Selecting a Data Format for an Endpoint Information Data Model

SACM Virtual Interim Meeting 06/15/2016

Agenda

- Considerations (pertaining to data formats)
- Introductions
 - CBOR
 - JSON
 - XML
- Detailed Observations
- Next Steps

Considerations

- Meets SACM Requirements ¹
- Supports SACM IM²
- Easy to document/understand examples?
- PROs and CONS with respect to SACM
 - Technical Features?
 - Compatibility Needs?
 - Others?

For example, some may complain that JSON doesn't do comments. But this isn't relevant unless SACM data formats need to have comments.

^{1.} https://datatracker.ietf.org/doc/draft-ietf-sacm-requirements/

 $^{2. \}qquad \text{https://datatracker.ietf.org/doc/draft-ietf-sacm-information-model/} \\$

SACM Requirement Considerations

- SACM requirements which could affect choosing a data format
 - DM-003 Search Flexibility
 - DM-006 Data Cardinality
 - DM-016 Transport Agnostic
 - There may be others...
- Do we want a data model which supports relevant SHOULD requirements as well MUST requirements?
- Do we want to consider associated schema languages?

Concise Binary Object Representation (CBOR) ¹

CBOR is a compact, binary data format

Potential PROs

- Small footprint for encoding/decoding software
- Data compactness
- CBOR Data Definition Language (CDDL)² provides a way to express structures

Potential CONS

- Encoder/Decoder software availability?
- Not human readable (i.e., more than a text editor is required)

^{1.} http://tools.ietf.org/html/rfc7049

^{2.} https://datatracker.ietf.org/doc/draft-greevenbosch-appsawg-cbor-cddl/

JavaScript Object Notation (JSON)¹

• JSON is a simple, text-based data interchange format

Potential PROs

- Simple
- Rapid adoption taking place

Potential CONs

- Ambiguous data item ordering and name uniqueness (explained and addressed in I-JSON²)
- Status of JSON Schema?

^{1.} https://tools.ietf.org/html/rfc7159

^{2.} https://tools.ietf.org/html/rfc7493

Extensible Markup Language (XML)¹

• XML is a text-based markup language for exchanging data

Potential PROs

- Established
- Variety of standardized (and optional) capabilities
- Namespaces

Potential CONs

- Verbose
- Complex
- Namespaces

Relationship Between CBOR and JSON

- Underlying data model is an extension of the JSON data model
 - All JSON types map directly to CBOR
 - Some CBOR types do not have an analog in JSON
- An objective of CBOR is to support all JSON data types for conversion to and from JSON
 - JSON to CBOR conversion seems straightforward. The major question is what binary number representation(s) to use for translated numeric values.
 - CBOR to JSON conversion is more complex. Non-normative guidelines are given in the CBOR spec
- Designing the data in JSON, and using CBOR as a compact, on-the-wire format, may be a useful strategy
 - CDDL may be leveraged to design the data structures we care about

Constraints on JSON Objects

- JSON Data Interchange Format (ECMA-404)¹ does not specify:
 - Whether or not the order of object members is significant
 - Uniqueness requirements for object member names (i.e., are duplicate names allowed?)
- JSON Data Interchange Format (RFC 7149)²
 - "JSON parsing libraries have been observed to differ as to whether or not they make the ordering of object members visible to calling software."
 - "When the names within an object are not unique, the behavior of software that receives such an object is unpredictable."
- Internet JSON (I-JSON) Message Format (RFC 7493)³
 - "The order of object members in an I-JSON message does not change the meaning of an I-JSON message."
 - Objects in I-JSON messages MUST NOT have members with duplicate names."

^{1.} www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf

^{2.} https://tools.ietf.org/html/rfc7159

^{3.} https://tools.ietf.org/html/rfc7493

Impact of JSON Object Constraints on IM Data Models

- JSON Objects shouldn't be used to represent:
 - Ordered lists
 - Lists which use the same data item more than once
- An alternative is to employ JSON arrays to represent SACM lists
 - Order of array components is significant (spec is clear on that)
 - SACM data item names can be treated as data in JSON rather than as a data item

Constraints on XML Content Models

- There is mixed/limited support for open content models
- A validating XML processor is supposed to fail when encountering an invalid XML instance
- DTD has no support for open content
- In XML Schema, all elements are considered closed unless special data-types or constructs are used (e.g., xs:any, xs:opencontent)

Impact of XML Content Model on IM Data Models

- Since open content cannot be assumed, neither can extensibility of data elements
- Information element extensibility must be explicitly accounted for in the data model design
- For instance, an XML schema would need to specify when/how extensibility is permitted

Next Steps

 Perform a detailed analysis of the SACM Requirements and how they influence the selection of a data format

 Work towards selecting a data format to develop an endpoint information data model

References

Concise Binary Object Representation (CBOR)

- CBOR site (http://cbor.io/)
- RFC-7049 (http://tools.ietf.org/html/rfc7049)
- CDDL (https://datatracker.ietf.org/doc/draft-greevenbosch-appsawg-cbor-cddl/)

JavaScript Object Notation (JSON)

- JSON Site (http://www.json.org/)
- ECMA-404 (http://www.ecma-international.org/publications/standards/Ecma-404.htm)
- RFC-7159 (https://tools.ietf.org/html/rfc7159)
- RFC-7493 (https://tools.ietf.org/html/rfc7493)
- JSON Schema Site (http://json-schema.org/)
- JSON Schema in IETF (https://tools.ietf.org/html/draft-zyp-json-schema-04)

Extensible Markup Language (XML)

- W3C XML Site (http://www.w3.org/XML/)
- XML 1.0 (http://www.w3.org/TR/2008/REC-xml-20081126/)
- XML Schema 1.1 (http://www.w3.org/XML/Schema)
- Namespaces in XML 1.0 (http://www.w3.org/TR/2006/REC-xml-names-20060816/)
- Namespaces in XML 1.1 (http://www.w3.org/TR/2006/REC-xml-names11-20060816/)