
Experiences of Implementing
ALTO in OpenDaylight

draft-zhang-alto-opendaylight-impl-00

Presenter: Jensen Zhang

October 27, 2015 @ ALTO Interim Meeting

J. Zhang K. Gao Y. R. Yang

1

Outline
- Design and Implementation of Endpoint Cost Service (ECS)
- Design of Auto-Map
- YANG Model Issues
- Extensible and Portable Architecture

2

Implementing ECS: Workflow and Challenges

3

Compute Path
ECS Request Compute Cost as

Path Properties

ECS Response

Challenges:
● ODL allows fine-grained paths: multiple paths

for the same src-dst pair, distinguished by flow
attributes beyond src/dst addresses

● Multiple modules in ODL may get involved in
path computation

Ambiguous Path Error

Path Computing: Fine-Grained Routing
Example:

H1 H2SW1

SW3

SW2

Path1 (Only for HTTP)

Path2 (Only for SSH)

Potential Solution:

- Return E_AMBUGUOUS_RESULT
- Inform users how to refine their request. (Need draft-wang-alto-ecs-flows.)

4

Current Design: Compute Path

5

L2Switch GBP

FRM

...

getPath getPathgetPath

- Potential design: using Flow Rule Manager (FRM)
- FRM provides a unifying data structure to store paths across modules

- Issue: Some modules may adopt a reactive routing approach (i.e., insert path only upon
packet-in) when inserting into FRM

- Our design
- Idea 1: Introduce a new path computation (PC) interface that routing modules can implement
- Idea 2: For those modules that have not implemented the PC interface, look up in FRM
- Idea 3: For those that use reactive routing and no PC interface, use fake packet

idea 1

idea 2

fake
packet

idea 3

Workflow of Path Computaion

HTTP
Handler

RPC
Handler

ALTO Path
Computataion Service

L2Switch.getPath()

GBP.getPath()

ServiceX.getPath()

...

ALTO Cost
Computataion Service

6

Idea 1: some modules may not implement the PC interface

Workflow of Path Computaion

HTTP
Handler

RPC
Handler

ALTO Path
Computataion Service

Look Up FRM for
services without .

getPath()
ALTO Cost

Computataion Service

7

Idea 2: reactive routing approach may not be detected in FRM

Workflow of Path Computaion

HTTP
Handler

RPC
Handler

ALTO Path
Computataion Service

Query Path
Using FakePacket

ALTO Cost
Computataion Service

8

Idea 3: low performance

Workflow of Path Computaion

HTTP
Handler

RPC
Handler

ALTO Path
Computataion Service

L2Switch.getPath()

GBP.getPath()

ServiceN.getPath()

...

Look Up FRM for
services without .

getPath()

Query Path
Using FakePacket

ALTO Cost
Computataion Service

9

1

2

3

Combine above ideas

Implementing AutoMap: Workflow and Challenges

10

Automatically
Generate
Network Map

Compute Cost Map
for Generated
Network Map

Maps

Challenge:
● Provide easy-to-use, yet complete specification

and algorithms to allow admin to define
grouping of network nodes

Challenges:
● Provide a generic method to

define the cost computation
between two PIDs.

network state

network map
grouping alg

cost map
computing alg

Current Design (Implementation-in-progress)

11

- Decouple network-map generation and cost-map computation
- Define grouping: Provide one automatic network-map generation algorithm: nearest-neighbor
- Compute inter-PID cost from inter-endpoint costs: Given PIDS Pa and Pb, there will be |Pa| x

|Pb| inter-endpoint costs. We provide multiple definitions (median, x-percentile, avg) as the

cost from Pa to Pb, and allow multiple algorithms to do the computation (total enumeration,
random sampling)

Pa Pb

Current Design: Compute Inter-PID Costs

cost-map-config.json

{
 "cost-map-id": "cmap1",
 "uses": ["my-nn-auto-network-map"],

 "cost-type": {
 "cost-mode": "numerical",
 "cost-metric": "hopcount"
 },
 "cost-map-group-metric": "avg",
 "cost-map-group-alg": {
 "alg": "random-sampling",
 "count" : 10000
 }
}

12

Current Design: Nearest Anchor for Network Map Grouping

nearest-network-map-config.json

{
 "net-map-id": "nearest-network-map",
 "net-map-grp-alg": "nearest-alg",
 "net-map-grp-para": {
 "metric": "hopcount",
 "anchors": {
 "pid1": ["sw1", "sw2"],
 "pid2": ["sw3"],
 "pid3": ["sw4", "sw5"]
 }
 }
}

13

Add a new anchor:

> alto-create-pid nearest-network-map pid4

> alto-add-anchor nearest-network-map pid4 sw6

> alto-del-anchor nearest-network-map sw6

Implement ALTO using MD-SAL: Background
- ODL is model-driven
- Need to define YANG models for ALTO
- An earlier proposal is in draft-shi-alto-

yang-model *.yang yangtools

Basic
Data Type

RPC
Interface

Notification

14

Issue of Implementing ALTO using the YANG Model
in draft-shi-alto-yang-model
JSON Type
object-map {
 TypedEndpointAddr -> JSONValue;
} EndpointDstCosts;

object-map {
 PIDName -> JSONValue;
} DstCosts;

YANG Model
grouping alto-cost {
 anyxml cost {
 mandatory true;
 description "ALTO cost is a JSONValue, which
 could be an object, array, string, etc. (Ref:
 RFC 7159 Sec.3.)";
 }
}

Issue: 'cost' could be differenttypes in
different CostMaps and EndpointCostMaps.

15

Current Design
- ‘anyxml’ is not a good solution.
- ‘augment’ is a good one.

- extensibility
- serialization

module alto-cost-default {
 ...
 augment "<node1>" {
 leaf cost-default {
 type int;
 }
 }
 augment "<node2>" {
 leaf cost-default {
 type decimal;
 }
 }
 ...
}

We can define one ‘cost’ as ‘int’,
and another one as ‘decimal’. And
it is easy to add more ‘cost’ value
type.

16

Design for Extensible ALTO Server
Seperate services into different modules.

17

Design for Cross Platform
Introduce an adapter layer to seperate services from ODL.

18

Thanks!

19

