Security Issues in Mobile Communication Systems

N. Asokan
Nokia Research Center

IAB workshop on wireless internetworking
February 29 - March 2, 2000
What is different about wireless networks?

- Low bandwidth
 - minimize message sizes, number of messages
- Increased risk of eavesdropping
 - use link-level encryption ("wired equivalency")
- Also wireless networks typically imply **user/device mobility**
 - Security issues related to mobility
 - authentication
 - charging
 - privacy
- Focus of this presentation
Overview

• Brief overview of how GSM and 3GPP/UMTS address these issues
• Potential additional security concerns in the "wireless Internet"
• Ways to address these concerns, and their implications
GSM/GPRS security

- **Authentication**
 - one-way authentication based on long-term shared key between user's SIM card and the home network

- **Charging**
 - network operator is trusted to charge correctly; based on user authentication

- **Privacy**
 - data
 - link-level encryption over the air; no protection in the core network
 - identity/location/movements, unlinkability
 - use of temporary identifiers (TMSI) reduce the ability of an eavedropper to track movements within a PLMN
 - but network can ask the mobile to send its real identity (IMSI): on synchronization failure, on database failure, or on entering a new PLMN
 - network can also page for mobiles using IMSI
3GPP/UMTS enhancements (current status)

- Authentication
 - support for mutual authentication

- Charging
 - same as in GSM

- Privacy
 - data
 - some support for securing core network signaling data
 - increased key sizes
 - identity/location/movements, unlinkability
 - enhanced user identity confidentiality using "group keys"
 - a group key is shared by a group of users

- Other improvements
 - integrity of signaling, cryptographic algorithms made public
Enhanced user identity confidentiality

- IMSI is not sent in clear. Instead, it is encrypted by a static group key KG and the group identity IMSGI is sent in clear.

```
IMSGI | E(KG, random bits | IMSI | redundancy
      | bits)           
```

Serving Node

Home Environment

IMSI request

IMSI
What is different in the wireless Internet?

- Potentially low cost of entry for ISPs supporting mobile access
- Consequently, old trust assumptions as in cellular networks may not hold here
 - between user and home ISP
 - between user and visited ISP
 - between ISPs
- Implications: potential need for
 - incontestable charging
 - increased level of privacy
- Relevant even in cellular networks?
Incontestable charging

- Required security service: unforgeability
- Cannot be provided if symmetric key cryptography is used exclusively
 - hybrid methods may be used (e.g., based on hash chains)
- Authorization protocol must support some notion of a "charging certificate"
 - used for local verification of subsequent authorization messages
Enhanced privacy

• Stronger levels or privacy
 • temporary id = home-domain, E(K, random bits | real-id)
 • using public key encryption
 • K is the public encryption key of the home-domain
 • using opaque tokens
 • K is a symmetric encryption key known only to the home-domain
 • tokens are opaque to the mobile user
 • user requires means of obtaining new tokens
 • no danger of loss of synchronization

• Identity privacy without unlinkability is often not useful
 • static identities allow profiles to be built up over time
 • encryption of identity using a shared key is unsatisfactory: trades off performance vs. level of unlinkability
Enhanced privacy (contd.)

- Release information on a need-to-know basis: e.g., does the visited domain need to know the real identity?
 - typically, the visited domain cares about being paid
 - **ground rule**: stress authorization not authentication
 - require authentication only where necessary (e.g., home agent forwarding service in Mobile IP)
An example protocol template

User

Visited Domain

Home Domain

- unforgeable registration request
- real identity not revealed to the visited domain
Implications

- Public-key cryptography can provide effective solutions
 - increased message sizes: use of elliptic curve cryptography can help
 - lack of PKI: enhanced privacy solution does not require a full-fledged PKI, some sort of infrastructure is required for charging anyway

- Are these problems serious enough?
 - trust assumption may not change so drastically
 - providing true privacy is hard: hiding identity information is irrelevant as long as some other linkable information is associated with the messages
 - try not to preclude future solution
 - e.g., don’t insist on authentication when it is not essential
 - provide hooks for future use
 - e.g., 16-bit length fields to ensure sufficient room in message formats
Summary

• Trust assumptions are different in the Internet
• Enhanced levels of security services may be necessary
• Public-key cryptography can provide effective solutions
• Try not to preclude future provision of improved security services
End of presentation

- Additional slides follow
Reducing number of messages

User → Visited domain → Home domain

Initial shared key K_{UH}

K_{UV}

$auth_{UV}, \ldots$

K_{UV}

$auth_{UH}, \ldots$

K_{UV}

User → Visited domain → Home domain

Initial shared key K_{UH}

$K_{UV} \leftarrow f(K_{UH}, V, \ldots)$

$auth_{UH}, auth_{UV}, \ldots$

$K_{UV} \leftarrow f(K_{UH}, V, \ldots)$

K_{UV}
Elliptic curve cryptosystems

• Comparison between discrete log based systems of equivalent strength in different groups
 • DSA: system parameters = 2208 bits, public key = 1024 bits, private key = 160 bits, signature size = 320 bits
 • ECDSA: system parameters = 481 bits, public key = 161 bits, private key = 160 bits, signature size = 160 bits

• Comparison between EC and RSA of "equivalent strength"
 • RSA: public key = 1088 bits, private key = 2048 bits, signature size = 1024 bits

• (taken from Certicom's white papers)