Content-based confidentiality

• Confidentiality stays with content
 • independent from where the content is
 • independent from how it is delivered
 • content are produced in encrypted format
 • only authorized consumers are able to access the content

• Application-level end-to-end confidentiality
 • not just the end of a connection
 • multi-party communication
Req. on confidentiality

- Encryption requires careful design
 - differential confidentiality
 - different content may be visible to different groups of consumers
 - flexibility
 - retain the ability of changing access
 - scalability
 - keep reasonable number of encryption keys
 - avoid unnecessary re-encryption/signing
 - forward secrecy
 - make encryption keys less dependent on other keys

- Content encryption should not block data production
Application driven approach

• NdnFit
 • distributed production
 • a group of producers under the same name space
 • differential confidentiality
 • different consumers may access different content
 • online data sharing
 • producer can freely produce encrypted content without knowing who can access the content
Encryption Scheme

- Separate content production from access control
 - producer-created content key

- Control access through a group key
 - created by namespace manager
 - distributed by namespace manager
 - public key in current implementation

- Producers retrieve group encryption key (public key), encrypt content key properly

- Consumers retrieve group decryption key (encrypted private key)
Name-based Access Control

• Name of group encryption key serves as access control instruction
 • \(<\text{data_prefix}>/\text{E-KEY}/<\text{additional_restriction}>\)
 • /alice/health/read/activity/\text{E-KEY}/
 20150930160000/20150930180000
 • scope: any Alice’s activity data produced during Sep 30, 4pm-6pm

• Producer retrieves group encryption key, encrypts content keys falling into the scope
 • /alice/health/samples/activity/steps/\text{C-KEY}/
 20150930170000/20150930180000
 • encrypt Alice’s step data produced during Sep 30, 5pm-6pm
Encrypted Content Format

- Data packet must carry enough information for authorized consumers to decrypt content

- Experiment as application semantics
 - content encoding
 - not a part of architecture yet

- Three sub-TLVs:
 - EncryptionAlgorithm
 - may also algorithm-specific fields,
 - e.g., Initial Vector
 - DecryptionKeyName
 - facilitate decryption key retrieval
 - EncryptedContent

- When a data has more than one encrypted copies
 - each encrypted copy is an independent data packet
 - naming convention: /<content_name>/FOR/<decrypt_key_name>
Content production/consuming

- Producer create a symmetric key (content key) to encrypt content
 - content key has the minimum granularity, e.g. one hour
 - /alice/health/samples/activity/steps/C-KEY/20150928080000/20150928090000
- Producer retrieves group encryption key from namespace manager
 - encrypt content key using a group encryption key if the content key name falls into the scope of the group encryption key
 - /alice/health/samples/activity/steps/C-KEY/20150928080000/20150928090000/FOR/alice/health/read/activity

- Consumer decrypts content by constructing a decryption key chain
 - retrieve encrypted content, encrypted content key, encrypted group decryption key

- Application library will be available in next NDN platform release

<table>
<thead>
<tr>
<th>Name: /alice/health/samples/activity/step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content:</td>
</tr>
<tr>
<td>EncryptionAlgorithm: AES_CBC, IV=b43d...</td>
</tr>
<tr>
<td>DecryptionKeyName: C-KEY name</td>
</tr>
<tr>
<td>EncryptedContent:</td>
</tr>
<tr>
<td>Signature:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name: /<C-KEY name>/FOR/<group key name></th>
</tr>
</thead>
<tbody>
<tr>
<td>Content:</td>
</tr>
<tr>
<td>EncryptionAlgorithm: RSA</td>
</tr>
<tr>
<td>DecryptionKeyName: group decryption key name</td>
</tr>
<tr>
<td>EncryptedContent:</td>
</tr>
<tr>
<td>Signature:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name: /<group key name>/FOR/<bob key name></th>
</tr>
</thead>
<tbody>
<tr>
<td>Content:</td>
</tr>
<tr>
<td>EncryptionAlgorithm: RSA</td>
</tr>
<tr>
<td>DecryptionKeyName: bob key name</td>
</tr>
<tr>
<td>EncryptedContent:</td>
</tr>
<tr>
<td>Signature:</td>
</tr>
</tbody>
</table>
Open questions

• Enable forward secrecy: decouple consumer private key with content key
 • key distribution services

• Name privacy

• Convert key exchange between namespace manager and producers to identity-based encryption, attribute-based encryption

• Access revocation

• Secure multi-party computing
Summary

• Content-based confidentiality makes confidentiality of content location-independent

• Content should be carefully encrypted to achieve flexible and scalable access control at fine granularity

• Expressive NDN name can be leveraged for efficient access control

• More encryption schemes need to be explored to address remaining issues