
Operational State Discussions



2 choices for opstate
1) Adopt the conventions for representing state/config

based on Section 6 of draft-openconfig-netmod-opstate-01
– From a model definition perspective, these conventions impact every model

and every model writer.

2) Model OpState using a revised logical datastore definition
as introduced in draft-schoenw-netmod-revised-datastores-00
and also covered in draft-wilton-netmod-refined-datastores-00

There also a variant of this that we believe doesn't significantly
impact this choice.
– With this approach, model definitions need no explicit changes to support

applied configuration.

Other drafts impacting the state
– [2] https://tools.ietf.org/html/draft-kwatsen-netmod-opstate-02
– [3] https://tools.ietf.org/html/draft-wilton-netmod-opstate-yang-02



Impact on Ephemeral State
(RFC6020bis)

• Constraint enforcement
– during parsing of RPC payloads (section 8.3.1)
– during processing of the <edit-config> operation (section

8.3.2)
– during validation (section 8.3.3)

• If I2RS is only operational state
– Then selects its own constraint enforcement
– Models indicate further constraints

• If I2RS configuration is configuration
– Must adhere to sections 8.3.1, 8.3.2, 8.3.3
– Deviation per model can be indicated



RFC6020 Constraints (2)
• If a leaf data value does not match the type constraints for the leaf,

including those defined in the type's "range", "length", and
"pattern" properties, the server MUST reply with an "invalid-value"
error-tag in the rpc-error, and with the error- app-tag and error-
message associated with the constraint, if any exist.

• If all keys of a list entry are not present, the server MUST reply with
a "missing-element" error-tag in the rpc-error.

• If data for more than one case branch of a choice is present, the
server MUST reply with a "bad-element" in the rpc-error.

• If data for a node tagged with "if-feature" is present, and the if-
feature expression evaluates to "false" in the server, the server
MUST reply with an "unknown-element" error-tag in the rpc- error.



Constraints in RFC6020 8.3.1 (2)

• If data for a node tagged with "if-feature" is present, and the if-
feature expression evaluates to "false" in the server, the server
MUST reply with an "unknown-element" error-tag in the rpc- error.

• If data for a node tagged with "when" is present, and the "when"
condition evaluates to "false", the server MUST reply with an
"unknown-element" error-tag in the rpc-error.

• For insert handling, if the value for the attributes "before" and
"after" are not valid for the type of the appropriate key leafs, the
server MUST reply with a "bad-attribute" error-tag in the rpc- error.

• If the attributes "before" and "after" appears in any element that is
not a list whose "ordered-by" property is "user", the server



RFC6020bis 8.3.2

• After the incoming data is parsed, the NETCONF
server performs the <edit-config> operation by
applying the data to the configuration datastore.
– Delete requests for non-existent data.

– Create requests for existent data.

– Insert requests with "before" or "after" parameters
that do not exist.

– Modification requests for nodes tagged with "when",
and the "when" condition evaluates to "false". In this
case the server MUST reply with an "unknown-
element" error-tag in the rpc-error.



RFC6020bis 8.3.3

• When datastore processing is complete, the
final contents MUST obey all validation
constraints.
– if the datastore is "running" or "startup", these

constraints MUST be enforced at the end of the
<edit-config> or <copy-config> operation.

– If the datastore is "candidate", the constraint
enforcement is delayed until a <commit> or
<validate> operation.

• Note: I2RS does not fit into this point



Ephemeral State Requirement



Ephemeral-REQ-01

• Ephemeral-REQ-01: I2RS requires ephemeral state; i.e.
state that does not persist across reboots. Ephemeral
state may consists of ephemeral configured state and
operational state. If state must be restored, it should
be done solely by replay actions from the I2RS client
via the I2RS agent.

• While at first glance this may seem equivalent to the
writable- running data store in NETCONF, running-
config can be copied to a persistent data store, like
startup config. I2RS ephemeral state MUST NOT be
persisted.



Constraints on Ephemeral State

• Ephemeral-REQ-02: Non-ephemeral state MUST
NOT refer to ephemeral state for constraint
purposes; it SHALL be considered a validation
error if it does.

• Ephemeral-REQ-03: Ephemeral state must be able
to utilized temporary operational state (e.g. MPLS
LSP-ID or a BGP IN-RIB) as a constraints.

• Ephemeral-REQ-04: Ephemeral state MAY refer to
non-ephemeral state for purposes of
implementing constraints



Constraints on Ephemeral State

• Ephemeral-REQ-05: 2RS pub-sub, logging, RPC or other
mechanisms may lead to undesirable or unsustainable
resource consumption on a system implementing an I2RS
Agent. It is RECOMMENDED that mechanisms be made
available to permit prioritization of I2RS operations, when
appropriate, to permit implementations to shed work load
when operating under constrained resources. An example
of such a work shedding mechanism is rate-limiting.

– Note: Ephemeral-REQ-05 is part of the yang-push and event
notification technology drafts being worked out in NETCONF
WG. It is included here to indicate that these features are
necessary for ephemeral state.



Ephemeral State Hierarchy

• Ephemeral-REQ-06: The ability to augment an
object with appropriate YANG structures that
have the property of being ephemeral. An
object defined as any one of the following:
yang module, submodule or components of
submodule, or schema node.



Local Config vs. Ephemeral state

• Ephemeral-REQ-07: Ephemeral configuration
state could override overlapping local
configuration state, or vice-versa.

– Implementations MUST provide a mechanism to
choose which takes precedence. This mechanism
MUST include local configuration (policy) and MAY
be provided via the I2RS protocol mechanisms.



Ephemeral Additions to Yang

• Ephemeral-REQ-08: Yang MUST have a way to
indicate in a data model that nodes have the
following properties: ephemeral,
writable/not- writable, and
status/configuration.



Changes to NETCONF

• Ephemeral-REQ-09: The conceptual changes
to NETCONF
– 1. Support for communication mechanisms to

enable an I2RS client to determine that an I2RS
agent supports the mechanisms needed for I2RS
operation.

– 2. The ephemeral state must support notification
of write conflicts using the priority requirements
defined in section 7 below in requirements
Ephemeral-REQ-11 through Ephemeral-REQ-14).



Changes to RESTCONF

• Ephemeral-REQ-10: The conceptual changes
to RESTCONF are:
– 1. Support for communication mechanisms to

enable an I2RS client to determine that an I2RS
agent supports the mechanisms needed for I2RS
operation.

– 2. The ephemeral state must support notification
of write conflicts using the priority requirements
defined in section 7 below in requirements
Ephemeral-REQ-11 through Ephemeral-REQ-14).



Multi-headed control (1)

• Ephemeral-REQ-11: The data nodes MAY store
I2RS client identity and not the effective priority
at the time the data node is stored.
– Per SEC-REQ-07 in section 3.1 of [I-D.ietf-i2rs-

protocol-security-requirements], an identifier must
have just one priority. Therefore, the data nodes MAY
store I2RS client identity and not the effective priority
of the I2RS client at the time the data node is stored.
The priority MAY be dynamically changed by AAA, but
the exact actions are part of the protocol definition as
long as collisions are handled as described in
Ephemeral-REQ-12, Ephemeral-REQ-13, and
Ephemeral-REQ-14.



Multi-Headed (20

• Ephemeral-REQ-12: When a collision occurs as
two clients are trying to write the same data
node, this collision is considered an error and
priorities were created to give a deterministic
result. When there is a collision, a notification
MUST BE sent to the original client to give the
original client a chance to deal with the issues
surrounding the collision. The original client
may need to fix their state.



Multi-headed (3)

• Ephemeral-REQ-13: The requirement to
support multi-headed control is required for
collisions and the priority resolution of
collisions. Multi-headed control is not tied to
ephemeral state. I2RS is not mandating how
AAA supports priority. Mechanisms which
prevent collisions of two clients trying the
same node of data are the focus.



Multi-headed (4)

• Ephemeral-REQ-14: If two clients have the
same priority, the architecture says the first
one wins. The I2RS protocol has this
requirement to prevent was the oscillation
between clients. If one uses the last wins
scenario, you may oscillate. That was our
opinion, but a design which prevents
oscillation is the key point.



Multiple Transations

• Ephemeral-REQ-15: Section 7.9 of the [I-D.ietf-
i2rs-architecture] states the I2RS architecture
does not include multi-message atomicity and
roll-back mechanisms. I2RS notes multiple
operations in one or more messages handling
can handle errors within the set of operations
in many ways. No multi-message commands
SHOULD cause errors to be inserted into the
I2RS ephemeral data-store.



Ephemeral support in Pub/sub

• Pub-Sub-REQ-01: The Subscription Service MUST
support subscriptions against ephemeral data in
operational data stores, configuration data stores or
both.

• Pub-Sub-REQ-02: The Subscription Service MUST
support filtering so that subscribed updates under a
target node might publish only ephemeral data in
operational data or configuration data, or publish both
ephemeral and operational data.

• Note: these are already considered in pub/sub
requirements and push data


