Protecting the TLS Handshake

Tom Ritter and Daniel Kahn Gillmor

May 2014

- 4 同 6 - 4 三 6 - 4 三 6

3

Tom Ritter and Daniel Kahn Gillmor Protecting the TLS Handshake

- Metadata is valuable information for censorship and surveillance regimes
 - Major surveillance programs gather and aggregate metadata.
 - Clear metadata makes it easy to censor unwanted traffic.

э

- Metadata is valuable information for censorship and surveillance regimes
 - Major surveillance programs gather and aggregate metadata.
 - Clear metadata makes it easy to censor unwanted traffic.
 - "We kill people based on metadata" General Michael Hayden

- Metadata is valuable information for censorship and surveillance regimes
 - Major surveillance programs gather and aggregate metadata.
 - Clear metadata makes it easy to censor unwanted traffic.
 - "We kill people based on metadata" General Michael Hayden
- Everything in the TLS handshake is this sort of metadata.
- The TLS handshake is in the clear.

- Metadata is valuable information for censorship and surveillance regimes
 - Major surveillance programs gather and aggregate metadata.
 - Clear metadata makes it easy to censor unwanted traffic.
 - "We kill people based on metadata" General Michael Hayden
- Everything in the TLS handshake is this sort of metadata.
- The TLS handshake is in the clear.

Pervasive monitoring is an attack.

TLS should not facilitate censorship or surveillance

Tom Ritter and Daniel Kahn Gillmor

Protecting the TLS Handshake

How can the situation be improved?

- Hiding metadata information requires mixing into a larger anonymity set.
- Other layers may *also* leak metadata; this is their responsibility. TLS should not leak more.
- If TLS reduces metadata leakage, other protocols have incentive to improve.

Optional or not?

- The anonymity sets provided will be larger if this is the only 1.3 handshake.
- Making this optional increases implementation complexity.
- If it is optional, then clients may try cleartext handshakes anyway.
- If we must make it optional, we should encourage implementations to default to on.

False sense of security?

- Without DNSSEC, we can't defend the handshake against active attacks.
- Opportunistic Security defend against passive attackers anyway.
- With DNSSEC, we have the ability to detect or prevent active attacks.

False sense of security?

- Without DNSSEC, we can't defend the handshake against active attacks.
- Opportunistic Security defend against passive attackers anyway.
- With DNSSEC, we have the ability to detect or prevent active attacks.

We don't have to be as good as the record layer – But we should do better than cleartext.

Goals

- Handshake, including SNI, Encrypted against passive
- ▶ 1-RTT from ignorance, 0-RTT w/ History
- Algorithm Flexibility
 - Support I require NIST and I require Not-NIST
- Secondary
 - Aim for Forward Secrecy
 - Aim for Resisting Active MITM or detecting

1 RTT From Full Ignorance

- Client \rightarrow Server
- Server \rightarrow Client
- Client[HTTP Data] \rightarrow Server

1 RTT From Full Ignorance

- Client \rightarrow Server
- Server[Signed Symmetric Key, Cert] \rightarrow Client
- Client[HTTP Data] \rightarrow Server

1 RTT From Full Ignorance

- Client[Cert-Selecting Info] \rightarrow Server
- Server[Signed Symmetric Key, Cert] \rightarrow Client
- Client[HTTP Data] \rightarrow Server

"Cert Selecting Info"

- Can't be a SNI replacement
- Therefore, SNI data is encrypted
 - But how?
 - Need to get a pre-handshake key to the client, prior to ClientHello

DANISH

- Key in DNS
- Like DANE, but DANE is for x509 cert

문어 문

<**∂** ► < ≥ ►

Thus, DANISH

Currently: 3 common CDN mechanisms

- cdn.example.com
 - CNAME to cdn.com
- cdn.com
 - A to w.x.y.z

- cdn.example.com
 - A to w.x.y.z
- cdn.example.com
 - zone cut from example.com, run by CDN

Tom Ritter and Daniel Kahn Gillmor

w/DANISH

- cdn.example.com
 - CNAME to cdn.com
- cdn.com
 - A to w.x.y.z
 - DANISH to [keydata]

- cdn.example.com
 - A to w.x.y.z
 - DANISH to [keydata]
- cdn.example.com
 - zone cut from example.com, run by CDN

Algorithm Requirement

- cdn.example.com
 - CNAME to nist.cdn.com
- cdn.com
 - A to w.x.y.z
 - DANISH to [nist-keydata]

- cdn.example.com
 - A to w.x.y.z
 - DANISH to [nist-keydata]
- cdn.example.com
 - zone cut from example.com, run by CDN

Doesn't require DNSSEC

- Resists passive adversary without DNSSEC
- Resists active adversary w/ DNSSEC*

Tom Ritter and Daniel Kahn Gillmor Protecting the TLS Handshake

Algorithm Flexibility

- All CDN servers can have uniform configuration
 - Answer for all keys, if desired
- ClientHello has opaque uint32 key ID
 - Not an SNI replacement

Failure Modes

- Client sends unknown key identifier or undecryptable input
 - DNS data stale, misconfigured, or malicious client
- Server responds "Use this pre-handshake key"
- Client restarts w/ ClientHello (1-RTT \rightarrow 2-RTT)

Failure and Algo Flexibility

- Server responds "Use this pre-handshake key"
 - What key?!?! NIST? DJB?
- Two solutions for CDNs, outside of spec
 - 1. Opaque KeyID is not, top n bits indicate Algo
 - 2. CDN Servers answer to any key, but subsets have different defaults. nist.cdn.org A RRs \rightarrow [Nist subset]

Active Attack

Client[Encrypted cdn.example.com] \rightarrow Server Client \leftarrow Attacker "Unknown Key, use this one"

Client can:

- Continue to 2-RTT handshake, vulnerable to active attack, which we detect at handshake end
- Not trust that, refresh DNSSEC information
- Choose their own destiny in the name of speed or security

Tom Ritter and Daniel Kahn Gillmor Protecting the TLS Handshake

Indicating TLS 1.3

Presence of a DANISH record, can indicate TLS 1.3 capability

- Same as DANE for SMTP
- But we're handwaving here

Handwave

- 0-RTT with History
- Forward Secrecy
 - Key Rotation is good, example.com-specified DANISH records hurt
- Fallback
 - DANISH implies TLS 1.3. If server barfs, browsers downgrade to TLS1.2, re-handshaking
 - Browsers pin TLS1.3 support per name via another mechanism

Other Ideas

DNSNAME DNS Type

- Like CNAME, but validates on target
- *.cdn.org is used by CDN for every customer
- Server sends key in SYN/ACK, Server speaks first
 - Similar to TCP Fast Open
 - Like idea, requires massive overhaul

Even Faster!

Currently:

- DNS example.com
- TCP handshake
- TLS handshake
- DNS cdn.example.com
- (CNAME: DNS cdn.org)
- TCP Handshake

TLS Handshake Tom Ritter and Daniel Kahn Gillmor

Tom Ritter and Daniel Kahn Gillmor

Protecting the TLS Handshake

Faster:

- DNS example.com
- TCP handshake
- TLS handshake

TCP Handshake

 HTTP Headers w/ DNSSEC-signed DNS responses for cdn.example.com and cdn.org