TLS 1.3 SNI Protection Big Picture

Eric Rescorla

ekr@rtfm.com

IETF 89.5 (TLS Interim)

SNI Protection in Context

- Basic assumption is that multiple sites share a given IP
- Motivations
 - Anti-censorship
 - Prevent monitoring
- Other vectors
 - DNS queries
 - Traffic analysis of TLS
- Protecting SNI is a down payment on preventing attack
 - Not a complete solution
 - Need TLS padding and probably assume DNS-E is coming

SNI Protection Options (High Level)

- Do nothing
- Abandon SNI
 - Possibly with delegation
- Pre-arranged key
 - Disseminated via DNS, prior handshake, etc.
- Anonymous DHE before SNI
 - What was in draft-rescorla-tls13-flows-01

Delegation?

- $\bullet\,$ Server has certificates for domains A and B
 - SNI lets the client indicate which one it wants
- Alternative: let A endorse B
 - So client can always ask for ${\sf B}$
 - Use next-level up indicator (e.g., Host:) for switching/routing
- Lots of implementation options
 - DNS SRV
 - TLS header
 - HTTP Alt-Svc (this is mostly an HTTP issue)
- This has obvious other advantages

Optimism versus Certainty

- Traditionally TLS assumes clients know nothing about server
 - We are moving towards modes that assume client state
- Optimistic
 - Client thinks it knows server capabilities
 - But falls back if it's wrong
- Certain
 - Client knows server capabilities
 - Fails if it's wrong

Example: SNI Encryption With External Key

- What happens if the server forgets K_s ?
- Connection failure

Example: Session Resumption

Server

 \geq

ClientHello, Session=XXX

ServerHello, Session=YYY

- If server loses state, it just corrects the client and it falls back
- Connection succeeds
- Cost is protocol complexity

Can we split the problem?

- External keys and delegation assume client knowledge
- But that knowledge might be implanted in multiple ways
 - DNS (probably DNSSEC)
 - Previous TLS connections
 - HTTP headers
 - Other unspecified mechanisms
- Would be nice to have flexibility here

What do we need from secure DNS?

- DNSSEC provides integrity (ostensibly we have this now)
 - Absolutely needed for delegation
 - Needed for encryption with active attack resistance
 - ... but not against passive attack
- DNS-E (whatever that is) provides confidentiality
 - But caching gives a lot of this anyway

Who bears the cost?

- It's clear this is not a universally wanted feature
- Can we put the cost on those who want it
 - Opt-in from servers
 - Allow clients to ignore

What decision do we need to make?

- Does the TLS state machine need to accomodate this?
- In-band DHE requires significant state machine support
- The rest do not
- Need to decide between those groups
- Can do detailed design of delegation, external keys, etc. later.