
TLS 1.3 Client Authentication

Andrei Popov, Microsoft Corp.



Issue 1: TLS Client Authentication After the 
Handshake
• The user navigates to the site’s landing page, no client authentication 

required.

• Eventually, the user requests a protected resource, the site triggers 
renegotiation with client authentication.

• The site validates client credential and authorizes the request.

TLS 1.3 does not allow renegotiation, therefore sites designed as shown 
above can’t use TLS1.3.



Proposal: Pull Client Authentication out of the 
Handshake
1. CertificateRequest, client Certificate, CertificateVerify and 
NewSessionTicket messages use a new content type distinct from 
"handshake".

2. The client can send Certificate followed by CertificateVerify at any 
time application data is permitted, regardless of whether the server 
had previously sent CertificateRequest.

3. The server can send CertificateRequest and NewSessionTicket at any 
time application data is permitted. Alternatively, the server can 
encapsulate CertificateRequest in an application protocol message.

4. The server can send NewSessionTicket in response to client 
CertificateVerify or Finished.



Open Issues:

• We need to decide what CertificateVerify would be signing (e.g. the 
handshake hash or some form of RFC5705 Exported Keying Material + 
the client certificate itself).

• Should we try to identify messages belonging to the same 
transaction, i.e. CertificateRequest or Certificate include a random ID 
and any messages sent in response (e.g. Certificate, CertificateVerify, 
NewSessionTicket) echo this ID?

• Do we need a signal in the ServerHello that tells the client to not send 
any application data until the server’s CertificateRequest? What 
would that mean for 0-RTT?



Issue 2: Client Certificate Selection

• Currently, CertificateRequest message allows the selection of client 
certificate by:
• Signature algorithm,
• Hash algorithm, and
• Distinguished Names of acceptable (intermediate and/or root) certificate authorities.

• For some sites and EAP-TLS deployments, these selection criteria are 
insufficient, and result in poor UX where a confusing certificate picker 
dialog has to be displayed.

• Customers are requesting flexible certificate selection criteria using KU, 
EKU, Issuance Policy, other OIDs, logical expressions, etc...

• Over time, new extension OIDs are being added to certificates.



Proposal: Add CertificateExtensions field to 
CertificateRequest for TLS 1.3
certificate_extensions

• A list of certificate extension OIDs [RFC5280] with their allowed values, represented 
in DER-encoded format.

• If the server has included a non-empty certificate_extensions list, the client end-
entity certificate MUST contain all of the specified extension OIDs that the client 
recognizes. 

• For each extension OID recognized by the client, all of the specified values MUST be 
present in the client certificate (but the certificate MAY have other values as well).

• The client MUST ignore and skip any unrecognized certificate extension OIDs. 

• If the client supplies a certificate that does not satisfy the request, the server MAY 
respond with a fatal unsupported_certificate alert.

• TLS implementations should rely on their PKI libraries to perform certificate 
selection using certificate extension OIDs.



Proposed CertificateRequest for TLS 1.3

struct {

opaque certificate_extension_oid<1..2^8-1>;

opaque certificate_extension_values<0..2^16-1>;

} CertificateExtension

struct {

ClientCertificateType certificate_types<1..2^8-1>;

SignatureAndHashAlgorithm

supported_signature_algorithms<2..2^16-2>;

DistinguishedName certificate_authorities<0..2^16-1>;

CertificateExtension certificate_extensions<0..2^16-1>;

} CertificateRequest;


