
Quantum-safe hybrid
handshake for TLS 1.3

Recent updates

Sep 2015

Zhenfei Zhang

Security Innovation

QSH_TLS

• Run a classical key exchange as
usual and obtain a classical pre-
master secret c;

• In parallel, transport another
pre-master secret q using a key
encapsulation mechanism (KEM),
instantiated with a quantum-
safe (a.k.a post-quantum)
encryption algorithm;

• The final master secret will be
derived from KDF(c|q)

Features

• Defeat the harvest-then-decrypt
attack with low cost;

• Modular design allows for trial
use of quantum-safe
cryptography;

• Requires one additional cipher
suite identifier;

• It would be nicer if no identifier is
added.

QSH_TLS

• Run a classical key exchange as
usual and obtain a classical pre-
master secret c;

• In parallel, transport another
pre-master secret q using a key
encapsulation mechanism (KEM),
instantiated with a quantum-
safe (a.k.a post-quantum)
encryption algorithm;

• The final master secret will be
derived from KDF(c|q)

The story so far

• At IETF 93, William Whyte
presented the Quantum-Safe
Hybrid (QSH) hand shake for TLS
1.3

• No objections to continuing to
investigate this approach within
TLS but defer to CFRG on
algorithm selection

• CFRG hummed unanimously to
pursue further investigations of
quantum-safe crypto

Updates #0 (Global): QS crypto

• There is a growing concern on quantum safety in the past few months:

• NSA has advised people to move away from ECC and announced their plan to migrate to
quantum-safe cryptography;

• https://www.nsa.gov/ia/programs/suiteb_cryptography/

• The EU has expressed in their Horizon 2020 project a desire for systems to be "quantum-
ready" by 2020;

• http://pqcrypto.eu.org/slides/20150403.pdf

• Google have optimistically predicted practical and powerful quantum computer could
become available by the 2020 to 2025.

• http://www.theplatform.net/2015/07/22/google-sees-long-expensive-road-ahead-for-quantum-
computing/

• More is coming…

Updates #1 (CFRG): algorithm selection

• We have an internet-draft describing the selection criteria of
quantum-safe encryption algorithm to be adopted in the QSH_TLS

• The idea is to

• setup a base line for QS encryption schemes;

• provide a list of existing QS encryption schemes meeting those criteria;

• allows a clear pathway to adoption for future QS schemes.

• CFRG is currently reviewing this document

• (Most of) our initial recommendations align with PQCRYPTO’s initial
recommendations and ETSI ISG-QSC’s recommendations

• http://pqcrypto.eu.org/docs/initial-recommendations.pdf

Updates #2 (TLS): Cipher Suite -> Extension

• We move QSH_TLS data from KeyShare message to HelloExtension
and HelloRetryRequestExtension

• Following on comments from DKG and others at Prague meeting

• We require an extra ExtensionType, rather than a cipher suite
identifier

• The latest version:

• https://www.ietf.org/internet-drafts/draft-whyte-qsh-tls13-01.txt

• Change made only in TLS 1.3 version of spec, can be propagated into
TLS 1.2 version if useful

• TLS 1.2 version still uses Cipher Suite approach

Updates #3: Performance analysis

• Feedback from ETSI ISG-QSC group

• An additional KEM is likely to
increase the cost
• Latency, not significantly.

• See table on the right

• Handshake packet size, may be
affected: need a much larger
extension field
• See next slide

• The KDF is not going to add extra
cost
• Previous we do KDF(c)
• Now we do KDF(c|q)

Classical

strength

Time

NTRU449 encryption 128 bits 2

NTRU743 encryption 256 bits 4.4

RSA2048 decryption 112 bits 100

curve25519 DH 128 bits 3.4

Relative cost on server side

Benchmark from SUPERCOP

http://bench.cr.yp.to/supercop.html

Obstacles #1

• Extension field is limited to 2^16-1 bytes

• This would forbid the use of QS encryption schemes with key/cipher size > 65KB

• lattice-based crypto are okay, including NTRUEncrypt, R-LWE, etc;

• code-based crypto are not, including McEliece, McBits, etc;

• Those keys/ciphertexts are on the order of MB

• We had similar issue with Tor cell size – get away with a “multi cell” solution;

• This does not work for TLS 1.3

• There's also an explicit MUST NOT clause for passing multiple extension fields of the same
type.

• Proposal: Consider increasing the size limitation on extension fields to, say 2^24-1
byte?

Obstacles #2

• Extension field of KeyShare message is
encrypted

• We could in principle encrypt QSH_TLS
message, but that would be redundant

• The actual data in the QSH_TLS message
is a ciphertext of the QS scheme

• We would request QSH_TLS message to
be on the non-encrypt whitelist

• If TLS WG choose to go along with the
whitelist method

Client Server

ClientHello

ClientHelloExtension

(QS Public Key) -------->

<--------

ServerKeyShare

EncryptedExtension

(QSHCipherList)

{Finished}

{Finished} -------->

ClassicSecret|QSHSecret <-------> ClassicSecret|QSHSecret

Actions

• Extension size limitation?

• Whitelist?

• To get the individual draft adopted as a WG draft

• The approach is so modular that it doesn’t rely on any QS scheme

• So we should start working on this draft while CFRG is still considering QS
candidates

