DRBG "Fixes"

Minor "tweaks" of EC-DRBG suffice to obtain the following properties:

- 1. Reduce/remove reliance on public key Q
- 2. Lower distinguishability of output bit string
- 3. Tighten security reductions
- 4. Provide potential resilience against quantum cryptographic attacks (should these become a long-term threat)

Claims:

- Techniques apply to short Weierstrass curves (e.g., NIST, Brainpool), Montgomery curves, Edwards and twisted Edwards curves, binary curves.
- Techniques do not add additional computational cost (mostly, far more efficient)
- Techniques can do without public key Q, thus eliminating key substitution attacks

NOTE: builds upon existing cryptanalysis EC-DRBG ([1])

- uses tight bounds on character sums and Kloosterman sums ([18])
- uses presumed difficulty of Diffie-Hellman problems ([7])

April 29, 2014 IRTF-CFRG-Interim

Example of 'Fix' (roughly "Construction C")

```
Original EC-DRBG Generator
Input: k \in \mathbb{Z}_q, b \le q, l \ge 0
Output: l pseudorandom numbers in \mathbf{Z}_h
     for i=1 to l do
           Set (R, S) \leftarrow (kG, kQ);
           Set (k, out_i) \leftarrow (x(R) \pmod{q}, x(S) \pmod{b});
     end for
     Return (out_1, ..., out_l)
"Algorithm C": DDH Generator
Input: k \in \mathbb{Z}_q, l \ge 0
Output: l pseudorandom numbers in \mathbf{Z}_{h}
     for i=1 to l do
           Set (R, S) \leftarrow (kG, kQ);
           Set (k, out_i) \leftarrow (x(R) \pmod{q}, (x(R) + x(S)) \pmod{b}; \blacktriangleleft
     end for
     Return (out_1, ..., out_l)
```

April 29, 2014 IRTF-CFRG-Interim

NIST EC-DRBG vs. New DDH Constructions

Construction	NIST	A	В	C	D	E	$\mathbf{D}(k)$
#Public keys Q	1	3	2	1	_	_	_
≈ # rnd. bits/curve size	1	1	1	1	1	1	k
Rate ¹	1/2	1/4	1/3	1/2	1/3	1/2	k/(k+2)
Backdoor possible?	Yes	unlikely	unlikely	unlikely	No	No	No
Indistinguishable output	poor						
- if state R not known		tight	tight	tight	tight	tight	tight
- if state R known		tight	tight	poor	tight	poor	tight
Reduction next state	AXLP						
- if output not known		tight	tight	tight	tight	tight	tight
- if output known		tight	tight	AXLP	tight	AXLP	tight
Quantum-crypto secure?	No	perhaps	perhaps	perhaps	likely	likely	likely

Notes:

- Five constructions submitted to NIST (as comment re-opened SP 800-90A spec)
- Full details in draft technical paper

¹Rate: #random bits (as multiple of bit-size curve)/#scalar multiplications

Conclusions

Security weaknesses EC-DRBG relatively easy to fix

- Five constructions, with slightly differing properties
- Simplest fix: <u>only</u> change w.r.t. original EC-DRBG is *single modular addition*
- Some suggested fixes possibly resistant to quantum-cryptographic attacks

Constructions work for "short" Weierstrass curves (e.g., NIST, Brainpool), Edwards curves, twisted Edwards curves, Montgomery curves

Contrary to popular belief, NIST EC-DRBG can be made highly secure

Notes:

- Main constructions submitted to NIST
- Full details to appear in technical paper

Further Reading

- 1. D.R.L. Brown, K. Gjøsteen, "A Security Analysis of the NIST SP 800-90 Elliptic Curve Random Number Generator," in *Proceedings of Advances of Cryptology CRYPTO 2007*, A. Menezes, Ed., Lecture Notes in Computer Science, Vol. 4622, pp. 466-481, Berlin: Springer, 2007.
- 2. R.R. Farashahi, B. Schoenmakers, A. Sidorenko, "Efficient Pseudorandom Generators Based on the DDH Assumption," in *Proceedings of 10th International Conference on Practice and Theory in Public-Key Cryptography PKC 2007*, T. Okamoto, X. Wang, Eds., Lecture Notes in Computer Science, Vol. 4450, pp. 426-441, Berlin: Springer, 2007.
- 3. B. Schoenmakes, A. Sidorenko, "Cryptanalysis of the Dual Elliptic Curve Pseudorandom Generator," IACR ePrint 2006-190.
- 4. NIST SP 800-90, *Recommendation for Random Number Generation Using Deterministic Random Bit Generators*, National Institute of Standards and Technology, Department of Commerce, 2007.
- 5. ANS X9.82: Part 3-2007, *Random Number Generation, Part 3: Deterministic Random Bit Generators*, American National Standard for Financial Services, Accredited Standards Committee X9, Annapolis, MD, 2007.
- 6. D. Brown, R. Gallant, "The static Diffie-Hellman Problem," International Association for Cryptologic Research, IACR ePrint 2004-306.
- 7. N. Koblitz, A. Menezes, "Intractable Problems in Cryptography," in *Finite Fields: Theory and Applications*, Contemporary Mathematics, 518, pp. 279-300, 2010.
- 8. P-A. Fouque, A. Joye, M. Tibouchi, "Injective Encodings to Elliptic Curves," in *18th Australasian Conference on Information Security and Privacy ACISP-2013*, C. Boyd, L. Simpson, Eds., Lecture Notes in Computer Science, Vol. 7959, pp. 203-218, New York: Springer, 2013.

Further Reading (cont'd)

- 9. D.J. Bernstein, M. Hamburg, A. Krasnova, T. Lange, "Elligator: Eliptic-Curve Points Indistinguishable from Uniform Random Strings," in *Proceedings of 20th ACM Conference on Computer and Communications Security ACM-CCS 2013*, 2013.
- 10. D.F. Aranha, P.S.L.M. Barreto, G.C.C.F. Pereira, J.E. Ricardini, "A Note on High-Security General-Purpose Elliptic Curves," International Association for Cryptologic Research, IACR ePrint 2013-647.
- 11. J.H. Cheon, "Discrete Logarithm Problems with Auxiliary Inputs," J. of Cryptology, 2010.
- 12. D. Shumow, N. Ferguson, "On the Possibility of a Backdoor in the NIST SP 800-90 Dual-ECC PRNG," Rump Session, Crypto 2007.
- 13. FIPS Pub 186-2, *Digital Signature Standard (DSS)*, Federal Information Processing Standards Publication 186-2, US Department of Commerce/National Institute of Standards and Technology, Springfield, Virginia, January 27, 2000. (Includes Change Notice, October 5, 2001.) \
- 14. NIST SP 800-90A, *Recommendation for Random Number Generation Using the Deterministic Random Bit Generators*, Revision 1, Draft, National Institute of Standards and Technology, U.S. Department of Commerce, Gaithersburg, MD, September 9, 2013.
- 15. NIST SP 800-90B, *Recommendation for the Entropy Sources Used for Random Bit Generation*, Draft, National Institute of Standards and Technology, U.S. Department of Commerce, Gaithersburg, MD, September 6, 2012.
- 16. NIST SP 800-90C, *Recommendation for Random Bit Generation Constructions*, Draft, National Institute of Standards and Technology, U.S. Department of Commerce, Gaithersburg, MD, September 6, 2012.

Further Reading (cont'd)

- 17. D.R. Hankerson, A.J. Menezes, S.A. Vanstone, *Guide to Elliptic Curve Cryptography*, New York: Springer, 2003.
- 18. R. Lidl, H. Niederreiter, *Finite Fields*, 2nd Edition, Cambridge: Cambridge University Press, 1997.
- 19. BSI, *Technical Guidance TR-03111 Elliptic Curve Cryptography, Version 2.0*, June 28, Bundesamt fur Sicherheit in der Informationstechnik, Bonn, Germany, 2012.
- 20. RFC 5639, Elliptic Curve Cryptography (ECC) Brainpool Standard Curves and Curve Generation, March 2010.
- 21. L.K. Grover, "A Fast Quantum Mechanical Algorithm for Database Search," STOC 1996.