
1/15

Leveraging IPv6 Segment Routing for Service
Function Chaining

David Lebrun
<david.lebrun@uclouvain.be>

ICTEAM
Université catholique de Louvain

Louvain-la-Neuve, Belgium



2/15

IPv6 Segment Routing

I Source routing paradigm
I IPv6 Routing Header extension (type 4)
I Path encoded as stack of segments (IPv6 addresses)
I Segments distributed through IGP



3/15

IPv6 SR: illustration (1)

Figure: Regular shortest-path packet forwarding



4/15

IPv6 SR: illustration (2)

Figure: Transformation of a regular IPv6 packet into an SR-enabled
packet. Note that the original final destination of the packet is appended
at the end of the segment list and the first segment of the segment list is
set as the destination address of the packet.



5/15

IPv6 SR: illustration (3)

Figure: Journey of an SR-enabled packet through the example network.
Note that at each segment endpoint, the destination address of the
packet is updated to the next segment address.



6/15

Service Function Chaining with SR

I In "regular" Segment Routing, a segment is a waypoint. We
extend that definition so that a segment can also represent a
service.

I Upon packet reception, segment endpoint applies a service
1. Specific services: in-kernel, simple, fast (e.g. header field

rewriting)
2. Generic services: application-controlled, programmable, more

complex, slower

I We focus on generic services.



7/15

SFC-SR: configuration

Figure: An application sends a request to receive packets with active
segment segK



8/15

SFC-SR: processing

Figure: A packet is received and correspondingly transferred to the
application.



9/15

SFC-SR: post-processing

Figure: Optional: The application sends back the packet (either modified
or unmodified) and the kernel forwards it into the network



10/15

SFC-SR: usecases

I Accouting
I DPI
I Encryption/decryption
I Compression/decompression
I Proxy
I On-the-fly video transcoding
I ...



11/15

Implementation architecture

Figure: High-level overview of the main kernel components used in our
implementation



12/15

Evaluation

Figure: Experimental network used for evaluation

I 3 servers, 10GbE links
I 64 byte UDP packets sent with iperf3
I Service Segment handled by single-core packet counter



13/15

Evaluation

Figure: Experimental network used for evaluation

Experiment Line rate Packets/s Bytes/s
Non-SR 10G 683 Kpps 330 Mbps
Non-SR 100M 205 Kpps 100 Mbps
SR (fwd) 10G 680 Kpps 328 Mbps
SR (fwd) 100M 201 Kpps 99 Mbps
SR (sync) 100M 195 Kpps 98 Mbps
SR (async) 100M 176 Kpps 90 Mbps

Table: This table shows the throughput in (64-byte) packets per second,
for each experiment



14/15

Issues and future work

I Synchronous perfs better than asynchronous
I Perfs collapse at about 200Kpps

I Zero-copy mode (NETLINK_{T,R}X_RING) needed for fast
data transfer

I No queues in zero-copy mode: ring full → packet dropped
I Limits of NETLINK ?
I Solutions ? Code path optimization, multithreading,

DPDK-style engine, ...
I Designing and implementing relevant services

I E.g.: tcp seq num adjustment for compression service

I Suggestions are very welcome !



15/15

References

I http://segment-routing.org
I http://github.com/segment-routing/
I https://tools.ietf.org/html/

draft-previdi-6man-segment-routing-header-08

http://segment-routing.org
http://github.com/segment-routing/
https://tools.ietf.org/html/draft-previdi-6man-segment-routing-header-08
https://tools.ietf.org/html/draft-previdi-6man-segment-routing-header-08

