idnits 2.17.1 draft-acee-idr-lldp-peer-discovery-05.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (July 8, 2019) is 1754 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Missing Reference: 'IEEE-802-IANA' is mentioned on line 127, but not defined == Missing Reference: 'TCP-MD5' is mentioned on line 306, but not defined == Missing Reference: 'TCP-AO' is mentioned on line 309, but not defined == Missing Reference: 'GTSM' is mentioned on line 312, but not defined -- Possible downref: Non-RFC (?) normative reference: ref. 'LLDP' -- Obsolete informational reference (is this intentional?): RFC 2385 (Obsoleted by RFC 5925) -- Obsolete informational reference (is this intentional?): RFC 5226 (Obsoleted by RFC 8126) -- Obsolete informational reference (is this intentional?): RFC 7042 (Obsoleted by RFC 9542) Summary: 0 errors (**), 0 flaws (~~), 5 warnings (==), 5 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group A. Lindem 3 Internet-Draft Cisco Systems 4 Intended status: Standards Track K. Patel 5 Expires: January 9, 2020 Arrcus, Inc 6 S. Zandi 7 LinkedIn 8 J. Haas 9 Juniper Networks, Inc 10 X. Xu 11 Alibaba 12 July 8, 2019 14 BGP Logical Link Discovery Protocol (LLDP) Peer Discovery 15 draft-acee-idr-lldp-peer-discovery-05 17 Abstract 19 Link Layer Discovery Protocol (LLDP) or IEEE 802.1AB is implemented 20 in networking equipment from many vendors. It is natural for IETF 21 protocols to avail this protocol for simple discovery tasks. This 22 document describes how BGP would use LLDP to discover directly 23 connected and 2-hop peers when peering is based on loopback 24 addresses. 26 Status of This Memo 28 This Internet-Draft is submitted in full conformance with the 29 provisions of BCP 78 and BCP 79. 31 Internet-Drafts are working documents of the Internet Engineering 32 Task Force (IETF). Note that other groups may also distribute 33 working documents as Internet-Drafts. The list of current Internet- 34 Drafts is at https://datatracker.ietf.org/drafts/current/. 36 Internet-Drafts are draft documents valid for a maximum of six months 37 and may be updated, replaced, or obsoleted by other documents at any 38 time. It is inappropriate to use Internet-Drafts as reference 39 material or to cite them other than as "work in progress." 41 This Internet-Draft will expire on January 9, 2020. 43 Copyright Notice 45 Copyright (c) 2019 IETF Trust and the persons identified as the 46 document authors. All rights reserved. 48 This document is subject to BCP 78 and the IETF Trust's Legal 49 Provisions Relating to IETF Documents 50 (https://trustee.ietf.org/license-info) in effect on the date of 51 publication of this document. Please review these documents 52 carefully, as they describe your rights and restrictions with respect 53 to this document. Code Components extracted from this document must 54 include Simplified BSD License text as described in Section 4.e of 55 the Trust Legal Provisions and are provided without warranty as 56 described in the Simplified BSD License. 58 Table of Contents 60 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 61 1.1. Requirements Notation . . . . . . . . . . . . . . . . . . 3 62 1.1.1. Requirements Language . . . . . . . . . . . . . . . . 3 63 2. LLDP Extensions . . . . . . . . . . . . . . . . . . . . . . . 3 64 2.1. LLDP Organizationally Specific TLV Format . . . . . . . . 3 65 2.2. BGP Config OS-TLV Format . . . . . . . . . . . . . . . . 4 66 2.2.1. BGP Config OS-TLV - Peering Address Sub-TLV . . . . . 5 67 2.2.2. BGP Config OS-TLV - BGP Local AS Sub-TLV . . . . . . 6 68 2.2.3. BGP Config OS-TLV - BGP Identifier Sub-TLV . . . . . 7 69 2.2.4. BGP Config OS-TLV - Session Group-ID Sub-TLV . . . . 8 70 2.2.5. BGP Config OS-TLV - BGP Session Capabilities Sub-TLV 9 71 2.2.6. BGP Config OS-TLV - Key Chain Sub-TLV . . . . . . . . 10 72 3. BGP LLDP Peer Discovery Operations . . . . . . . . . . . . . 11 73 3.1. Advertising BGP Speaker . . . . . . . . . . . . . . . . . 11 74 3.2. Receiving BGP Speaker . . . . . . . . . . . . . . . . . . 11 75 4. Security Considerations . . . . . . . . . . . . . . . . . . . 12 76 5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 13 77 5.1. IANA Assigned LLDP Subtype . . . . . . . . . . . . . . . 13 78 5.2. BGP Config LLDP OS-TLV Sub-TLVs . . . . . . . . . . . . . 13 79 6. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 14 80 7. References . . . . . . . . . . . . . . . . . . . . . . . . . 14 81 7.1. Normative References . . . . . . . . . . . . . . . . . . 14 82 7.2. Informative References . . . . . . . . . . . . . . . . . 15 83 Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . 16 84 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 16 86 1. Introduction 88 Link Layer Discovery Protocol (LLDP) [LLDP] or IEEE 802.1AB is 89 implemented in networking equipment from many vendors. It is natural 90 for IETF protocols to avail this protocol for simple discovery tasks. 91 This document describes how BGP [RFC4271] would use LLDP to discover 92 directly connected and 2-hop peers when peering is based on loopback 93 addresses. 95 1.1. Requirements Notation 97 1.1.1. Requirements Language 99 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 100 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and 101 "OPTIONAL" in this document are to be interpreted as described in BCP 102 14 [RFC2119] [RFC8174] when, and only when, they appear in all 103 capitals, as shown here. 105 2. LLDP Extensions 107 2.1. LLDP Organizationally Specific TLV Format 109 The format of the LLDP Basic Organizationally Specific TLV (OS-TLV) 110 is defined in [LLDP]. It is shown below for completeness. 112 0 1 2 3 113 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 114 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 115 | Type (127) | Length | OUI (3 Octets) 00-00-5E | 116 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 117 | OUI Continued | Subtype | Value | 118 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 119 | ... (Up to 507 Octets) | 121 Type Organizationally Specific TLV type value, 127. 123 Length The length of the remainder of the TLV. 125 OUI Organizationally unique identifier for the 126 organization's OUI. For IANA, this is value is 127 00-00-5E as specified in [IEEE-802-IANA]. 129 Subtype IETF specific subtype 131 Value Value for organizationally specific TLV. The Length of 132 the value is 4 octets less than the TLV length. 134 LLDP Organizationally Specific TLV 136 The OUI for IANA was allocated in section 1.4 of [RFC7042]. This 137 document requests creation of a registry for IETF specific sub-types 138 for LLDP Organizationally Specific TLVs. 140 2.2. BGP Config OS-TLV Format 142 The BGP Config Organizationally Specific TLV (OS-TLV) will be used to 143 advertise BGP configuration information. The configuration 144 information will be composed of Sub-TLVs. Since the length is 145 limited to 507 octets, multiple BGP Config OS-TLVs could be included 146 in a single LLDP advertisement. 148 0 1 2 3 149 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 150 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 151 | Type (127) | Length | OUI (3 Octets) 00-00-5E | 152 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 153 |OUI Continued | 1 | BGP Config Sub-TLVs ... | 154 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 155 | ... (Up to 507 Octets) | 157 Length The length of the BGP TLV. 159 Subtype IETF specific subtype for BGP Config OS-TLV. The 160 value shall be 1. 162 Value BGP Config Sub-TLVs each with a 1 byte Type and 163 Length. The Length will include solely the value 164 portion of the TLV and not the Type and Length 165 fields themselves. 167 2.2.1. BGP Config OS-TLV - Peering Address Sub-TLV 169 The BGP OS-TLV Peering Address Sub-TLV will be used to advertise the 170 local IP addresses used for BGP sessions and the associated address 171 families specified by AFI/SAFI tuples. The AFI/SAFI tuple, 0/0, 172 indicates to use the associated peering address for all locally 173 configured address families without an explicit peering address 174 specification. As always, the address families supported for a given 175 BGP session will be determined during capabilities negotiation 176 [RFC4760]. It is RECOMMENDED that the wildcard AFI/SAFI be used in 177 deployments with fairly homogenous address family usage. 179 The format of the BGP Peering Address Sub-TLV is shown below. 181 0 1 2 3 182 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 183 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 184 | Type (1) | Length | Address Family| IPv4/IPv6 | 185 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 186 ~ IPv4/IPv6 Peering Address ... ~ 187 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 188 | AFI | SAFI | o o o 189 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 191 Type The Sub-TLV Type value shall be 1. 193 Length The Sub-TLV length in octets will be 4 for IPv4 or 16 194 for IPv6 plus 3 times the number of AFI/SAFI tuples. 196 Address IANA Address family (1 for IPv4 or 2 for IPv6) 197 Family 199 Peering An IPv4 address (4 octets) or an IPv6 address (16 octets) 200 Address 202 AFI/SAFI One or more AFI/SAFI tuples for BGP session using this 203 Pairs peering address. The AFI/SAFI tuple, 0/0, is a wildcard 204 indicating to attempt negotiation for all AFI/SAFIs. 206 2.2.2. BGP Config OS-TLV - BGP Local AS Sub-TLV 208 The BGP Config OS-TLV Local AS Sub-TLV will be used to advertise the 209 4-octet local Autonomous System (AS) number(s). For AS transitions, 210 a second local AS number may be specified. The format of the BGP 211 Local AS Sub-TLV is shown below. 213 0 1 2 3 214 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 215 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 216 | Type (2) |Length (4 or 8)| Local AS | 217 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 218 | Local AS | Optional Second Local AS | 219 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 220 | Optional Second Local AS | 221 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 223 Type The Sub-TLV Type value shall be 2. 225 Length The Sub-TLV Length will be 4 or 8 octets. 227 Local AS Local Autonomous System (AS) 229 Second Local AS Local Autonomous System (AS) 231 2.2.3. BGP Config OS-TLV - BGP Identifier Sub-TLV 233 The BGP Config OS-TLV BGP Identifier Sub-TLV will be used to 234 advertise the 4-octet local BGP Identifier. The BGP Identifier is 235 used for debugging purposes and possibly to reduce the likelihood of 236 BGP connection collisions. The format of the BGP Identifier Sub-TLV 237 is shown below. 239 0 1 2 3 240 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 241 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 242 | Type (3) | Length (4) | BGP Identifier | 243 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 244 | BGP Identifier | 245 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 247 Type The Sub-TLV Type value shall be 3. 249 Length The Sub-TLV Length will be 4 octets. 251 BGP Identifier Local BGP Identifier (aka, BGP Router ID) 253 2.2.4. BGP Config OS-TLV - Session Group-ID Sub-TLV 255 The BGP Config OS-TLV Session Group-ID Sub-TLV is an opaque 4-octet 256 value that is used to represent a category of BGP session that is 257 supported on the interface. The format of the Session Group-ID Sub- 258 TLV is shown below. 260 0 1 2 3 261 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 262 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 263 | Type (4) | Length (4) | Session Group-ID | 264 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 265 | Session Group-ID | 266 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 268 Type The Sub-TLV Type value shall be 4. 270 Length The Sub-TLV Length will be 4 octets. 272 Session Group-ID The session group-id used to indicate a 273 class or category of BGP session supported on 274 the interface. 276 2.2.5. BGP Config OS-TLV - BGP Session Capabilities Sub-TLV 278 The BGP Config OS-TLV Session Capabilities Sub-TLV will be used to 279 advertise an 8-octet Session Capabilities field. The session 280 capabilities are represented as bit flags identifying the supported 281 BGP session capabilities. The format of the BGP Session Capabilities 282 Sub-TLV is shown below. 284 0 1 2 3 285 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 286 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 287 | Type (5) | Length (8) | Session Capabilities | 288 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 289 | Session Capabilities | 290 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 291 | Session Capabilities | 292 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 294 Type The Sub-TLV Type value shall be 5. 296 Length The Sub-TLV Length will be 8 octets. 298 Session Bit fields identify BGP session capabilities 299 Capabilities 301 The BGP Session Capabilities is an 8-octet bit field. The most 302 significant bit is the first bit (Bit 1) of the Session Capabilities. 303 The following bits are defined: 305 Bit 1: This bit indicates support for TCP MD5 306 authentication [TCP-MD5]. 308 Bit 2: This bit indicates support for TCP-AO 309 authentication [TCP-AO]. 311 Bit 3: This bit indicates support for Generalized TTL 312 Security Mechanism (GTSM) [GTSM] with a 313 configured TTL range of 254-255. 315 TCP MD5 authentication is described in [RFC2385]. The TCP 316 Authentication Option (TCP-AO) is described in [RFC5925]. The 317 Generalized TTL Security Mechanism (GTSM) is described in [RFC5082]. 318 If both TCP MD5 authentication and TCP-AO authentication are 319 specified and TCP-AO is supported, it will take precedence. 321 2.2.6. BGP Config OS-TLV - Key Chain Sub-TLV 323 The BGP Config OS-TLV Key Chain Sub-TLV is a string specifying the 324 name for the key chain used for session authentication. Key chains 325 [RFC8177] are a commonly used for protocol authentication and 326 encryption key specification. Given the limited length of all BGP 327 configuration information, the key chain name will be limited to 64 328 characters and will not include a trailing string delimiter. The 329 format of the Session Group-ID Sub-TLV is shown below. 331 0 1 2 3 332 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 333 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 334 | Type (6) |Length (1 - 64)| Key Chain Name | 335 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 336 | Key Chain Name (Up to 64 Octets) | 337 O 338 O 339 O 340 | Key Chain Name | 341 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 343 Type The Sub-TLV Type value shall be 6. 345 Length The Sub-TLV Length will be 1 - 64 octets. 347 Key Chain Name The name of a key chain to be used for 348 MD5 or TCP-AO authentication. 350 3. BGP LLDP Peer Discovery Operations 352 The simple use case is to just use the peer address advertised in the 353 LLDP Packet Data Unit (PDU) to establish a 1-hop BGP peer session. 354 This can be used in data centers using BGP as described in [RFC7938]. 355 The use case where a loopback address or other local address is 356 advertised as the peering address is also supported. However, 357 reachabiliy to a peering address other than the interface address is 358 beyond the scope of this document. 360 3.1. Advertising BGP Speaker 362 A BGP speaker MAY advertise its BGP peering address in an LLDP PDU 363 for a link using the BGP Local Address Sub-TLV of the BGP-OS TLV. 364 This can be an IPv4 or IPv6 local address associated with the LLDP 365 link for 1-hop peering. For 2-hop peering, it could be a loopback 366 address or any other address that is local to the node but not the 367 LLDP link. As noted above, reachability to the loopback address is 368 beyond the scope of this document. 370 A BGP speaker MAY advertise its local AS number using the BGP Local 371 AS Sub-TLV of the BGP-OS TLV. During AS transitions, a second local 372 AS number may be included in the Local AS Sub-TLV. The local BGP 373 identifier may also be advertised using the BGP Identifier Sub-TLV of 374 the BGP-OS TLV. While not specifically required for session 375 establishment, the values may be used for validation, trouble- 376 shooting, and connection collision avoidance. A BGP speaker may also 377 announce a Session Group-ID indicating the class or category of 378 session(s) supported and/or mapping to a set of session parameters. 379 Additionally, a BGP speaker MAY also announce relevant capabilities 380 using BGP Session Capabilities Sub-TLV of the BGP-OS TLV. 382 If TCP MD5 authentication [RFC2385] or TCP Authentication Option 383 (TCP-AO) [RFC5925] is to be used on the session, the Key Chain Sub- 384 TLV of the BGP-OS TLV MAY be used to specify the key chain name. 386 3.2. Receiving BGP Speaker 388 A BGP speaker configured for LLDP peer discovery WILL attempt to 389 establish BGP sessions using the address in the BGP Local Address 390 Sub-TLV of BGP-OS TLV format. If the peering address is directly 391 accessible over the link on which the LLDP PDU is received, the BGP 392 speaker will attempt to establish a 1-hop BGP session with the peer. 394 If the received BGP Peering Address is not directly accessible over 395 the link, the peer must be reachable for the session to be 396 established and the mechanisms for establishing reachability are 397 beyond the scope of this specification. If the BGP speaker receives 398 the same BGP peering address in LLDP PDUs received on multiple links, 399 it will not establish multiple sessions. Rather, a single 2-hop 400 session will be established. 402 When the deployment of address families is fairly homogenous across 403 the deployment, the wildcard AFI/SAFI can be utilized to simplify 404 LLDP advertisement. When there is variance in the address families 405 supported, usage of the wildcard could result in session 406 establishment delay due to capabilities negotiation [RFC5492]. 408 A BGP speaker MAY receive a remote neighbor's local AS number(s) in 409 an LLDP PDU in the BGP Local AS Sub-TLV of the BGP-OS TLV. A BGP 410 speaker MAY use the received local AS number(s) to perform validation 411 checking of the AS received in the OPEN message. A BGP speaker MAY 412 receive a remote neighbor's BGP Identifier in the BGP Identifier Sub- 413 TLV of the BGP-OS TLV. This can be used to avoid connection 414 collisions by delaying session establishment if the remote BGP 415 Identifier is greater than the receiving speaker's BGP Identifier. 417 A BGP speaker MAY receive a Session Group-ID Sub-TLV in the LLDP BGP- 418 OS TLV. This Session Group-ID may be used for validation and/or 419 mapping the session to a particular set of session parameters. For 420 example, the Session Group-ID could be mapped to a spine, leaf, or 421 Top-of-Rack (ToR) session in a data center deployment and can be used 422 to detect cabling problems when an unexpected Session Group-ID is 423 received. 425 Additionally, A BGP speaker MAY receive a remote neighbor's 426 capabilities in LLDP in the BGP Session Capabilities Sub-TLV of the 427 BGP-OS TLV. A BGP speaker MAY use the received capabilities to 428 ensure appropriate local neighbor configuration in order to 429 facilitate session establishment. 431 If TCP MD5 authentication [RFC2385]. or TCP Authentication Option 432 (TCP-AO) [RFC5925] is to be used on the session as determined either 433 via the Session Capabilities Sub-TLV, Session Group-ID, or local 434 policy, the key chain name in the Key Chain Sub-TLV of the BGP-OS TLV 435 MAY be used to identify the correct key chain [RFC8177]. 437 4. Security Considerations 439 This security considerations for BGP [RFC4271] apply equally to this 440 extension. 442 Additionally, BGP peering address discovery should only be done on 443 trusted links (e.g., in a data center network) since LLDP packets are 444 not authenticated or encrypted [LLDP]. 446 5. IANA Considerations 448 5.1. IANA Assigned LLDP Subtype 450 IANA is requested to create a registry for IANA assigned subtypes in 451 the Organizationally Specific TLV assigned to IANA (OUI of 000-00-53 452 [RFC7042]. Assignment is requested for 1 for the BGP Config OS-TLV. 454 +-------------+-----------------------------------+ 455 | Range | Assignment Policy | 456 +-------------+-----------------------------------+ 457 | 0 | Reserved (not to be assigned) | 458 | | | 459 | 1 | BGP Configuration | 460 | | | 461 | 2-127 | Unassigned (IETF Review) | 462 | | | 463 | 128-254 | Reserved (Not to be assigned now) | 464 | | | 465 | 255 | Reserved (not to be assigned) | 466 +-------------+-----------------------------------+ 468 IANA LLDP Organizationally Specific TLV Sub-Types 470 o Types in the range 2-127 are to be assigned subject to IETF 471 Review. New values are assigned only through RFCs that have been 472 shepherded through the IESG as AD-Sponsored or IETF WG Documents 473 [RFC5226]. 475 o Types in the range 128-254 are reserved and not to be assigned at 476 this time. Before any assignments can be made in this range, 477 there MUST be a Standards Track RFC that specifies IANA 478 Considerations that covers the range being assigned. 480 5.2. BGP Config LLDP OS-TLV Sub-TLVs 482 IANA is requested to create a registry for Sub-TLVs of the BGP Config 483 LLDP OS-TLV. Assignment is requested for 1 for the BGP Peering 484 Address Sub-TLV. Assignment is also requested for 2 for the Local AS 485 Sub-TLV. Additionally, assignment is requested for 3 for the BGP 486 Identifier Sub-TLV, 4 for the BGP Session Group-ID, 5 for the Session 487 Capabilities Sub-TLV, and 6 for the Key Chain Name. 489 +-------------+-----------------------------------+ 490 | Range | Assignment Policy | 491 +-------------+-----------------------------------+ 492 | 0 | Reserved (not to be assigned) | 493 | | | 494 | 1 | Peering Address | 495 | | | 496 | 2 | Local AS | 497 | | | 498 | 3 | BGP Identifier | 499 | | | 500 | 4 | Session Group-ID | 501 | | | 502 | 5 | Session Capabilities | 503 | | | 504 | 6 | Key Chain Name | 505 | | | 506 | 7-127 | Unassigned (IETF Review) | 507 | | | 508 | 128-254 | Reserved (Not to be assigned now) | 509 | | | 510 | 255 | Reserved (not to be assigned) | 511 +-------------+-----------------------------------+ 513 LLDP BGP Config OS-TLV Types 515 o Types in the range 7-127 are to be assigned subject to IETF 516 Review. New values are assigned only through RFCs that have been 517 shepherded through the IESG as AD-Sponsored or IETF WG Documents 518 [RFC5226]. 520 o Types in the range 128-254 are reserved and not to be assigned at 521 this time. Before any assignments can be made in this range, 522 there MUST be a Standards Track RFC that specifies IANA 523 Considerations that covers the range being assigned. 525 6. Contributors 527 Contributors' Addresses 529 7. References 531 7.1. Normative References 533 [LLDP] IEEE, "IEEE Standard for Local and metropolitan area 534 networks-- Station and Media Access Control Connectivity 535 Discovery Corrigendum 2: Technical and Editorial 536 Corrections", IEEE 802.1AB-2009/Cor 2-2015, 537 DOI 10.1109/ieeestd.2015.7056401, March 2015. 539 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 540 Requirement Levels", BCP 14, RFC 2119, 541 DOI 10.17487/RFC2119, March 1997, 542 . 544 [RFC4271] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A 545 Border Gateway Protocol 4 (BGP-4)", RFC 4271, 546 DOI 10.17487/RFC4271, January 2006, 547 . 549 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 550 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, 551 May 2017, . 553 7.2. Informative References 555 [RFC2385] Heffernan, A., "Protection of BGP Sessions via the TCP MD5 556 Signature Option", RFC 2385, DOI 10.17487/RFC2385, August 557 1998, . 559 [RFC4760] Bates, T., Chandra, R., Katz, D., and Y. Rekhter, 560 "Multiprotocol Extensions for BGP-4", RFC 4760, 561 DOI 10.17487/RFC4760, January 2007, 562 . 564 [RFC5082] Gill, V., Heasley, J., Meyer, D., Savola, P., Ed., and C. 565 Pignataro, "The Generalized TTL Security Mechanism 566 (GTSM)", RFC 5082, DOI 10.17487/RFC5082, October 2007, 567 . 569 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an 570 IANA Considerations Section in RFCs", RFC 5226, 571 DOI 10.17487/RFC5226, May 2008, 572 . 574 [RFC5492] Scudder, J. and R. Chandra, "Capabilities Advertisement 575 with BGP-4", RFC 5492, DOI 10.17487/RFC5492, February 576 2009, . 578 [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP 579 Authentication Option", RFC 5925, DOI 10.17487/RFC5925, 580 June 2010, . 582 [RFC7042] Eastlake 3rd, D. and J. Abley, "IANA Considerations and 583 IETF Protocol and Documentation Usage for IEEE 802 584 Parameters", BCP 141, RFC 7042, DOI 10.17487/RFC7042, 585 October 2013, . 587 [RFC7938] Lapukhov, P., Premji, A., and J. Mitchell, Ed., "Use of 588 BGP for Routing in Large-Scale Data Centers", RFC 7938, 589 DOI 10.17487/RFC7938, August 2016, 590 . 592 [RFC8177] Lindem, A., Ed., Qu, Y., Yeung, D., Chen, I., and J. 593 Zhang, "YANG Data Model for Key Chains", RFC 8177, 594 DOI 10.17487/RFC8177, June 2017, 595 . 597 Appendix A. Acknowledgments 599 Thanks to Sujay Gupta for review and comments. 601 The RFC text was produced using Marshall Rose's xml2rfc tool. 603 Authors' Addresses 605 Acee Lindem 606 Cisco Systems 607 301 Midenhall Way 608 Cary, NC 27513 609 USA 611 Email: acee@cisco.com 613 Keyur Patel 614 Arrcus, Inc 616 Email: keyur@arrcus.com 618 Shawn Zandi 619 LinkedIn 620 222 2nd Street 621 San Francisco, CA 94105 622 USA 624 Email: szandi@linkedin.com 625 Jeff Haas 626 Juniper Networks, Inc 627 1133 Innovation, Inc. 628 Sunnyvale, CA 94089 629 USA 631 Email: jhaas@juniper.net 633 Xiaohu Xu 634 Alibaba 636 Email: xiaohu.xxh@alibaba-inc.com