idnits 2.17.1 draft-bernstein-ccamp-wson-encode-00.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- ** It looks like you're using RFC 3978 boilerplate. You should update this to the boilerplate described in the IETF Trust License Policy document (see https://trustee.ietf.org/license-info), which is required now. -- Found old boilerplate from RFC 3978, Section 5.1 on line 22. -- Found old boilerplate from RFC 3978, Section 5.5, updated by RFC 4748 on line 860. -- Found old boilerplate from RFC 3979, Section 5, paragraph 1 on line 837. -- Found old boilerplate from RFC 3979, Section 5, paragraph 2 on line 844. -- Found old boilerplate from RFC 3979, Section 5, paragraph 3 on line 850. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust Copyright Line does not match the current year -- The document seems to lack a disclaimer for pre-RFC5378 work, but may have content which was first submitted before 10 November 2008. If you have contacted all the original authors and they are all willing to grant the BCP78 rights to the IETF Trust, then this is fine, and you can ignore this comment. If not, you may need to add the pre-RFC5378 disclaimer. (See the Legal Provisions document at https://trustee.ietf.org/license-info for more information.) -- The document date (July 3, 2008) is 5769 days in the past. Is this intentional? -- Found something which looks like a code comment -- if you have code sections in the document, please surround them with '' and '' lines. Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Unused Reference: 'G.694.1' is defined on line 732, but no explicit reference was found in the text == Unused Reference: 'G.694.2' is defined on line 735, but no explicit reference was found in the text -- Possible downref: Non-RFC (?) normative reference: ref. 'G.694.1' == Outdated reference: A later version (-11) exists of draft-ietf-ccamp-gmpls-g-694-lambda-labels-01 -- Obsolete informational reference (is this intentional?): RFC 4205 (Obsoleted by RFC 5307) == Outdated reference: A later version (-01) exists of draft-ietf-ccamp-wavelength-switched-framework-00 Summary: 1 error (**), 0 flaws (~~), 5 warnings (==), 10 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 1 Network Working Group G. Bernstein 2 Internet Draft Grotto Networking 3 Intended status: Standards Track Y. Lee 4 Expires: January 2009 D. Li 5 Huawei 6 W. Imajuku 7 NTT 9 July 3, 2008 11 Routing and Wavelength Assignment Information Encoding for 12 Wavelength Switched Optical Networks 14 draft-bernstein-ccamp-wson-encode-00.txt 16 Status of this Memo 18 By submitting this Internet-Draft, each author represents that 19 any applicable patent or other IPR claims of which he or she is 20 aware have been or will be disclosed, and any of which he or she 21 becomes aware will be disclosed, in accordance with Section 6 of 22 BCP 79. 24 Internet-Drafts are working documents of the Internet Engineering 25 Task Force (IETF), its areas, and its working groups. Note that 26 other groups may also distribute working documents as Internet- 27 Drafts. 29 Internet-Drafts are draft documents valid for a maximum of six months 30 and may be updated, replaced, or obsoleted by other documents at any 31 time. It is inappropriate to use Internet-Drafts as reference 32 material or to cite them other than as "work in progress." 34 The list of current Internet-Drafts can be accessed at 35 http://www.ietf.org/ietf/1id-abstracts.txt 37 The list of Internet-Draft Shadow Directories can be accessed at 38 http://www.ietf.org/shadow.html 40 This Internet-Draft will expire on January 3, 2007. 42 Copyright Notice 44 Copyright (C) The IETF Trust (2008). 46 Abstract 48 A wavelength switched optical network (WSON) requires that certain 49 key information elements are made available to facilitate path 50 computation and the establishment of label switching paths (LSPs). 51 The information model described in "Routing and Wavelength Assignment 52 Information for Wavelength Switched Optical Networks" shows what 53 information is required at specific points in the WSON. 55 The information may be used in Generalized Multiprotocol Label 56 Switching (GMPLS) signaling protocols, and may be distributed by 57 GMSPL routing protocols. Other distribution mechanisms (for example, 58 XML-based protocols) may also be used. 60 This document provides efficient, protocol-agnostic encodings for the 61 information elements necessary to operate a WSON. It is intended that 62 protocol-specific documents will reference this memo to describe how 63 information is carried for specific uses. 65 Conventions used in this document 67 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 68 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 69 document are to be interpreted as described in RFC-2119 [RFC2119]. 71 Table of Contents 73 1. Introduction...................................................3 74 2. Terminology....................................................3 75 3. Encoding of WSON Information: Sub-TLVs.........................4 76 3.1. Link Set Sub-TLV..........................................4 77 3.2. Connectivity Matrix Sub-TLV...............................6 78 3.3. Wavelength Information Encoding...........................9 79 3.4. Wavelength Set Sub-TLV...................................10 80 3.4.1. Inclusive/Exclusive Wavelength Lists................10 81 3.4.2. Inclusive/Exclusive Wavelength Ranges...............11 82 3.4.3. Bitmap Wavelength Set...............................11 83 3.5. Port Wavelength Restriction sub-TLV......................13 84 4. Composite TLVs................................................14 85 4.1. WSON Node TLV............................................14 86 4.2. WSON Link TLV............................................14 87 4.3. WSON Dynamic Link TLV....................................15 88 4.4. WSON Dynamic Node TLV....................................15 89 5. Security Considerations.......................................16 90 6. IANA Considerations...........................................16 91 7. Acknowledgments...............................................16 92 8. References....................................................17 93 8.1. Normative References.....................................17 94 8.2. Informative References...................................17 95 9. Contributors..................................................19 96 Authors' Addresses...............................................19 97 Intellectual Property Statement..................................20 98 Disclaimer of Validity...........................................21 100 1. Introduction 102 A Wavelength Switched Optical Network (WSON) is a Wavelength Division 103 Multiplexing (WDM) optical network in which switching is performed 104 selectively based on the center wavelength of an optical signal. 106 [WSON-Frame] describes a framework for Generalized Multiprotocol 107 Label Switching (GMPLS) and Path Computation Element (PCE) control of 108 a WSON. Based on this framework, [WSON-Info] describes an information 109 model that specifies what information is needed at various points in 110 a WSON in order to compute paths and establish Label Switched Paths 111 (LSPs). 113 This document provides efficient encodings of information needed by 114 the routing and wavelength assignment (RWA) process in a WSON. Such 115 encodings can be used to extend GMPLS signaling and routing 116 protocols. In addition these encodings could be used by other 117 mechanisms to convey this same information to a path computation 118 element (PCE). Note that since these encodings are relatively 119 efficient they can provide more accurate analysis of the control 120 plane communications/processing load for WSONs looking to utilize a 121 GMPLS control plane. 123 2. Terminology 125 CWDM: Coarse Wavelength Division Multiplexing. 127 DWDM: Dense Wavelength Division Multiplexing. 129 FOADM: Fixed Optical Add/Drop Multiplexer. 131 ROADM: Reconfigurable Optical Add/Drop Multiplexer. A reduced port 132 count wavelength selective switching element featuring ingress and 133 egress line side ports as well as add/drop side ports. 135 RWA: Routing and Wavelength Assignment. 137 Wavelength Conversion. The process of converting an information 138 bearing optical signal centered at a given wavelength to one with 139 "equivalent" content centered at a different wavelength. Wavelength 140 conversion can be implemented via an optical-electronic-optical (OEO) 141 process or via a strictly optical process. 143 WDM: Wavelength Division Multiplexing. 145 Wavelength Switched Optical Network (WSON): A WDM based optical 146 network in which switching is performed selectively based on the 147 center wavelength of an optical signal. 149 3. Encoding of WSON Information: Sub-TLVs 151 A TLV encoding of the high level WSON information model [WSON-Info] 152 is given in the following sections. This encoding is designed to be 153 suitable for use in the GMPLS routing protocols OSPF [RFC4203] and 154 IS-IS [RFC4205] and in the PCE protocol PCEP [PCEP]. Note that the 155 information distributed in [RFC4203] and [RFC4205] is arranged via 156 the nesting of sub-TLVs within TLVs and this document makes use of 157 such constructs. 159 3.1. Link Set Sub-TLV 161 We will frequently need to describe properties of groups of links. To 162 do so efficiently we can make use of a link set concept similar to 163 the label set concept of [RFC3471]. All links will be denoted by 164 their local link identifier as defined an used in [RFC4202], 165 [RFC4203], and [RFC4205]. 167 The information carried in a Link Set is defined by: 169 0 1 2 3 170 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 171 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 172 | Action |Dir| Format | Reserved | 173 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 174 | Link Identifier 1 | 175 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 176 : : : 177 : : : 178 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 179 | Link Identifier N | 180 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 182 Action: 8 bits 184 0 - Inclusive List 185 Indicates that the TLV contains one or more link elements that are 186 included in the Link Set. 188 2 - Inclusive Range 190 Indicates that the TLV contains a range of links. The object/TLV 191 contains two link elements. The first element indicates the start of 192 the range. The second element indicates the end of the range. A value 193 of zero indicates that there is no bound on the corresponding portion 194 of the range. 196 Dir: Directionality of the Link Set (2 bits) 198 0 -- bidirectional 200 1 -- incoming 202 2 -- outgoing 204 In optical networks we think in terms of unidirectional as well as 205 bidirectional links. For example, wavelength restrictions or 206 connectivity may be different for an ingress port, than for its 207 "companion" egress port if one exists. Note that "interfaces" such as 208 those discussed in the Interfaces MIB [RFC2863] are assumed to be 209 bidirectional. This also applies to the links advertised in various 210 link state routing protocols. 212 Format: The format of the link identifier (6 bits) 214 0 -- Link Local Identifier 216 Others TBD. 218 Note that all link identifiers in the same list must be of the same 219 type. 221 Reserved: 16 bits 223 This field is reserved. It MUST be set to zero on transmission and 224 MUST be ignored on receipt. 226 Link Identifier: 228 The link identifier represents the port which is being described 229 either for connectivity or wavelength restrictions. This can be the 230 link local identifier of [RFC4202], GMPLS routing, [RFC4203] GMPLS 231 OSPF routing, and [RFC4205] IS-IS GMPLS routing. The use of the link 232 local identifier format can result in more compact WSON encodings 233 when the assignments are done in a reasonable fashion. 235 3.2. Connectivity Matrix Sub-TLV 237 The switch and fixed connectivity matrices of [WSON-Info] can be 238 compactly represented in terms of a minimal list of ingress and 239 egress port set pairs that have mutual connectivity. As described in 240 [Switch] such a minimal list representation leads naturally to a 241 graph representation for path computation purposes that involves the 242 fewest additional nodes and links. 244 A TLV encoding of this list of link set pairs is: 246 0 1 2 3 247 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 248 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 249 | Connectivity | Reserved | 250 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 251 | Link Set A #1 | 252 : : : 253 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 254 | Link Set B #1 : 255 : : : 256 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 257 | Additional Link set pairs as needed | 258 : to specify connectivity : 259 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 261 Where Connectivity = 0 if the device is fixed 263 1 if the device is switched(e.g., ROADM/OXC) 265 TBD: Should we just have two sub-TLVs one for fixed one for switched? 267 Example: 269 Suppose we have a typical 2-degree 40 channel ROADM. In addition to 270 its two line side ports it has 80 add and 80 drop ports. The picture 271 below illustrates how a typical 2-degree ROADM system that works with 272 bi-directional fiber pairs is a highly asymmetrical system composed 273 of two unidirectional ROADM subsystems. 275 (Tributary) Ports #3-#42 276 Ingress added to Egress dropped from 277 West Line Egress East Line Ingress 278 vvvvv ^^^^^ 279 | |||.| | |||.| 280 +-----| |||.|--------| |||.|------+ 281 | +----------------------+ | 282 | | | | 283 Egress | | Unidirectional ROADM | | Ingress 284 -----------------+ | | +-------------- 285 <=====================| |===================< 286 -----------------+ +----------------------+ +-------------- 287 | | 288 Port #1 | | Port #2 289 (West Line Side) | |(East Line Side) 290 -----------------+ +----------------------+ +-------------- 291 >=====================| |===================> 292 -----------------+ | Unidirectional ROADM | +-------------- 293 Ingress | | | | Egress 294 | | _ | | 295 | +----------------------+ | 296 +-----| |||.|--------| |||.|------+ 297 | |||.| | |||.| 298 vvvvv ^^^^^ 299 (Tributary) Ports #43-#82 300 Egress dropped from Ingress added to 301 West Line ingress East Line egress 303 Referring to the figure we see that the ingress direction of ports 304 #3-#42 (add ports) can only connect to the egress on port #1. While 305 the ingress side of port #2 (line side) can only connect to the 306 egress on ports #3-#42 (drop) and to the egress on port #1 (pass 307 through). Similarly, the ingress direction of ports #43-#82 can only 308 connect to the egress on port #2 (line). While the ingress direction 309 of port #1 can only connect to the egress on ports #43-#82 (drop) or 310 port #2 (pass through). We can now represent this potential 311 connectivity matrix as follows. This representation uses only 30 32- 312 bit words. 314 0 1 2 3 315 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 316 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 317 | Conn = 1 | Reserved |1 318 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 319 Note: adds to line 320 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 321 | Action=2 |0 1|0 0 0 0 0 0|Reserved(Note:inclusive range) |2 322 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 323 | Link Local Identifier = #3 |3 324 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 325 | Link Local Identifier = #42 |4 326 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 327 | Action=0 |1 0|0 0 0 0 0 0|Reserved (Note:inclusive list) |5 328 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 329 | Link Local Identifier = #1 |6 330 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 331 Note: line to drops 332 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 333 | Action=0 |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |7 334 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 335 | Link Local Identifier = #2 |8 336 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 337 | Action=2 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|9 338 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 339 | Link Local Identifier = #3 |10 340 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 341 | Link Local Identifier = #42 |11 342 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 343 Note: line to line 344 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 345 | Action=0 |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |12 346 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 347 | Link Local Identifier = #2 |13 348 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 349 | Action=0 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|14 350 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 351 | Link Local Identifier = #1 |15 352 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 353 Note: adds to line 354 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 355 | Action=2 |0 1|0 0 0 0 0 0|Reserved(Note:inclusive range) |16 356 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 357 | Link Local Identifier = #42 |17 358 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 359 | Link Local Identifier = #82 |18 360 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 361 | Action=0 |1 0|0 0 0 0 0 0|Reserved (Note:inclusive list) |19 362 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 363 | Link Local Identifier = #2 |20 364 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 365 Note: line to drops 366 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 367 | Action=0 |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |21 368 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 369 | Link Local Identifier = #1 |22 370 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 371 | Action=2 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|23 372 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 373 | Link Local Identifier = #43 |24 374 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 375 | Link Local Identifier = #82 |25 376 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 377 Note: line to line 378 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 379 | Action=0 |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |26 380 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 381 | Link Local Identifier = #1 |27 382 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 383 | Action=0 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|28 384 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 385 | Link Local Identifier = #2 |30 386 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 388 3.3. Wavelength Information Encoding 390 This document makes frequent use of the lambda label format defined 391 in [Otani] shown below strictly for reference purposes: 393 0 1 2 3 394 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 395 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 396 |Grid | C.S. |S| Reserved | n | 397 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 398 Where 400 Grid is used to indicate which ITU-T grid specification is being 401 used. 403 C.S. = Channel spacing used in a DWDM system, i.e., with a ITU-T 404 G.694.1 grid. 406 S = sign of the offset from the center frequency of 193.1THz for the 407 ITU-T G.694.1 grid. 409 n = Used to specify the frequency as 193.1THz +/- n*(channel spacing) 410 where the + or - is chosen based on the sign (S) bit. 412 3.4. Wavelength Set Sub-TLV 414 Wavelength sets come up frequently in WSONs to describe the range of 415 a laser transmitter, the wavelength restrictions on ROADM ports, or 416 the availability of wavelengths on a DWDM link. The general format 417 for a wavelength set is given below. This format uses the Action 418 concept from [RFC3471] with an additional Action to define a "bit 419 map" type of label set. Note that the second 32 bit field is a lambda 420 label in the previously defined format. This provides important 421 information on the WDM grid type and channel spacing that will be 422 used in the compact encodings listed. 424 0 1 2 3 425 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 426 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 427 | Action | Reserved | Num Wavelengths | 428 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 429 |Grid | C.S. |S| Reserved | n for lowest frequency | 430 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 431 | Additional fields as necessary per action | 432 | 434 Action: 436 0 - Inclusive List 438 1 - Exclusive List 440 2 - Inclusive Range 442 3 - Exclusive Range 444 4 - Bitmap Set 446 3.4.1. Inclusive/Exclusive Wavelength Lists 448 In the case of the inclusive/exclusive lists the wavelength set 449 format is given by: 451 0 1 2 3 452 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 453 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 454 |Action=0 or 1 | Reserved | Num Wavelengths | 455 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 456 |Grid | C.S. |S| Reserved | n for lowest frequency | 457 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 458 | n2 | n3 | 459 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 460 : : 461 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 462 | nm | | 463 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 464 Where Num Wavelengths tells us the number of wavelength in this 465 inclusive or exclusive list this does not include the initial 466 wavelength in the list hence if the number of wavelengths is odd then 467 zero padding of the last half word is required. 469 3.4.2. Inclusive/Exclusive Wavelength Ranges 471 In the case of inclusive/exclusive ranges the wavelength set format 472 is given by: 474 0 1 2 3 475 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 476 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 477 |Action=2 or 3 | Reserved | Num Wavelengths | 478 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 479 |Grid | C.S. |S| Reserved | n for lowest frequency | 480 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 482 In this case Num Wavelengths specifies the number of wavelengths in 483 the range starting at the given wavelength and incrementing the Num 484 Wavelengths number of channel spacing up in frequency (regardless of 485 the value of the sign bit). 487 3.4.3. Bitmap Wavelength Set 489 In the case of Action = 4, the bitmap the wavelength set format is 490 given by: 492 0 1 2 3 493 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 494 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 495 | Action = 4 | Reserved | Num Wavelengths | 496 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 497 |Grid | C.S. |S| Reserved | n for lowest frequency | 498 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 499 | Bit Map Word #1 (Lowest frequency channels) | 500 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 501 : : 502 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 503 | Bit Map Word #N (Highest frequency channels) | 504 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 506 Where Num Wavelengths in this case tells us the number of wavelengths 507 represented by the bit map. Each bit in the bit map represents a 508 particular frequency with a value of 1/0 indicating whether the 509 frequency is in the set or not. Bit position zero represents the 510 lowest frequency, while each succeeding bit position represents the 511 next frequency a channel spacing (C.S.) above the previous. 513 The size of the bit map is clearly Num Wavelengths bits, but the bit 514 map is made up to a full multiple of 32 bits so that the TLV is a 515 multiple of four bytes. Bits that do not represent wavelengths (i.e., 516 those in positions (Num Wavelengths - 1) and beyond) SHOULD be set to 517 zero and MUST be ignored. 519 Example: 521 A 40 channel C-Band DWDM system with 100GHz spacing with lowest 522 frequency 192.0THz (1561.4nm) and highest frequency 195.9THz 523 (1530.3nm). These frequencies correspond to n = -11, and n = 28 524 respectively. Now suppose the following channels are available: 526 Frequency (THz) n Value bit map position 527 -------------------------------------------------- 528 192.0 -11 0 529 192.5 -6 5 530 193.1 0 11 531 193.9 8 19 532 194.0 9 20 533 195.2 21 32 534 195.8 27 38 536 With the Grid value set to indicate an ITU-T G.694.1 DWDM grid, C.S. 537 set to indicate 100GHz, and with S (sign) set to indicate negative 538 this lambda bit map set would then be encoded as follows: 540 0 1 2 3 541 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 542 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 543 | Action = 4 | Reserved | Num Wavelengths = 40 | 544 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 545 |Grid | C.S. |S| Reserved | n for lowest frequency = -11 | 546 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 547 |1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0| 548 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 549 |1 0 0 0 0 0 1 0| Not used in 40 Channel system (all zeros) | 550 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 552 3.5. Port Wavelength Restriction sub-TLV 554 The port wavelength restriction of [WSON-Info] can be encoded as a 555 sub-TLV as follows. 557 0 1 2 3 558 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 559 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 560 |RestrictionKind|T| Reserved | MaxNumChannels | 561 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 562 --Wavelength Set-- 563 | Action | Reserved | Num Wavelengths | 564 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 565 |Grid | C.S. |S| Reserved | n for lowest frequency | 566 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 567 | Additional fields as necessary per action | 568 | | 570 RestrictionKind can take the following values and meanings: 572 0: Simple wavelength selective restriction. Max number of channels 573 indicates the number of wavelengths permitted on the port and the 574 accompanying wavelength set indicates the permitted values. 576 1: Waveband device with a tunable center frequency and passband. In 577 this case the maximum number of channels indicates the maximum width 578 of the waveband in terms of the channels spacing given in the 579 wavelength set. The corresponding wavelength set is used to indicate 580 the overall tuning range. Specific center frequency tuning 581 information can be obtained from dynamic channel in use information. 583 It is assumed that both center frequency and bandwidth (Q) tuning can 584 be done without causing faults in existing signals. 586 Values for T include: 588 0 == Use with a fixed connectivity matrix 590 1 == Use with a switched connectivity matrix 592 TBD: Should we just have two flavors of sub-TLV then? 594 4. Composite TLVs 596 The Four composite TLVs in the following sections are based on the 597 four high level information bundles of [WSON-Info]. 599 4.1. WSON Node TLV 601 The WSON Node TLV consists of the following ordered list of sub-TLVs: 603 1. Node ID (This will be derived from standard IETF node 604 identifiers) 606 2. Switch Connectivity Matrix - (optional) This is a connectivity 607 matrix sub-TLV with the connectivity type set to "switched" 608 (conn = 1) 610 3. Fixed Connectivity Matrix - (optional) This is a connectivity 611 matrix sub-TLV with the connectivity type set to "fixed" (conn = 612 0). 614 4. Shared Risk Node Group - (optional) Format TBD. 616 5. Wavelength Converter Pool - (optional) Format TBD. 618 4.2. WSON Link TLV 620 Note that a number of sub-TLVs for links have already been defined 621 and it is for further study if we can or should reuse any of those 622 sub-TLVs in our encoding. Note that for a system already employing 623 GMPLS based routing the existing encodings and transport mechanisms 624 should be used and the information does not need to appear twice. The 625 WSON Link TLV consists of the following ordered list of sub-TLVs: 627 1. Link Identifier - Need to double check on this with RFC4203 628 (required). 630 2. Administrative Group - (optional) Standard sub-TLV type 9, 631 RFC3630. 633 3. Interface Switching Capability Descriptor - Standard sub-TLV 634 type 15, RFC4203. 636 4. Protection - (optional) Standard sub-TLV type 15, RFC4203. 638 5. Shared Risk Link Group - (optional) Standard sub-TLV 16, 639 RFC4203. 641 6. Traffic Engineering Metric - (optional) Standard sub-TLV type 5, 642 RFC3630. 644 7. Maximum Bandwidth per Channel - TBD. 646 8. Switched Port Wavelength Restriction - (optional) The port 647 wavelength restriction sub-TLV with T = 1. 649 9. Fixed Port Wavelength Restriction - (optional) The port 650 wavelength restriction sub-TLV with T = 0. 652 4.3. WSON Dynamic Link TLV 654 The WSON dynamic link TLV consists of the following ordered list of 655 sub-TLVs. 657 1. Link Identifier - Need to double check on this with RFC4203. 659 2. Available Wavelengths - A wavelength set sub-TLV used to 660 indicate which wavelengths are available on this link. 662 3. Shared Backup Wavelengths - (optional) A wavelength set sub-TLV 663 used to indicate which wavelengths on this link are currently 664 used for shared backup protection (and hence can possibly be 665 reused). 667 4.4. WSON Dynamic Node TLV 669 The WSON dynamic node TLV consists of the following ordered list of 670 sub-TLVs. 672 1. Node ID - Format TBD. 674 2. Wavelength Converter Pool Status - (optional) Format TBD. 676 Note that currently the only dynamic information modeled with a node 677 is associated with the status of the wavelength converter pool. 679 5. Security Considerations 681 This document defines protocol-independent encodings for WSON 682 information and does not introduce any security issues. 684 However, other documents that make use of these encodings within 685 protocol extensions need to consider the issues and risks associated 686 with, inspection, interception, modification, or spoofing of any of 687 this information. It is expected that any such documents will 688 describe the necessary security measures to provide adequate 689 protection. 691 6. IANA Considerations 693 TBD. Once our approach is finalized we may need identifiers for the 694 various TLVs and sub-TLVs. 696 7. Acknowledgments 698 This document was prepared using 2-Word-v2.0.template.dot. 700 8. References 702 8.1. Normative References 704 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 705 Requirement Levels", BCP 14, RFC 2119, March 1997. 707 [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group 708 MIB", RFC 2863, June 2000. 710 [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching 711 (GMPLS) Signaling Functional Description", RFC 3471, 712 January 2003. 714 [G.694.1] ITU-T Recommendation G.694.1, "Spectral grids for WDM 715 applications: DWDM frequency grid", June, 2002. 717 [RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing Extensions 718 in Support of Generalized Multi-Protocol Label Switching 719 (GMPLS)", RFC 4202, October 2005 721 [RFC4203] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions in 722 Support of Generalized Multi-Protocol Label Switching 723 (GMPLS)", RFC 4203, October 2005. 725 [Otani] T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized 726 Labels for G.694 Lambda-Switching Capable Label Switching 727 Routers", work in progress: draft-ietf-ccamp-gmpls-g-694- 728 lambda-labels-01.txt, May 2008. 730 8.2. Informative References 732 [G.694.1] ITU-T Recommendation G.694.1, Spectral grids for WDM 733 applications: DWDM frequency grid, June 2002. 735 [G.694.2] ITU-T Recommendation G.694.2, Spectral grids for WDM 736 applications: CWDM wavelength grid, December 2003. 738 [RFC4205] Kompella, K., Ed., and Y. Rekhter, Ed., "Intermediate 739 System to Intermediate System (IS-IS) Extensions in Support 740 of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 741 4205, October 2005. 743 [Switch] G. Bernstein, Y. Lee, A. Gavler, J. Martensson, " Modeling 744 WDM Wavelength Switching Systems for use in Automated Path 745 Computation", http://www.grotto- 746 networking.com/wson/ModelingWSONswitchesV2a.pdf , June, 2008 748 [WSON-Frame] G. Bernstein, Y. Lee, W. Imajuku, "Framework for GMPLS 749 and PCE Control of Wavelength Switched Optical Networks", 750 work in progress: draft-ietf-ccamp-wavelength-switched- 751 framework-00.txt, May 2008. 753 [WSON-Info] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and 754 Wavelength Assignment Information Model for Wavelength 755 Switched Optical Networks", work in progress: draft- 756 bernstein-ccamp-wson-info-03.txt, July 2008. 758 [PCEP] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation 759 Element (PCE) communication Protocol (PCEP) - Version 1", 760 draft-ietf-pce-pcep, work in progress. 762 9. Contributors 764 Diego Caviglia 765 Ericsson 766 Via A. Negrone 1/A 16153 767 Genoa Italy 769 Phone: +39 010 600 3736 770 Email: diego.caviglia@(marconi.com, ericsson.com) 772 Anders Gavler 773 Acreo AB 774 Electrum 236 775 SE - 164 40 Kista Sweden 777 Email: Anders.Gavler@acreo.se 779 Jonas Martensson 780 Acreo AB 781 Electrum 236 782 SE - 164 40 Kista, Sweden 784 Email: Jonas.Martensson@acreo.se 786 Itaru Nishioka 787 NEC Corp. 788 1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666 789 Japan 791 Phone: +81 44 396 3287 792 Email: i-nishioka@cb.jp.nec.com 794 Authors' Addresses 796 Greg Bernstein (ed.) 797 Grotto Networking 798 Fremont, CA, USA 800 Phone: (510) 573-2237 801 Email: gregb@grotto-networking.com 802 Young Lee (ed.) 803 Huawei Technologies 804 1700 Alma Drive, Suite 100 805 Plano, TX 75075 806 USA 808 Phone: (972) 509-5599 (x2240) 809 Email: ylee@huawei.com 811 Dan Li 812 Huawei Technologies Co., Ltd. 813 F3-5-B R&D Center, Huawei Base, 814 Bantian, Longgang District 815 Shenzhen 518129 P.R.China 817 Phone: +86-755-28973237 818 Email: danli@huawei.com 820 Wataru Imajuku 821 NTT Network Innovation Labs 822 1-1 Hikari-no-oka, Yokosuka, Kanagawa 823 Japan 825 Phone: +81-(46) 859-4315 826 Email: imajuku.wataru@lab.ntt.co.jp 828 Intellectual Property Statement 830 The IETF takes no position regarding the validity or scope of any 831 Intellectual Property Rights or other rights that might be claimed to 832 pertain to the implementation or use of the technology described in 833 this document or the extent to which any license under such rights 834 might or might not be available; nor does it represent that it has 835 made any independent effort to identify any such rights. Information 836 on the procedures with respect to rights in RFC documents can be 837 found in BCP 78 and BCP 79. 839 Copies of IPR disclosures made to the IETF Secretariat and any 840 assurances of licenses to be made available, or the result of an 841 attempt made to obtain a general license or permission for the use of 842 such proprietary rights by implementers or users of this 843 specification can be obtained from the IETF on-line IPR repository at 844 http://www.ietf.org/ipr. 846 The IETF invites any interested party to bring to its attention any 847 copyrights, patents or patent applications, or other proprietary 848 rights that may cover technology that may be required to implement 849 this standard. Please address the information to the IETF at 850 ietf-ipr@ietf.org. 852 Disclaimer of Validity 854 This document and the information contained herein are provided on an 855 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS 856 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND 857 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS 858 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF 859 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED 860 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 862 Copyright Statement 864 Copyright (C) The IETF Trust (2008). 866 This document is subject to the rights, licenses and restrictions 867 contained in BCP 78, and except as set forth therein, the authors 868 retain all their rights. 870 Acknowledgment 872 Funding for the RFC Editor function is currently provided by the 873 Internet Society.