
CCNx-KE vs (D)TLS
Marc Mosko and Christopher A. Wood

PARC, UCI
ICNRG 95 - Buenos Aires - 4/3/16

CCNx-KE is…

• A key-exchange protocol used to establish a
common key between a client and producer.

• Inspired by TLS 1.3, QUIC, and DTLS.

• Modified for CCN communication.

Goals
• Near-parity with TLS 1.3.

• Session keys must be forward-secure.

• At most 2 RTTs to establish a session key, with the
possibility for session resumption in 1 RTT.

• Session movement or relocation.

• Operate with an unreliable and connectionless
transport mechanism.

Updates
• DTLS-like cookie for server-side DoS prevention.

• No more 0-RTT resumption.
• New key schedule and traffic key derivation (parity with TLS 1.3)
• Explicit sequence numbers in post-exchange interest messages

(for stateless encryption).
• Extension for mandatory extensions, e.g., SNI (server name

indication).
• Description of how the application data is encrypted in interests

and content using TLV encapsulation.
• Client-provided prefix extension.
• Removed redirection prefix between Rounds 1 and 2.
• Miscellaneous writeup improvements.
• Addition of a pre-shared-key (PSK) mode.

Old Key Calculation
DH-1

SSStatic
secret

DH-2

FSK

key exchange
encrypted with

SS

Traffic
secret

New Traffic Key Calculation

DH-1

SS ES

DH-2

MS

TS

Ephemeral
secret

Master
secret

Traffic
secret

Ephemeral
secret

Keying Material Sources
SS ES

Normal
exchange

(cleartext) client and server
ephemeral shares

(cleartext) client and
server ephemeral

shares

Resumption
(1-RTT)**

(cleartext) client ephemeral
and server (CONFIG) static

shares

(cleartext) client and
server ephemeral

shares

PSK PSK PSK

Important Differences
• Some features were designed with CCN

communication in mind, e.g., session mobility

• We compare CCNx-KE to TLS 1.3 and DTLS 1.2

• TLS 1.3 inherited many properties of QUIC

• QUIC “will be replaced by TLS 1.3 in the future,
but QUIC needed a crypto protocol before TLS
1.3 was even started” [1]

[1] Langley, A., and W. T. Chang. "QUIC crypto." (2014).

CCNx-KE vs TLS 1.3
Feature CCNx-KE TLS 1.3

Record layer
Interests and content objects are

encapsulated and assigned explicit
sequence numbers

Streamed record layer

Session secret usage Handoff to other parties Pinned to the server

Transport mechanism Unreliable datagrams TCP

Resumption Stateful resumption cookies Opaque labels

DoS prevention DTLS-like cookies Defers to TCP

TLS: Encrypted Streams
TLS record layer:

• Translates plaintext into ciphertext packets

• Assumes in-order arrival of packets (no state
information is passed)

struct	{	
							ContentType	opaque_type	=	application_data(23);	/*	see	fragment.type	*/	
							ProtocolVersion	record_version	=	{	3,	1	};				/*	TLS	v1.x	*/	
							uint16	length;	
							aead-ciphered	struct	{	
										opaque	content[TLSPlaintext.length];	
										ContentType	type;	
										uint8	zeros[length_of_padding];	
							}	fragment;	
			}	TLSCiphertext;

CCNx-KE: Encrypted
Datagrams

CCNx-KE encryption layer:

• CCN messages are wrapped in an “outer context” that
identifies:

• Routable prefix

• Session ID (key ID)

• Sequence number (salt or nonce)

• Wrapped messages are called the “inner context” and
are plain, unmodified CCN messages

TLV Encapsulation

 +------------------+
 | T1 | L1 | V1 |
 +------------------+

 ||
 \/

 +----------------------------+
 | T2 | L2 | Enc((T1,L1,V1)) |
 +----------------------------+

We use a new T_ENCAP TLV to do this:

The validation information (e.g., AES-GCM tag) is
contained in a separate Validation TLV.

DoS Cookies

• DoS prevention in TLS is provided by TCP, e.g.,
SYN-flood cookies

• CCNx-KE is connectionless and therefore
introduces a unique type of cookie

Cookie Usage
Consumer	 Producer	

BARE-HELLO	interest	
+	Cookie	challenge	

BARE-HELLO	content	
+	CONFIG	parameters	
+	Cookie	

HELLO	interest	
+	Cookie	proof	
+	Cookie	

HELLO	content	
+	…	

Cookie Generation
• Cookie challenge:

 Y = H(X) where X ← {0,1}128

• Cookie:

 P = timestamp || HMACk(Y, timestamp)

• Cookie proof:

 timestamp || X

Cookie Generation
• Cookie challenge:

 Y = H(X) where X ← {0,1}128

• Cookie:

 P = timestamp || HMACk(Y, timestamp)

• Cookie proof:

 timestamp || X

 Cookie check:

- Verify freshness of the timestamp
- Verify HMAC tag using X and

timestamp

Session Mobility
• In TLS, sessions are pinned to endpoints

• In CCNx-KE, we allow for sessions to be migrated
from one (producer) endpoint to another

• Clients participate in generating a move proof

• Producer endpoints provide a corresponding move
token and new routable prefix (endpoint destination)

• Both the proof and token must be presented to the
server

Mobility Example
Consumer	 Producer	 Replica	

(round	2	interest)	
	+	move	challenge	

(round	2	content)	
	+	move	token	

(applica;on	data	interest)	
	+	move	token,	move	proof	

(applica;on	data	content)	
		+	new	session	ID	

(con;nued	communica;on)	

Mobility Example
Consumer	 Producer	 Replica	

(round	2	interest)	
	+	move	challenge	

(round	2	content)	
	+	move	token	

(applica;on	data	interest)	
	+	move	token,	move	proof	

(applica;on	data	content)	
		+	new	session	ID	

(con;nued	communica;on)	

Resumption Cookies
• In TLS, resumption cookies are opaque identifiers

• The client and server negotiate a cookie and use
it as a PSK (pre-shared key) when resuming a
session later on

• In CCNx-KE, resumption cookies contain state

• They allow a server to recover state information
instead of storing it for each PSK**

Resumption Cookie (RC)*
Structure: Encryption of TS and the (MovePrefix,MoveToken)
tuple (if provided), with a producer secret key that is also
known to the service operating under MovePrefix (if provided)

Usage: The SessionID and ResumptionCookie are needed to
resume a session (i.e., recompute SessionID and check for
equality):

This is only one way to create the RC21

ResumptionCookie = Enc(k2, TS || ((MovePrefix || MoveToken)))

(TS || ((MovePrefix || MoveToken))) = Dec(k2, ResumptionCookie)

SessionID = Enc(k1, H(TS || (MovePrefix)))

CCNx-KE vs DTLS 1.2
Feature CCNx-KE DTLS 1.2

DoS Prevention Cookie Cookie derived client-provided
hash premiere and timestamp Undefined

Cipher suite options AES-GCM (mandatory) with
options for Salsa20+Poly1305

Stream ciphers (RC4), non-
AEAD block ciphers

Timeout and retransmission TBD Grouped message
retransmissions

Outstanding Items and
Open Questions

• Define the timeout and retransmission policy.

• Should we remove the resumption cookie and
make it an opaque identifier as in TLS 1.3?

Implementation Status

• Round 1 exchange complete

• Round 2 in progress

• Session migration not implemented

• Client authentication not implemented

