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Notation
E(Fq): elliptic curve over field Fq

G: cyclic subgroup of E(Fq), of prime-order n
G: base point of G
h: co-factor (usually, small)

One has |E(Fq)| = n⋅h

x(P): x-coordinate of point P on the curve (not being point at infinity), when 
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x(P): x-coordinate of point P on the curve (not being point at infinity), when 
represented in affine coordinates
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NIST EC-DRBG Generator
Algorithm 1: EC-DRBG Generator
Input: k∈Zq, b ≤ q, Ɩ ≥ 0
Output: l pseudorandom numbers in Zb

for i:=1 to l do
Set (R, S) ← (kG, kQ);
Set (k, outi) ← (x(R) (mod q), x(S) (mod b));

end for
Return (out1, …, outl)
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Return (out1, …, outl)

NIST EC-DRBG:
− b: a power of two (i.e., output obtained via truncation of x-coordinate)
− b: at least 13 + log2 h bits less than bit-size of order of finite field  Fq (byte-oriented)

(recommendation was to pick b as large as possible, for efficiency reasons)
− E(Fq): NIST prime curves P-256, P-384 (and others)
− G, Q: default values specified for NIST prime curves P-256, P-384

(alternative values allowed, provided generated verifiably at random)
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Security of NIST EC-DRBG
1. Potential back-door EC-DRBG
Unknown whether default base point G and public key Q generated verifiably at random
Unknown if logG(Q) known to those who specified G and Q
− If d:= logG(Q), one can determine internal state R from S, since R:=d-1S
− One can determine Sfrom x(S), since only two points with same x-coordinate
− One can determine x(S) from truncated version, since only roughly 16 bits removed
So, if logG(Q) known, then internal state leaked from observed output outi
2. Output EC-DRBG distinguishable from random bit string
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2. Output EC-DRBG distinguishable from random bit string
− Set of x-coordinates of valid point forms subset of Fq of cardinality roughly q/2 and 

easy to check whetherx ∈ Fq is in this set. So, output of EC-DRBG (without 
truncation) is easily distinguished from random element of Fq

− Distinguishabilityremains with truncation, if one does not remove sufficiently many 
bits from x(S)

3. Loose security reduction
Hardness of so-called x-Logarithm Problem, on which security of core EC-DRBG relies,
is hard to quantify and security reduction of related security problem (AXLP) to Diffie-
Hellmann problem (DDH) is rather loose
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NIST EC-DRBG “Fixes”
Minor “tweaks” of EC-DRBG suffice to obtain the following properties:

1. Reduce/remove reliance on public key Q
2. Lower distinguishability of output bit string
3. Tighten security reductions
4. Provide potential resilience against quantum cryptographic attacks (should these 

become a long-term threat)

René Struik (Struik Security Consultancy)

Claims:
− Techniques apply to short Weierstrass curves (e.g., NIST, Brainpool), Montgomery

curves, Edwards and twisted Edwards curves, binary curves.
− Techniques do not add additional computational cost (mostly, far more efficient)
− Techniques can do without public key Q, thus eliminating key substitution attacks

NOTE: builds upon existing cryptanalysis EC-DRBG ([1])
− uses tight bounds on character sums and Kloostermansums ([18])
− uses presumed difficulty of Diffie-Hellman problems ([7])
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Example of ‘Fix’ (roughly “Construction C”)
Original EC-DRBG Generator
Input: k∈Zq, b ≤ q, Ɩ ≥ 0
Output: l pseudorandom numbers in Zb

for i:=1 to l do
Set (R, S) ← (kG, kQ);
Set (k, outi) ← (x(R) (mod q), x(S) (mod b));

end for
Return (out1, …, outl)

“Algorithm C”: DDH Generator
Input: k∈Zq, Ɩ ≥ 0
Output: l pseudorandom numbers in Zb

for i:=1 to l do
Set (R, S) ← (kG, kQ);
Set (k, outi) ← (x(R) (mod q), (x(R) + x(S)) (mod b);

end for
Return (out1, …, outl)

Return (out1, …, outl)
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NIST EC-DRBG vs. New DDH Constructions
Construction NIST A B C D E D(k)
#Public keysQ 1 3 2 1 − − −
≈ # rnd. bits/curve size 1 1 1 1 1 1 k
Rate1 1/2 1/4 1/3 1/2 1/3 1/2 k/(k+2)
Backdoor possible? Yes unlikely unlikely unlikely No No No
Indistinguishable output poor
- if state R not known tight tight tight tight tight tight
- if state R known tight tight poor tight poor tight
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- if state R known tight tight poor tight poor tight
Reduction next state AXLP
- if output not known tight tight tight tight tight tight
- if output known tight tight AXLP tight AXLP tight
Quantum-crypto secure? No perhaps perhaps perhaps likelylikely likely

Notes:
− Five constructions submitted to NIST (as comment re-opened SP 800-90A spec)
− Full details in draft technical paper

1Rate: #random bits (as multiple of bit-size curve)/#scalar multiplications
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Conclusions

Security weaknesses EC-DRBG relatively easy to fix
− Five constructions, with slightly differing properties
− Simplest fix: onlychange w.r.t. original EC-DRBG is single modular addition
− Some suggested fixes possibly resistant to quantum-cryptographic attacks

Constructions work for “short” Weierstrass curves (e.g., NIST, Brainpool), Edwards
curves, twisted Edwards curves, Montgomery curves
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curves, twisted Edwards curves, Montgomery curves

Notes:
− Main constructions submitted to NIST
− Full details to appear in technical paper

Contrary to popular belief, NIST EC-DRBG can be made highly secure
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