Mobile IP in Wireless Cellular Systems

from several perspectives

Charles E. Perkins
Nokia Research Center
AAA and Cellular Telephony

- Terminology
- Protocol overview from Mobile IPv4
- Key Distribution
- Scalability and Performance
- IETF Status
Terminology

• Authentication – verifying a node’s identity
• Authorization – for access to resources
 – according to authentication and policy
• Accounting – measuring utilization
• Network Access Identifier (NAI) – user@realm
• Challenge – replay protection from foreign agent
• AAAAF for foreign domain
• AAAAH for home domain
AAA & Mobile IPv4 protocol overview

- Advertisement from Foreign Agent
- Registration Request w/MN-NAI from Mobile Node
- Foreign Agent asks AAAAF for help
- AAAAF looks at realm to contact AAAAH
- AAAAH authenticates & authorizes, starts accounting
- AAAAH, optionally, allocates a home address
- AAAAH contacts Home Agent
Key Distribution

• New security model
 – mobile node ↔ AAAH

• Association needed HA ↔ mobile node

• TR45.6, others, want also:
 – foreign agent ↔ mobile node
 – foreign agent ↔ home agent

• AAAH allocates three keys for this
Brokers

- Needed when there are 1000’s of domains
- NAI is perfect to enable this
- AAAAF decides whether to use per realm
 - may prefer bilateral arrangement
- iPASS, GRIC
Scalability and Performance

• Single Internet Traversal
• Brokers
• Eliminate all unnecessary AAA interaction
• Handoff between foreign agents
 – can use keys from previous foreign agent
• Regional Registration
• Can use single care-of address per domain
Mobile IPv4/AAA Status

• AAA working group has been formed
• Mobile IP (v4) AAA requirements draft
 – Last Call possible by Adelaide
• Several 3G requirements documents online
• Mobile IP/AAA extensions draft
Hierarchical Foreign Agents

Home Agent stores GFA address as the Care-of Address

Mobile Node registers only once with Home Agent

Usually, only one level of hierarchy is being considered
3GPP with GPRS

Evolution from cellular packet/GPRS

Mobility agent
At GGSN

Traditional BSS with packet data QoS enhancements

Call Processing Server/Gatekeeper
One (of many) “ALL-IP” visions

Evolution from general IP networks
CDMA2000 3G micromobility
CDMA2000 3G micromobility

• Terminate physical layer distant from “FA”
• Protected, private n/w between FA and MN
• PDSN (Packet Data Serving Node) ~ GFA
• RNN (Radio Network Node) ~ LFA
• RNN manages the physical layer connection to the mobile node
CDMA2000 3G Requirements

- GRE encapsulation (but will it survive?)
- Reverse Tunneling (RFC 2344)
- Registration Update
- Registration Acknowledge
- Session-specific registration extension
 - contains MN-ID, type, MN Connection-ID
 - contains Key field for GRE
CDMA2000 Registration Update

- Used for handovers to new RNN
- Acknowledgement required
 - allows PDSN/old RNN to reclaim resources
- New authentication extension required
- Home address $\leftarrow 0$
- Home agent \leftarrow PDSN
- Care-of address \leftarrow RNN
IMT-2000/UMTS/EDGE reqt’s

• Independent of access technology
 – so should work for non-GSM also
• Interoperation with existing cellular
• Privacy/encryption (using IPsec)
• QoS for Voice/IP and videoconferencing
 – particular concern during handover
• Fixed/mobile convergence desired
IMT-2000 reqt’s, continued

- Charge according to QoS attribute request
- Roaming to diverse access technologies
 - e.g., Vertical IP
- Route optimization
- Identification/authorization based on NAI
- Proxy registration for legacy mobile nodes
- Signaling for firewall traversal
IMT-2000 reqt’s, continued

- Reverse tunneling
- Private networks
 - but, still allow access to networks other than the mobile node’s home network
- Dynamic home address assignment
- Dynamic home agent assignment
 - even in visited network
 - even when roaming from one visited network to another
Mobile IPv6 Design Points

• Enough Addresses
• Enough Security
• Address Autoconfiguration
• Route Optimization
• Destination Options
• Reduced Soft-State
Enough Addresses

• Billions of IP-addressable wireless handsets
• Address space crunch is already evident
 – recent unfulfilled request to RIPE
• Multi-level NAT unknown/unavailable
• Even more addresses for embedded wireless
Enough Security (almost)

- Authentication Header
- Needed for Binding Update
 - Remote Redirect problem
- Encapsulating Security Payload
- Required from every IPv6 node
- Key distribution still poorly understood
 - PKI?
 - AAA?
Address Autoconfiguration

- A new care-of address on every link
- Stateless Address Autoconfiguration
 - Routing Prefix
 - MAC address
- Link-Local Address ➔ Global Address
- Stateful Autoconfiguration (DHCPv6)
- Movement Detection
Destination Options

• Binding Updates without control packets
 – allows optimal routing
 – replaces IPv4 Registration Request messages
• Home Address option
 – better interaction with *ingress filtering*
 – supported by *all* IPv6 network nodes
• Binding Acknowledgement
 – replaces Registration Reply
Route Optimization

• Most Internet devices will be mobile
• Reduces network load by ~50%
 – (depending on your favorite traffic model)
• Route Optimization could double Internet-wide performance levels…
• Binding Update SHOULD be part of every IPv6 node implementation
Improved ICMP messages

- IPv4 ICMP returns only 8 payload bytes
- IPv4 home agents could not relay errors
 - insufficient inner header information
 - some data sources might never find out about broken links
- IPv6 ICMP messages return enough data
- Also used for *anycast home agent discovery*
Mobile IPv6 status

- Interactions with IPsec fully worked out
- Mobile IPv6 testing event Sept 15-17
 - Bull, Ericsson, NEC, INRIA
- Connectathon next week
- Internet Draft is ready for Last Call
- API support needed
Mobile IPv6 & AAA

- Model comparison
- Protocol comparison
- Key management
Model Comparison

• 3G business AAA considerations the same
• AAA servers may use same protocol
 – except wherever IP addresses are indicated
• Network vs. Link authorization
• Service architecture
Protocol Comparison

• Routers used instead of foreign agents
• Regional registration needs new agents, too
 – GGSNs/border routers are candidates
• UDP Lite
• Robust Header Compression
• Challenge generation (not from HLR?)
• Privacy considerations?
IPv6 Key Management

• Still needed for smooth handovers
• Ideas from IPv4 Registration Key:
 – Public Key from mobile node or router
 – Diffie-Hellman key exchange
 • via exponentiation or elliptic curve
 – Using any existing security association
• Interaction with Regional Registration
Summary and Conclusions

• Future Internet is largely wireless/mobile
• IPv6 needed for billions of wireless devices
• Mobile IPv6 is far better and more efficient
• Autoconfiguration suitable for the mobile Internet
• Security is a key component for success
• AAA has a big role to play for cellular rollout
• Leverage from current cellular interest