
Manifest Proposal
Variations

v7: Mosko, Tshudin, Wood 
2015-10-3

Revisions
• v1 (caw): Initial version without ccn-lite or PARC advanced details

• v2 (cft): Modified and improved ccn-lite details, added EBN descriptions,
reorganized document

• v3 (caw): Added new PARC advanced design

• v4 (caw+cft): Added comments from 9/8/15 meeting, extended observations,
and updated some figures

• v5 (cft): aligned with FLIC name (instead of ccn-lite)

• v6 (caw): Replaced the PARC advanced variant with another PARC basic
variant

• v7 (caw): Integrated comments and feedback from Marc Mosko, in addition to
his proposed Manifest design

Overview
• List of Manifest proposals:

CCNx 0.x signed collection of links (2009)

NDN (Ilya’s work, 2014)

CCNx All-in-One Streams for CCN (2014, omitted)

CCNx Basic V1 (spring 2015)

ccn-lite FLIC (summer 2015)

CCNx Basic V2 (summer 2015)

CCNx Basic V3 (fall 2015)

• Per proposal: EBN, observations

CCNx 0.x

 ManifestPayload = PointerList  
 PointerList = *(Name, Hash)

CCNx 0.x Structure

/foo/bar

(hash-list)

/foo/bar/chunk=0, hash=0xAA

/foo/bar/chunk=1, hash=0xBB

/foo/bar/chunk=9, hash=0xFF

(data object)

(data object)

(manifest)

Manifest

NDN Structure EBN

 ManifestPayload = PointerList [MetaData]  
 PointerList = *(Name, Hash)

NDN Structure

Source: Consumer / Producer communication with application
level framing in Named Data Networking, in ACM ICN 2015.

/foo/bar

(hash-list)

/foo/bar/chunk=0, hash=0xAA

/foo/bar/chunk=1, hash=0xBB

/foo/bar/chunk=9, hash=0xFF

(key-value store)

DataProductionRate: XX
FirstADUSibling: XX
LastADUSibling: XX

(data object)

(data object)

(manifest)

Manifest

NDN: Properties and
Observations

Flexible metadata key-store
Unclear relation to group-based encryption: Decryption metadata is stored
outside of the manifest (in the KeyLocator of data packets)?
Supports coarse-grained data-deduping with nested manifests

CCNx Basic Structure EBN
CCNx basic:

 ManifestPayload = (ManifestSection)*  
 ManifestSection = SECTION | LINK  
 SECTION = [ACS] [ListOfPrefixes] ListOfHashes  
 
 ACS = LINK  
 ListOfPrefixes = (PrefixEntry)*  
 NameEntry = [StartChunk] ContentNamePrefix  
 ListOfHashes = PrefixIndex HASH  
 PrefixIndex = OCTET  
 HASH = 32(OCTET)  
 LINK = (Name, KeyIdRestr, ContObjHashRestr)  

ACS = access control spec (= link to a list of decryption keys)

ManifestSection

(prefix-list)

index=0, hash=0x00
index=0, hash=0x11

index=1, hash=0xAA

index=(n-1), hash=0xFF

ManifestSection N

CCNx Basic Structure EBN

Source: http://www.ccnx.org/pubs/draft-wood-icnrg-ccnxmanifests-00.html

/foo/bar

ManifestSection 1

ManifestSection 2

(prefix-list)

/foo/bar1/, chunk={0,1}

/foo/bar2/, chunk=1

/foo/barN

(data object)

(manifest)

(manifest)

ACS

ManifestSection-iManifest

(data object)

http://www.ccnx.org/pubs/draft-wood-icnrg-ccnxmanifests-00.html

CCNx Basic: Properties and
Observations

Support for data-deduping with different sections

Native decryption metadata support (with the ACS), where each section’s ACS
is independent
Flexible data-to-manifest encoding in each manifest

Manifest pointers may or may not use chunked names

No generic metadata structure

Potentially redundant name information in the prefix-list (why not make names
derived from base name of the manifest?)

FLIC Structure EBN
FLIC = File-LIke Collection, using UNIX “index tables” as a model for the
distributed data structure

 ManifestPayload = (Node | EncrNode) [MetaData]  
 Node = *([RepeatCnt]  
 (Pointer | NoneByte | ZeroByte | Leaf)  
)  
 Pointer = (LeafDigest | EncrLeafDigest|  
 NodeDigest | EncrNodeDigest)  
 
 EncrNode = Blob  
 Leaf = Blob  
 RepeatCnt = INTEGER  
 LeafDigest = 32(OCTET)  
 NodeDigest = 32(OCTET)  
 EncrLeafDigest = 32(OCTET)  
 EncrNodeDigest = 32(OCTET)  
 Metadata = key-value store  

Source: Personal communication with Christian Tschudin

FLIC Example
/foo/bar

NodeDigest

Manifest

DataDigest (hash=0x01)

DataDigest, hash=0x02

DataDigest, hash=0x03

DataDigest, hash=0x04

DataDigest, hash=0x05

(index table) Node
(data object)

(data object)

(data object)
(data object)

(data object)

(data object)

Leaf(s)

embedded data

NodeDigest

metadata (key/value store) 

TotalSize: XX
TableOfNames: XX
FixedBlockSize: XX 

HowToBuildTheNames: XX
TraversalStrategy: XX

FLIC: Properties and
Observations

14

Easily represent metadata and different traversal strategies since manifests are only at the
root-level

Built-in compression with Zero entries; None entries for sparse files (e.g. memory dumps)

Pointers have a type: consumer knows if target block is encrypted or not, is a leaf or not

Bytes can be embedded in non-leaf nodes: self-contained manifest-plus-its-data object

Pointers are pure hashes (the manifest’s name serves as default locator) — simplicity

Metadata is not supported at graph-level (non-root), e.g. size-of-this-subtree=XYZ

Encrypted metadata not directly possible, must introduce a key/value pair for external ref: 
moreEncrMetadata =“/the/name’ which would point to an encrypted metadata object
Because pointers are hashes — how to point to future data? Index table not extensible to
streams. And how can one mix-and-match from different prefixes/locators in each node?

FLIC (Additional Notes)
• Introduces the following object types: 

- manifest 
- leaf node (pure data)  
- index node (sequence of entries and
embedded data)  
- encrypted index node  
- encrypted leaf node

• Question: Can one have “naked
index node” objects? Yes, for
symmetry reasons to EncrNodes.

• Pointers are pure hashes, the
manifest’s name serves as locator.
Consequences: 
- no extensible streams? 
- how to mix-and-match from 
different prefixes?

15

• Marc’s concern about keeping
the fetch pipeline full by having
enough hashes per object: job of
the encoder.

• Manifests as envelopes: small
objects can carry metadata AND
the content bits in a single
“manifest” object.

• Question: Should one add a
TotalSize field to an index node
(for this subtree?)

See a full description of FLIC at 
draft-tschudin-icnrg-flic-00.txt

CCNx Basic V2 Structure
EBN

CCNx Basic V2: A minimalist extension of the CCNx Basic V1 design with FLIC-
like features

ContentObject = [Name] [ExpiryTime] ContentObjectBody [Validation]  
ContentObjectBody = PayloadType (Payload | ManifestBody | Node)  
PayloadType = T_DATA | T_MANIFEST | T_NODE  
 
ManifestBody = [SDM] [[ManifestPayloadInfo] Node]  
SDM = LINK | <see doc>  
ManifestPayloadInfo = <key-value store>  
 
Node = [Payload] (Pointer)*  
Pointer = [[T_RELATIVE | T_ABSOLUTE] Name]? KeyIdRestr? HashRestr [PointerType]  
PointerType = T_NODE | T_DATA

Payload = Blob  
KeyIdRestr = HASH // 32(OCTET)  
HashRestr = HASH // 32(OCTET)  
Name = CCNxName

SDM = Structured Decryption Metadata (previously the ACS)

CCNx Basic V2 Structure

/foo/bar

Manifest

 
Pointer, hash=0x04, T_DATA  

R /part1
Pointer, hash=0x05, T_DATA, 

A /foo/bar/part2
Pointer, hash=0x06, T_NODE,

A /foo/bar/node2

Node (PayloadType = T_NODE)

(data object)

(data object)

(Node object)

Blob

TotalSize: XX
TableOfNames: XX
FixedBlockSize: XX 

HowToBuildTheNames: XX
TraversalStrategy: XX

Pointer, hash=0x01, T_NODE

Pointer KID=0x02, hash=0x03
Blob

M
an

ife
st

Pa
yl

oa
d

M
an

ife
st
 

Pa
yl

oa
dI

nf
o

SDM (LINK)

1

2

3

1

2

3

I[/foo/bar/part1, hash=0x04]

I[/foo/bar/part2, hash=0x05]

I[/foo/bar/node2, hash=0x06]

0

0 I[/foo/bar/, hash=0x01]

PayloadType  
 = T_MANIFEST

ContentObjectBody

CCNx Basic V2: Properties
and Observations

No manifest hierarchies — there is a single root manifest which describes a tree
of nodes (nodes are regular Content Objects)

Read-access metadata is contained outside of the PayloadInfo in the SDM

Pointers are typed LINKs that allow relative and absolute name composition (R/A
flags)

Supports direct embedding of data in the root manifest and each node

PayloadInfo is metadata about the payload and is a generic KV-store

PayloadInfo is optional and only present if a Manifest carries a Payload

Node Payload blob could (should?) be moved into the parent Content Object
payload

CCNx Basic V3 Structure
EBN

CCNx Basic V3: A different extension of the CCNx Basic V1 design

ContentObject = [Name] [ExpiryTime] ContentObjectBody [Validation]  
ContentObjectBody = (ManifestBody | Payload | ManifestBody Payload)  
 
ManifestBody = (SDM | [SDM] Section*) [ManifestInfo]  
Section = ManifestSection | DataSection  
ManifestSection = SectionBody ; entries to manifests  
DataSection = SectionBody ; entries to not manifests  
SectionBody = LinkBody | HashBody  
 
LinkBody = Link+  
Link = Name [KeyIdRestr] [HashRestr]  
HashBody = [Name | KeyId | Name KeyId] [StartChunkNumber] EntryList  
StartChunkNumber = Integer ; appended as a chunk to the name  
EntryList = HashEntry+  
 
Payload = Blob  
Name = CCNx Name  
KeyId = 32(OCTET)  
HashEntry = 32(OCTET)  
ManifestInfo = key-value store  
SDM = LINK | <see doc>

CCNx Basic V3 Structure

/foo/bar
Manifest

TotalSize: XX
TraversalStrategy: XX

Se
ct

io
n

M
an

ife
st

In
fo

SDM (LINK)

Payload (Blob)

ManifestSection (Body) 

DataSection (Body)
 (

Link 0
Link 1

Hash Entry 0
Hash Entry 1

1

2

3

I[/another/one/child-manifest2, hash=0x04]

I[/x/y/z/chunk=2, hash=0x05]

I[/x/y/z/chunk=3, hash=0x06]

0 I[/random/prefix/child-manifest1, hash=0x01]

1

0

2

3 ***ManifestSection contains a LinkBody with  
fully qualified Links

***DataSection contains a HashBody with  
name /x/y/z/ and start chunk 2

This ContentObject payload sits parallel to  
the Manifest Information

CCNx Basic V3: Properties
and Observations

There are zero or more ManifestSections that point to a hierarchy of manifests.

There are zero or more DataSections that point to leaf nodes.

A SectionBody can be a list of spelled-out links or a list of hashes relative to a
single name.

Each HashBody has at most one Name.

If Name is missing from a Section, it uses the ContentObject name less any
chunk number.

If KeyId is present, it is used in the Interest for an Entry.

Payload is always user data, not mixed with Manifest encoding. There is no
longer a "PayloadType = Manifest”.

