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1 Introduction

In certain application scenarios, there is a range of devices involved with very different capabilities.
In the core of the Smart Grid, one will find full fledged servers. Close to metering points, one will
more likely see embedded PC-like devices that still offer plenty of resources when it comes to the
implementation of network protocols. Within industrial settings or households, we will likely find
so called constrained devices consisting of 8-bit or 16-bit microcontrollers with wireless network
interfaces such as 802.15.4 radios [1]. In scenarios involving a range of very different devices,
there is usually a desire to restrict the set of different protocols used to a certain subset that
can scale across device types. Experience with protocol gateways translating between protocols
providing similar services tells us that such gateways can cause nasty operational problems since
protocol semantics are often not 100% translatable in certain corner cases. Hence, it is often
desirable to implement multiple protocols even on constrained devices since this approach allows
easier integration with existing software components and a reduction of complexity (no protocol
gateways needed), which in turn usually leads to a reduction of operational costs. Of course,
in application scenarios where only constrained devices are used (or they clearly dominate), the
development of protocols optimized to the specific scenario reduces device complexity and may
be desirable.

In this position statement, we argue that there should be a choice and that both the development
of a single streamlined protocol interfacing to applications via gateways as well as the definition
of profiles of existing protocols for constrained devices is desirable. We also petition for a discus-
sion that is grounded on implementation experiences and takes a system perspective instead of
discussing protocols in isolation. For example, application protocols running over UDP may need
to implement their own retransmission logic while protocols running over TCP essentially share
the retransmission logic. Similarly, protocols sharing the same security mechanisms will be more
resource friendly than protocols assuming different security solutions. In other words, in order
to understand the resource requirements of a given protocol on constrained devices, it is neces-
sary to also understand the resource requirements of related protocols and the operating system
functions the protocol depends on.

In the following, we outline a possible multi-protocol approach for constrained devices currently
prototyped at Jacobs University. We provide numbers concerning the memory usage of proto-
col implementations integrated into the Contiki [2] operating system. While the absolute numbers
depend on many platform specific factors and can thus be debated almost endlessly, the focus
should be on the relative size of the numbers we provide. A discussion should also take into ac-
count that the processing and memory capabilities of so called constrained devices have changed
over time and continue to change. And the same holds true for wireless technology. While the
current 802.15.4 technology, with its severe restrictions in frame sizes and data rates, is commonly
assumed as the obvious choice today, it is not unlikely that in a few years other wireless technolo-
gies such as low-power WiFi or an extended version of 802.15.4 may offer an attractive alternative,
avoiding the need of adaptation layers such as 6LoWPAN [3].
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2 Multi-Protocol Architecture

The protocol stack currently being prototyped at Jacobs University is shown in Figure 1. We use
the UDP/TCP/IPv6/6LoWPAN implementations available in Contiki [4]. Our target platform is the
AVR Raven, which provides as the primary processing unit an 8-bit ATMega128P microcontroller
with 16KB of RAM and 128 KB of flash memory. The Contiki operating system compiled with the
6LoWPAN implementation, including TCP, UDP, and HTTP, takes up 6KB of RAM and 35 KB of
ROM, leaving about 10 KB of RAM and 93 KB of ROM for any other programs.
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Figure 1: The protocol stack overview and the memory consumption of each component on the
AVR Raven platform using the Contiki OS.

While we believe that most constrained devices will not be RPL [5] routers but rather participate
as nodes interfacing with RPL routers that have additional resources, we mention the size of the
Contiki RPL implementation for completeness in Figure 1. Security protocols and in particular the
cryptographic functions consume quite some code space and have profound impact on the run-
time CPU usage. As a consequence, we believe that it is crucial that the security layer is shared
by all application protocols. For constrained devices, we envision a streamlined DTLS/TLS layer,
working only with pre-shared keys (omitting public key cryptography and certificate handling).

During our experiments, we found that service discovery is of crucial importance. It is necessary to
easily discover smart objects that may appear and disappear dynamically and at the same time it
is crucial that smart objects discover the network services they can use. We believe that multicast
DNS (mDNS) [6] fits the requirements well, is already widely implemented and deployed, and is
relatively easy to implement. For event notification and logging, we make use of SYSLOG [7]. Due
to the simplicity of the SYSLOG protocol, we did not highlight it in Figure 1. For the configuration
and monitoring interface, we are experimenting with a lightweight version of SNMP [8, 9] (leaving
out notifications since we prefer to use SYSLOG) and a lightweight version of NETCONF [10].
Of course, only one of them will be present on a production implementation but our goal is to
understand the implementation and run-time costs of both protocols. In the case of NETCONF, we
leave out protocol features like subtree filtering and the edit-config operation since these features
are likely not needed on constrained devices with a limited number of configurable items. Our
current setup utilizes the Contiki built-in HTTP server and we assume that CoAP [11] is of roughly
the same complexity as the subset of HTTP implemented in Contiki today.

The memory usage values presented in this figure are either obtained through experimentation or
they are previously published numbers. The ROM and RAM usage values for SNMP / NETCONF,
HTTP / CoAP, Security and RPL are obtained by compiling Contiki with and without these and then
comparing the values. It is important to note that the values presented for the security layer do not
take into account full DTLS and TLS, but only pre-shared key authentication using AES and MD5
hashing. Previous implementation experience indicates that a complete implementation of DTLS
or TLS is not likely to take up much more memory than already being used by the cryptographic
functions, since these are computationally expensive and code intensive operations. The memory
consumption values for UDP, TCP and IPv6 are obtained from previous research on this topic [4].
Unlike others, memory consumption values indicated for mDNS are based upon memory usage
for other similar applications, since the mDNS agent is still under development1.

1Implementation of mDNS, DTLS and NETCONF is likely to be finished by the beginning of May 2011.
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3 Example: SNMP on Constrained Devices

The Contiki SNMP agent implements the SNMPv1 and SNMPv3 message processing models but
supports only the Get, GetNext and Set operations in order to ensure that it would fit within the
constraints of an AVR Raven. The USM security model has been implemented and supports the
HMAC-MD5-96 authentication and CFB128-AES-128 symmetric encryption protocols. Manage-
ment data are accessed via the MIB C code module, which provides an interface to define and
configure accessible managed objects.

In order to optimize SNMP to fit within the platform limitations of the platform, the modular archite-
cure defined for SNMP [12] is not exactly followed. Simplifications are made by modifying the ab-
stract service interfaces to minimize resource consumption. For testing purposes, the SNMPv2-MIB,
IF-MIB and ENTITY-SENSOR-MIB modules have been implemented for the AVR Raven board plat-
form.

The implementation has been tested for interoperability with the snmpget, snmpgetnext, snmpset
and snmpwalk applications from the Net-SNMP suite. In order to obtain the memory usage of just
the SNMP agent, and not the entire OS, we first obtain the memory footprint of the OS without the
agent and then subtract this value from the memory usage with the SNMP agent. The full SNMP
implementation uses 31220 bytes of ROM, which is around 24% of the available ROM on the AVR
Raven, and 235 bytes of statically allocated RAM. In case SNMPv1 is only enabled, the agent uses
8860 bytes of ROM (about 7% of the available ROM) and 43 bytes of statically allocated RAM.

The memory usage of individual components of the SNMP agent were also calculated. The AES
and MD5 implementations constitute around 31% and 33% respectively of the agent code size.
Almost half of the ROM occupied by the AES implementation is used to store constants. The MD5
implementation intensively uses macro definitions for transformations which results in a huge code
size. Using functions instead could reduce the code size, but would also effect the performance.
It is also worth mentioning that the cryptographic primitives were ported from the OpenSSL library
and are not optimized for embedded platforms. The USM security model occupies almost half of
the agent statically allocated RAM. This RAM is used to store localized keys and OIDs of the error
indication counters.

Version Security Mode Max Stack Size
v1 - 688
v3 noAuthNoPriv 708
v3 authNoPriv 1140
v3 authPriv 1144

Table 1: The experimental results for the maximum stack size (in bytes)

Measuring the stack size is more challenging since it changes dynamically. As such, an experi-
mental approach was adopted to estimate the stack size used by the agent to process a request.
Upon receipt of an incoming SNMP message, the memory region allocated to the program stack
is filled with a specific bit pattern. When the processing has been finished, the stack is examined
to see how much of it is overwritten. Table 1 presents the maximum stack size observed during ex-
periments for different versions of SNMP and security modes used. Most of the stack is occupied
by the response message buffer of 484 bytes. The SNMPv1 and SNMPv3 message processing
models with noAuthNoPriv security level use approximately the same stack size, which constitutes
around 4% of the available RAM. When authentication and privacy are enabled, the stack grows
by about 66% up to 1144 bytes, which is about 7% of RAM on the targeted platform.

The time taken for transferring and processing a single SNMP request is shown in Figure 2. All
experiments were done for requests with one variable binding referring to the same MIB object.
The first observation is that the time spent in the SNMP request processing is small relative to
that spent in data transfer for SNMPv1 and SNMPv3 in the noAuthNoPriv mode. It constitutes
only around 6-7% of the total latency. However, enabling authentication and privacy significantly
increases this metric, by almost 228% in the worst case. It is also interesting to note that encryp-
tion adds an overhead of about 21%, whereas authentication costs 58% more compared to no
authentication and no encryption.
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Figure 8.1: Time taken for transferring and processing an SNMP request.
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Figure 8.2: Time spent in transferring and processing SNMPv1 requests and re-
sponses as a function of the number of variable bindings in a request.

Figure 2: Time taken for transferring and processing an SNMP request

4 Conclusions

In certain application areas, it will be desirable to utilize protocols that can scale across different
types of devices since this reduces software integration costs, avoids protocol gateways, and leads
to a reduction of operational costs. Concerning the protocol work done in the IETF (or IRTF), we
consider two items particularly useful targets to work on:

• Definition of a common lightweight security layer (e.g., based on DTLS/TLS) that can be
utilized by all protocols. The idea is to agree on a core set of security protocol features that
are commonly implemented and provide interoperability of the security mechanisms.

• Development of protocol profiles for existing protocols that define a subset of protocol fea-
tures to be implemented on constrained devices. The profiles should enable to scale the
usage of a protocol across a large range of different devices.

• Concerning the management and monitoring aspects of constrained devices, there is a need
to define the instrumentation that needs to be made available to management protocol inter-
faces. Again, it is crucial that the instrumentation can be shared with whatever protocol is
selected to carry the information.
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