

Source-specific routing

implementation

on Linux

Matthieu Boutier, joint work with Juliusz Chroboczek
IRIF (ex Laboratoire PPS) - Université Paris Diderot

boutier@pps.univ-paris-diderot.fr
jch@pps.univ-paris-diderot.fr

May 2016
Virtual interim meeting

RTGWG

Reminders: source-specific routing

2

Source-specific routing
(or SADR, or dst/src routing)

forwards packets based on their
destination and source addresses

destination source next-hop
2001:db8:2::/48 ::/0 …
::/0 2001:db8:1::/48 …
… … …

a source-specific
routing table

Reminders: expected behaviour

3

There is an ambiguity when two entries match a single
packet, without one being more specific than the other
on both the destination and the source address of the
packet.

In case of ambiguity, there is consensus to prefer entries:

● with the most specific destination prefix
● if equal, with the most specific source prefix

destination source next-hop
2001:db8:2::/48 ::/0 …
::/0 2001:db8:1::/48 …
… … …

How to route (2001:db8:2::1, 2001:db8:1::1)?

Context: general case

4

destination source next-hop
2001:db8:3::/48 2001:db8:1::/48 …

We look at the general case, where
both the source and the destination may not be ::/0

In most cases, it looks like source specific routes are:
● with default (::/0) destinations,
● with disjoint or default sources.

● What about futures applications?
● Is it really worth it?

Implementation depends on the
Forwarding plane

5

RIB

FIB

destination first
(protocol choice)

?
(It depends)

Incremental changes:
add, remove, change
a single routing entry…

Linux APIs
for source-specific routing

6

In Linux, there is two APIs (both through Netlink):

● IPv6 subtrees,
→ native destination first source-specific routing tables
→ not available everywhere

● Traffic engineering.
→ multiple classical routing tables selected by traffic engineering rules

(source first)
→ available everywhere

Our implementation can use either.

Linux IPv6 subtrees

7

→ install(dest, src, next-hop)

GOOD BEHAVIOUR
(destination first)

But not available everywhere:
→ it's only available on recent Linux kernels,
→ Linux must be compiled with the right option,
→ it works only for IPv6.

destination source next-hop
2001:db8:2::/48 ::/0 B
::/0 2001:db8:1::/48 C+

Linux traffic engineering

8

source table n°
::/0 10
2001:db8:1::/48 11

destination next-hop
2001:db8:2::/48 B

destination next-hop
::/0 C

rule table classical routing tables

+

+

WRONG BEHAVIOUR
(source first)

But it works on every Linux distribution we met.

Similar interfaces exist on other systems.

→ install(prio, src, table n°) → install(dest, next-hop, table n°)

Most specific entries are preferred

9

source table n°
::/0 10
2001:db8:1::/48 11

destination next-hop
2001:db8:2::/48 B

destination next-hop
::/0 C
2001:db8:2::/48 B

rule table classical routing tables

→ This behaves the same than the native source-specific FIB.
→ This FIB is not ambiguous.

+

Disambiguation algorithm (idea)
(disambiguation.c)

10

RIB

FIB

destination first
(protocol choice)

source or destination first:
we don't care, there is

no ambiguity lef

disambiguation
algorithm

Main idea: for each ambiguity,
we maintain more specific entries
(kernel only)

The algorithm is:
● incremental
● state less

(don't remember additional routes)

destination source
2001:db8:2::/48 ::/0

Example: initial state

11

src

dst

RIB

FIB

disambiguation
algorithm

destination source
2001:db8:2::/48 ::/0

No ambiguity here:
the two tables are the same.

destination source
2001:db8:2::/48 ::/0
::/0 2001:db8:1::/48
2001:db8:2::/48 2001:db8:1::/48

Example: adding a new route

12

RIB

FIB

disambiguation
algorithm

destination source
2001:db8:2::/48 ::/0
::/0 2001:db8:1::/48

1) The protocol receive an
update for a new route.

2) Before inserting it, we
insert an additional route.

(remark: with traffic engineering, it's multiple tables with rules)

$ ip route show
default via 172.23.47.254 dev eth0
169.254.0.0/16 dev eth0 scope link metric 1000
172.23.32.0/20 dev eth0 proto kernel scope link src 172.23.36.45
192.168.4.30 via 192.168.4.39 dev gre-omicron proto babel onlink
192.168.4.31 via 192.168.4.39 dev gre-omicron proto babel onlink
…

destination next-hop
::/0 2001:db8:1::/48
2001:db8:2::/48 2001:db8:1::/48

Explicit traffic engineering

13

FIB
source table n°
2001:db8:1::/48 10
::/0 254

destination next-hop
2001:db8:2::/48 ::/0

$ ip route show table 10
default via 192.168.4.39 dev gre-omicron proto babel onlink
192.168.4.30 via 192.168.4.39 dev gre-omicron proto babel onlink
192.168.4.31 via 192.168.4.39 dev gre-omicron proto babel onlink
…

$ ip rule show
0: from all lookup local
100: from 192.168.4.0/24 lookup 10
32766: from all lookup main
32767: from all lookup default

(remark: with traffic engineering, it's multiple tables with rules)

Conclusion

14

There is two ways to achieve source-specific routing in Linux:
● Both are doable,
● Prefer native destination-first FIB (IPv6 subtrees),
● Otherwise, disambiguate with traffic engineering rules.

Our disambiguation algorithm is:
● protocol and kernel agnostic (layer between RIB and FIB),
● incremental,
● state less,
● proved correct.

(more details in our article — source-specific routing, IFIP
Networking 2015)

Feel free to use our code (MIT licensed):
● disambiguation.c: the disambiguation algorithm,
● rule.c: traffic engineering rules management.

→ https://github.com/jech/babeld

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

