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Outline
- Design and Implementation of Endpoint Cost Service (ECS)
- Design of Auto-Map
- YANG Model Issues
- Extensible and Portable Architecture
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Implementing ECS: Workflow and Challenges
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Compute Path
ECS Request Compute Cost as

Path Properties

ECS Response

Challenges:
● ODL allows fine-grained paths: multiple paths 

for the same src-dst  pair, distinguished by flow 
attributes beyond src/dst addresses

● Multiple modules in ODL may get involved in 
path computation

Ambiguous Path Error



Path Computing: Fine-Grained Routing
Example:

H1 H2SW1

SW3

SW2

Path1 (Only for HTTP)

Path2 (Only for SSH)

Potential Solution:

- Return E_AMBUGUOUS_RESULT
- Inform users how to refine their request. (Need draft-wang-alto-ecs-flows.)
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Current Design: Compute Path
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L2Switch GBP

FRM

...

getPath getPathgetPath

- Potential design: using Flow Rule Manager (FRM) 
- FRM provides a unifying data structure to store paths across modules

- Issue: Some modules may adopt a reactive routing approach (i.e., insert path only upon 
packet-in) when inserting into FRM

- Our design
- Idea 1: Introduce a new path computation (PC) interface that routing modules can implement
- Idea 2: For those modules that have not implemented the PC interface, look up in FRM
- Idea 3: For those that use reactive routing and no PC interface, use fake packet

idea 1

idea 2

fake
packet

idea 3



Workflow of Path Computaion

HTTP
Handler

RPC
Handler

ALTO Path 
Computataion Service

L2Switch.getPath()

GBP.getPath()

ServiceX.getPath()

...

ALTO Cost 
Computataion Service
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Idea 1: some modules may not implement the PC interface



Workflow of Path Computaion

HTTP
Handler

RPC
Handler

ALTO Path 
Computataion Service

Look Up FRM for 
services without .

getPath()
ALTO Cost 

Computataion Service
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Idea 2: reactive routing approach may not be detected in FRM



Workflow of Path Computaion

HTTP
Handler

RPC
Handler

ALTO Path 
Computataion Service

Query Path
Using FakePacket

ALTO Cost 
Computataion Service

8

Idea 3: low performance



Workflow of Path Computaion

HTTP
Handler

RPC
Handler

ALTO Path 
Computataion Service

L2Switch.getPath()

GBP.getPath()

ServiceN.getPath()

...

Look Up FRM for 
services without .

getPath()

Query Path
Using FakePacket

ALTO Cost 
Computataion Service
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1

2

3

Combine above ideas



Implementing AutoMap: Workflow and Challenges
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Automatically 
Generate 
Network Map

Compute Cost Map 
for Generated 
Network Map

Maps

Challenge:
● Provide easy-to-use, yet complete specification 

and algorithms to allow admin to define 
grouping of network nodes

Challenges:
● Provide a generic method to 

define the cost computation 
between two PIDs.

network state

network map
grouping alg

cost map
computing alg



Current Design (Implementation-in-progress)
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- Decouple network-map generation and cost-map computation
- Define grouping: Provide one automatic network-map generation algorithm: nearest-neighbor
- Compute inter-PID cost from inter-endpoint costs: Given PIDS Pa and Pb, there will be |Pa| x 

|Pb| inter-endpoint costs. We provide multiple definitions (median, x-percentile, avg) as the 

cost from Pa to Pb, and allow multiple algorithms to do the computation (total enumeration, 
random sampling)

Pa Pb



Current Design: Compute Inter-PID Costs

cost-map-config.json

{
    "cost-map-id": "cmap1",
    "uses": [ "my-nn-auto-network-map" ],

    "cost-type": {
        "cost-mode": "numerical",
        "cost-metric": "hopcount"
    },
    "cost-map-group-metric": "avg",
    "cost-map-group-alg": {
        "alg": "random-sampling",
        "count" : 10000
    }
}
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Current Design: Nearest Anchor for Network Map Grouping

nearest-network-map-config.json

{
    "net-map-id": "nearest-network-map",
    "net-map-grp-alg": "nearest-alg",
    "net-map-grp-para": {
        "metric": "hopcount",
        "anchors": {
            "pid1": ["sw1", "sw2"],
            "pid2": ["sw3"],
            "pid3": ["sw4", "sw5"]
        }
    }
}

13

Add a new anchor:

> alto-create-pid nearest-network-map pid4

> alto-add-anchor nearest-network-map pid4 sw6

> alto-del-anchor nearest-network-map sw6



Implement ALTO using MD-SAL: Background
- ODL is model-driven
- Need to define YANG models for ALTO
- An earlier proposal is in draft-shi-alto-

yang-model *.yang yangtools

Basic
Data Type

RPC
Interface

Notification
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Issue of Implementing ALTO using the YANG Model 
in draft-shi-alto-yang-model
JSON Type
object-map {
  TypedEndpointAddr -> JSONValue;
} EndpointDstCosts;

object-map {
  PIDName -> JSONValue;
} DstCosts;

YANG Model
grouping alto-cost {
  anyxml cost {
  mandatory true;
  description "ALTO cost is a JSONValue, which
  could be an object, array, string, etc. (Ref:
  RFC 7159 Sec.3.)";
  }
}

Issue: 'cost' could be differenttypes in 
different CostMaps and EndpointCostMaps.
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Current Design
- ‘anyxml’ is not a good solution.
- ‘augment’ is a good one.

- extensibility
- serialization

module alto-cost-default {
  ...
  augment "<node1>" {
    leaf cost-default {
      type int;
    }
  }
  augment "<node2>" {
    leaf cost-default {
      type decimal;
    }
  }
  ...
}

We can define one ‘cost’ as ‘int’, 
and another one as ‘decimal’. And 
it is easy to add more ‘cost’ value 
type.
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Design for Extensible ALTO Server
Seperate services into different modules.
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Design for Cross Platform
Introduce an adapter layer to seperate services from ODL.
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Thanks!
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