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I. INTRODUCTION

Proper management of gateways and access points is one of the most important aspects for ensuring the success of the
Internet of Things (IoT). Traditionally, network management of gateways and routers has focused on fault detection,
improving network efficiency and application performance in controlled, trusted environments such as an enterprise. However,
undertaking gateway management in the IoT presents a vastly different challenge, owing partly to the heterogeneity, number
and diversity of the gateways and the kinds of networks they are connected to.

The IoT itself can be perceived as networks of networks. Significant numbers of IoT gateways and routers would be used
as relays or proxies with many kinds of non-IP networks as well, as the vast majority of today’s loT constrained devices are
not natively IP-enabled. Many such gateways can themselves be resource constrained or be battery powered, and can reside in
environments that operate for great lengths of time without human intervention.

An IoT gateway can be characterised according to its functionality:

e In its most basic configuration, the gateway simply supplies Internet connectivity to IP-enabled devices and sensors by
bridging two kinds of radio networks. The most common example is a smartphone or a cellular WAN gateway acting as a
WiFi access point or a low power PAN relay.

e [t proxies network communication between non-IP LAN nodes and the Internet, using the device-to-gateway
communication pattern described in RFC 7452 [1]. Typical examples include a Bluetooth to IP gateway, or a vehicular
gateway connected to the controller area network (CAN bus)-based vehicular network.

e [t facilitates endpoint reachability for management operations in the presence of firewalls and NATs using packet
encapsulation or tunnelling techniques.

e [t provides architectural interoperability among existing management tools and systems. Examples are intermediary
gateways between an operator’s SNMP-based management framework and its own management system optimised for
lightweight communication using protocols such as CoAP or MQTT.

Other ways to categorise IoT gateways are possible too, in terms of how the gateway is powered, whether it intermittently
powers down its radio interfaces upon a lack of activity to save energy, whether it is mobile, and so on. These categories and
properties inevitably aid in the design of data models and the semantics used for managing these gateways.

In network management, the concepts of an Information Model (IM) and a Data Model (DM) are explained in RFC 3444
[2]: An IM models managed objects at a conceptual level independent of underlying protocols or implementation details. It can
be flexibly defined in many ways, ranging from formal methods to informal descriptions using a natural language. On the
other hand, a DM is defined at a lower level and it includes all the protocol and implementation specific details and how to
map managed objects onto protocol constructs. To date, most models standardised are DMs. These definitions render it
possible to define multiple different DMs using an IM, with the IM maintaining the coherence and preserving semantics
between the derived DMs.

In this paper, we address some of the challenges of achieving better semantic interoperability with existing IMs and DMs
when undertaking REST-based management of IoT gateways. This is based on our own initial experiences in implementing
and managing various gateways using the Lightweight M2M (LWM2M) protocol [3] from the Open Mobile Alliance (OMA)
atop CoAP, and additionally employing the IP Smart Object (IPSO) Application Objects as a Data Model. Object models
defined by OMA and IPSO directly map and expose the capabilities of CoAP endpoints as URI-based resource
representations, as using CoAP for application as well as management data is a significant advantage for constrained nodes.

Gateways implementations were based on open linux platforms such as OpenWRT and Raspbian, as well as Android.
Nevertheless, the hurdles we encountered as well as our findings, are generic enough to be applicable for many kinds of open
as well as closed or proprietary IoT gateway platforms, and indeed endpoints themselves.

We identify and describe three main challenges in the following sections, as well as solutions and possible workarounds.
These consider how the gateway plays an important part as an integrator between multiple platform specific data models, how
hypermedia driven interaction with a gateway can reduce the complexity of developing new data models for gateways as well
as how gateways can aid with end point proxying and caching.

" Collaboration for this position paper was made possible by the EIT Digital ACTIVE project.



II. INTEGRATION ROLE OF GATEWAY BETWEEN DIFFERENT DATA MODELS

As discussed in section 2.3 of RFC 7452 , a gateway needs to be introduced into the communication architecture that
bridges between especially IP network with semantic data models and non-IP short range radio technologies with proprietary
data models. Integrating such proprietary data models to the network requires the gateway to translate between the data
models. This translation is done using proprietary methods in most of the current gateway implementations and hence, creates
silos between different gateway manufacturers. As an example, Bluetooth SIG publishes GAP and GATT REST API white
papers [4,5] to standardize the APIs defined on Bluetooth gateways but common data models to seamlessly integrate the Web
and e.g. BLE data models are needed to provide interoperability between these two technologies.

Defining semantic object models for proprietary data models exposes those resources to the RESTful devices without the
need of a separate API definition on the gateway. This approach would unambiguously provide semantic interoperability
between different communication architectures. Such object models can be defined by mapping the proprietary data model to
e.g. IPSO object which would enable the integration of BLE, ZigBee devices to CoAP and LWM2M networks.

A separate example here is the gateway semantic object models defined by mapping an OpenWRT gateway’s native UCI
configuration system [6] to IPSO objects and resources. UCI configuration files are defined in a structured way for each
gateway configuration and each section in the config file can be mapped to an IPSO object. Options under each config file can
also be mapped to resources in the IPSO object. Some of the basic set of UCI configuration files are the following:

Basic
/etc/config/firewall NAT, packet filter, port forwarding, etc.
/etc/config/network Switch, interface and route configuration
/etc/config/system Misc. system settings
/etc/config/wireless Wireless settings and wifi network definition

Table 1. Some basic UCI configuration files

These configuration files can be translated to separate IPSO objects e.g. /etc/config/wireless file can be mapped to
“Gateway Wireless Interface” IPSO object. Wireless interface configuration file have default options and these options can be
represented as resources under “Gateway Wireless Interface” object, which results in the following IPSO Object and some of
the possible resources under the object are also given:

Object Object ID Object URN Multiple Description
Instances?
IPSO Gateway Wireless Interface 1025 urn:oma:lwm2m:ext:1025 Yes Basic settings for the wireless interface.

Table 2. IPSO Gateway Wireless Interface object

Name Type Description Resource Name Resource ID Access Type

ifname string Specifies a custom name for the wifi Ifname 0 RW
interface, which is otherwise
automatically named.

mode string Selects the operation mode of the Mode 1 R,W
wireless network interface controller.

disabled boolean | Disables the radio adapter if set to 1. Disabled 2 RW

ssid string The broadcasted SSID of the wireless SSID 3 RW
network.

macaddr MAC Identifies the underlying radio adapter MAC 4 RW

address | associated to this section. Address
txpower integer Specifies the transmission power in dBm Transmission 6 R,W
Power
network string Specifies the network interface to attach Network 7 RW

the wireless to.

Table 3. Excerpts from UCI wireless config file options Table 4. IPSO Gateway Wireless Interface resources



The case for IoT Gateways as integrators between platforms and ecosystems is built on the premises that gateway often
have higher computing power and are permanently connected to the Internet. It is often the case that APIs are defined as static
definitions that represent the functionality of a device. When the definition is expanded or changes, the API is broken.
Providing that there is no alternative mechanism to add metadata and other information that could help prevent APIs from
breaking, gateways can mitigate the effect on interoperability between devices.

Surprisingly, many of the organizations are creating similar application semantics than, in practice, only differ on the
vocabulary used. Just like a gateway can translate REST-based commands into UCI OpenWRT ones, similar translations could
be enabled for other schemas from different organizations (e.g. LWM2M, OCF, IPSO, W3C...).

ITII. ENABLING HYPERMEDIA-DRIVEN GATEWAY INTERACTION

The approach of object models directly mapping to endpoint capabilities works well for constrained endpoints such as
sensors. For more sophisticated devices, such as a gateway, exposing properties and data as managed objects and resources can
easily result in large and unsustainable object models and resource lists. IPSO has addressed this to a large extent, by
deliberately defining objects as simple building blocks. These can be then aggregated by developers to construct composite
objects using a Web Linking Framework, providing a practical approach for resource interactions with composite objects.

While the LWM2M data and operation models support read, write and execute operations on a resource (effectively a
CoAP GET, PUT or POST operation), a gateway’s proprietary or native configuration API often needs to be invoked upon a
change in a resource’s representation. This is effectively an implicit process not exposed to the management server as the
object model does not attach any semantics to the kinds of native operations that could or should be invoked upon actions on
LWM2M resources. When applied to gateway management this can become an issue, as the object model does not accurately
capture the kinds of operations and configuration changes a gateway may need to perform in the background, to accurately
reflect the resource state in the object model.

As an example, consider a packet filtering mechanism on an access point, for which an example LWM2M or IPSO object
model comprises of firewall objects. Each firewall object represents a single rule, while each resource represents an option,
such as a name, source or destination address, incoming interface, connection state. Each action on the object to be taken needs
to be modelled as a resource, in addition to an additional final “commit” resource, in order to first properly construct and then
trigger the firewall rule on the gateway by the server, as well as to subsequently monitor its status. Without any additional
semantics, similar kinds of object and resource models need to be developed for other policy objects, system configuration and
the gateway’s network interfaces. While this is a workable solution, it is far from elegant. A different gateway implementation
may also choose to perform its runtime firewall management in a different manner, and incorporate additional resources to
reflect these operations, leading to fragmented semantic models that may not interoperate well.

One possible way to reduce this complexity is to adopt a hypermedia driven approach by embedding a REST constraint
called Hypermedia As The Engine of Application State (HATEOAS). Using HATEOAS, an object only exposes resources
directly necessary for the current context, while returning possible operations on the object or resource as hyperlinks and
relation types implementing standard REST verbs.

In other words, a firewall object can then be simplified so that the gateway’s native API invocations can be exposed to a
management server over a REST interface when necessary. A “commit” hyperlink could be exposed under a “name” resource
if and only if the firewall object has yet to be deployed, for example. While using HATEOAS increases the messages
exchanged between a management server and the gateway, it allows the responses from the gateway to the management server
to be more transparent.

Similarly, instead of modelling the status of a network interface in the table from Section II with a “Disabled” resource,
HATEOAS allows an “Enable” or “Disable” action to be presented to the management server based on whether the network
interface is active or not, while simplifying the object model of the network interface itself. This leads to less fragmentation of
the semantic model, as changes to the management API need not be mapped to the resource model, but could be achieved by
changing the necessary hyperlinks which allows less adaptation both at the management server as well at the gateway.

One way to represent the Gateway state information is with a dedicated State Object, composed of as many resources as
required to define the Gateway state. An Instance of the State Object could be linked using the “ObjectLink” to a specific
Gateway Object or to a Resource that requires state description within the Object.

As seen on Table 5, the new description of a “State Resource” is just a link to the actual Object, which can be added using
standard IPSO linking for Composite Objects.

Table 6 shows how the actual Object representation could be. It takes into account all states of the Gateway and possible
transitions between states. For simplicity reasons we use two states (ON/OFF, Enabled/Disabled) meaning that the device is
on/off. The transitional state is necessary when changes between states are not immediate.

The advantage of representing device states in this manner is that they can be queried using the same REST operations
(GET,PUT,DELETE...) as any other resource. Applications can therefore also represent and observe the state of the device.



Resource Name Access Type Type Multiple Instances? Description

State R,W ObjLink No Object defining the device state

Table 5. New State Resource on the Gateway Object linking to the State Object Instance.

Resource Resource ID Access Type Description
Name
Disabled 0 R,W The Gateway is off and the interfaces are disabled.
Waiting 1 R,W The Gateway is in a transitional state (1000 ms).
Enabled 2 R,W The Gateway is on and the interfaces are enabled.

Table 6. Example representation of a State Object Instance for a Gateway using IPSO data models.
IV. SEPARATING REACHABILITY FROM RESOURCE INTERACTION IN DATA MODELS

A distinguishing feature of an IoT gateway is its ability to communicate and serve its resources over two or more
connection endpoints. We earlier discussed semantic models for IoT gateways possessing multiple network interfaces acting as
proxies between entirely different protocol stacks and radio technologies. However, gateways can also perform proxying
between two disparate transports for the same management or application protocol.

As an example, the LWM2M protocol relies on using CoAP for obtaining management and resource information, with
CoAP itself has been standardised to use UDP and DTLS. However LWM2M is also specifying TCP and TLS as viable bearer
transports for cellular networks, as network management functionality in IoT can often be hampered owing to the existence of
middleboxes such as firewalls and NATs between the management server and the managed nodes. Additionally, the use of
Websockets has also been proposed for consideration as an alternative transport for CoAP, for similar reasons.

A LWM2M gateway thus can function as a proxy for LWM2M/CoAP clients over UDP in its LAN, while using a TCP or
Websocket endpoint in its WAN for communication with a LWM2M server. However, proxying management operations with
LWM2M is not really addressed presently. Therefore, with the currently available data model, the gateway needs to
masquerade the objects and resources of each endpoint on its LAN as if they were its own, to an external management server.

Ideally, discovering and using proxy functionality should be incorporated into future data models which unambiguously
assert the location and type of managed endpoints residing behind such a gateway. Although the CoAP protocol supports a
Proxy-URI option, how this can be achieved and defined in a Data Model remains an open issue. However, in doing so, the
semantic model becomes expressive enough to cleanly separate end-to-end resource retrieval and interaction at runtime, from
any underlying transport-specific reachability issues. As the gateway resides in the path between a management server and
managed endpoints, a similar principle can also be applied, in which the gateway functions as a translator for very
resource-constrained endpoints, providing semantic interoperability for connected end devices.

In terms of caching and validation, an added benefit of this role is that the gateway then possesses and provides a cached
representation of the schema itself, and is able to locally validate the translation of objects and resources exposed by a very
constrained end-point. Additionally a gateway acting as a CoAP proxy may be requested to retrieve the same resource from a
CoAP endpoint over multiple transports. This could be possible if such an endpoint exposes its resources over both UDP and
DTLS (or UDP and TCP), for example. Instead of retrieving the same requested resource representation multiple times, the
gateway can ideally returned an already cached, valid representation if one exists. Although some work exists in understanding
retrieval of CoAP-based resources over multiple transports from an endpoint, it is still in its infancy [7].
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