idnits 2.17.1 draft-bernstein-ccamp-wson-info-00.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- ** It looks like you're using RFC 3978 boilerplate. You should update this to the boilerplate described in the IETF Trust License Policy document (see https://trustee.ietf.org/license-info), which is required now. -- Found old boilerplate from RFC 3978, Section 5.1 on line 19. -- Found old boilerplate from RFC 3978, Section 5.5, updated by RFC 4748 on line 709. -- Found old boilerplate from RFC 3979, Section 5, paragraph 1 on line 686. -- Found old boilerplate from RFC 3979, Section 5, paragraph 2 on line 693. -- Found old boilerplate from RFC 3979, Section 5, paragraph 3 on line 699. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- The document has an RFC 3978 Section 5.2(a) Derivative Works Limitation clause. == The copyright year in the IETF Trust Copyright Line does not match the current year -- The document seems to lack a disclaimer for pre-RFC5378 work, but may have content which was first submitted before 10 November 2008. If you have contacted all the original authors and they are all willing to grant the BCP78 rights to the IETF Trust, then this is fine, and you can ignore this comment. If not, you may need to add the pre-RFC5378 disclaimer. (See the Legal Provisions document at https://trustee.ietf.org/license-info for more information.) -- The document date (October 30, 2007) is 6013 days in the past. Is this intentional? -- Found something which looks like a code comment -- if you have code sections in the document, please surround them with '' and '' lines. Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Unused Reference: 'G.694.1' is defined on line 632, but no explicit reference was found in the text == Unused Reference: 'G.694.2' is defined on line 635, but no explicit reference was found in the text -- Possible downref: Non-RFC (?) normative reference: ref. 'G.694.1' == Outdated reference: A later version (-02) exists of draft-otani-ccamp-gmpls-lambda-labels-00 -- Obsolete informational reference (is this intentional?): RFC 4205 (Obsoleted by RFC 5307) == Outdated reference: A later version (-03) exists of draft-bernstein-ccamp-wavelength-switched-01 Summary: 1 error (**), 0 flaws (~~), 5 warnings (==), 10 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 1 Network Working Group Greg Bernstein 2 Internet Draft Grotto Networking 3 Intended status: Standards Track Young Lee 4 Expires: April 2008 Dan Li 5 Huawei 7 October 30, 2007 9 Routing and Wavelength Assignment Information for Wavelength 10 Switched Optical Networks 11 draft-bernstein-ccamp-wson-info-00.txt 13 Status of this Memo 15 By submitting this Internet-Draft, each author represents that 16 any applicable patent or other IPR claims of which he or she is 17 aware have been or will be disclosed, and any of which he or she 18 becomes aware will be disclosed, in accordance with Section 6 of 19 BCP 79. 21 This document may not be modified, and derivative works of it may not 22 be created, except to publish it as an RFC and to translate it into 23 languages other than English. 25 Internet-Drafts are working documents of the Internet Engineering 26 Task Force (IETF), its areas, and its working groups. Note that 27 other groups may also distribute working documents as Internet- 28 Drafts. 30 Internet-Drafts are draft documents valid for a maximum of six months 31 and may be updated, replaced, or obsoleted by other documents at any 32 time. It is inappropriate to use Internet-Drafts as reference 33 material or to cite them other than as "work in progress." 35 The list of current Internet-Drafts can be accessed at 36 http://www.ietf.org/ietf/1id-abstracts.txt 38 The list of Internet-Draft Shadow Directories can be accessed at 39 http://www.ietf.org/shadow.html 41 This Internet-Draft will expire on April 30, 2007. 43 Copyright Notice 44 Copyright (C) The IETF Trust (2007). 46 Abstract 48 This memo provides compact encodings for information needed for path 49 computation and wavelength assignment in wavelength switched optical 50 networks. Such encodings can be used in extensions to Generalized 51 Multi-Protocol Label Switching (GMPLS) routing for control of 52 wavelength switched optical networks (WSON). 54 Conventions used in this document 56 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 57 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 58 document are to be interpreted as described in RFC-2119 [RFC2119]. 60 Table of Contents 62 1. Introduction...................................................3 63 2. Terminology....................................................3 64 3. Generic Information............................................3 65 3.1. Wavelength Information Encoding...........................3 66 3.2. Link Sets.................................................4 67 3.3. Wavelength Sets...........................................6 68 3.3.1. Inclusive/Exclusive Wavelength Lists.................7 69 3.3.2. Inclusive/Exclusive Wavelength Ranges................7 70 3.3.3. Bitmap Wavelength Set................................8 71 4. WSON Information for Routing and Wavelength Assignment.........9 72 4.1. Connectivity Matrix......................................10 73 4.2. Port Wavelength Restrictions.............................11 74 4.3. WDM Link Characterization................................13 75 4.4. Laser Transmitter Range..................................13 76 4.5. Wavelength Converter Characterization....................13 77 4.6. Wavelength Availability..................................13 78 5. Security Considerations.......................................14 79 6. IANA Considerations...........................................14 80 7. Acknowledgments...............................................14 81 8. References....................................................15 82 8.1. Normative References.....................................15 83 8.2. Informative References...................................15 84 9. Contributors..................................................16 85 Author's Addresses...............................................16 86 Intellectual Property Statement..................................16 87 Disclaimer of Validity...........................................17 88 1. Introduction 90 This document provides efficient encodings of information needed by 91 the routing and wavelength assignment (RWA) process in wavelength 92 switched optical networks (WSONs). Such encodings can be applied to 93 GMPLS IGP extensions to accommodate this WSON/RWA information. In 94 addition these encodings could be used by other mechanisms to convey 95 this same information to a path computation element (PCE). Note since 96 these encodings are relatively efficient they can provide more 97 accurate analysis of the control plane communications/processing load 98 for WSONs looking to utilize a GMPLS control plane. 100 2. Terminology 102 CWDM: Coarse Wavelength Division Multiplexing. 104 DWDM: Dense Wavelength Division Multiplexing. 106 FOADM: Fixed Optical Add/Drop Multiplexer. 108 ROADM: Reconfigurable Optical Add/Drop Multiplexer. A reduced port 109 count wavelength selective switching element featuring ingress and 110 egress line side ports as well as add/drop side ports. 112 RWA: Routing and Wavelength Assignment. 114 Wavelength Conversion/Converters: The process of converting an 115 information bearing optical signal centered at a given wavelength to 116 one with "equivalent" content centered at a different wavelength. 117 Wavelength conversion can be implemented via an optical-electronic- 118 optical (OEO) process or via a strictly optical process. 120 WDM: Wavelength Division Multiplexing. 122 Wavelength Switched Optical Networks (WSON): WDM based optical 123 networks in which switching is performed selectively based on the 124 center wavelength of an optical signal. 126 3. Generic Information 128 The following encodings have multiple uses in specifying WSON 129 information. 131 3.1. Wavelength Information Encoding 133 This document makes frequent use of the lambda label format defined 134 in [Otani] shown below: 136 0 1 2 3 137 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 138 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 139 |Grid | C.S. |S| Reserved | n | 140 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 141 Where 143 Grid is used to indicate which ITU-T grid specification is being 144 used. 146 C.S. = Channel spacing used in a DWDM system, i.e., with a ITU-T 147 G.694.1 grid. 149 S = sign of the offset from the center frequency of 193.1THz for the 150 ITU-T 6.694.1 grid. 152 n = Used to specify the frequency as 193.1THz +/- n*(channel spacing) 153 where the + or - is chosen based on the sign (S) bit. 155 3.2. Link Sets 157 We will frequently want to describe properties of links. To do so 158 efficiently we can make use of a link set concept similar to the 159 label set concept of [RFC3471]. All links will be denoted by their 160 local link identifier as defined an used in[RFC4202, RFC4203, 161 RFC4205]. 163 The information carried in a Link Set is defined by: 165 0 1 2 3 166 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 167 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 168 | Action |Dir| Format | Reserved | 169 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 170 | Link Identifier 1 | 171 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 172 : : : 173 : : : 174 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 175 | Link Identifier N | 176 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 178 Action: 8 bits 180 0 - Inclusive List 181 Indicates that the object/TLV contains one or more link elements 182 that are included in the Link Set. 184 1 - Exclusive List 186 Indicates that the object/TLV contains one or more link elements that 187 are excluded from the Link Set. 189 2 - Inclusive Range 191 Indicates that the object/TLV contains a range of links. The 192 object/TLV contains two link elements. The first element indicates 193 the start of the range. The second element indicates the end of the 194 range. A value of zero indicates that there is no bound on the 195 corresponding portion of the range. 197 3 - Exclusive Range 199 Indicates that the object/TLV contains a range of links that are 200 excluded from the Link Set. The object/TLV contains two link 201 elements. The first element indicates the start of the range. The 202 second element indicates the end of the range. A value of zero 203 indicates that there is no bound on the corresponding portion of the 204 range. 206 Dir: Directionality of the Link Set (2 bits) 208 0 -- bidirectional 210 1 -- ingress 212 2 -- egress 214 In optical networks we think in terms of unidirectional as well as 215 bidirectional links. For example wavelength restrictions or 216 connectivity may be much different for an ingress port, than for its 217 "companion" egress port if it has one. Note that "interfaces" such as 218 discussed in the Interfaces MIB are assumed bidirectional, as well as 219 the links of various link state IGPs. 221 Format: The format of the link identifier (6 bits) 223 0 -- Link Local Identifier 225 Others TBD. 227 Reserved: 16 bits 228 This field is reserved. It MUST be set to zero on transmission and 229 MUST be ignored on receipt. 231 Link Identifier: 233 The link identifier represents the port which is being described 234 either for connectivity or wavelength restrictions. This can be the 235 link local identifier of [RFC4202], GMPLS routing, [RFC4203] GMPLS 236 OSPF routing, and [RFC4205] IS-IS GMPLS routing. The use of the link 237 local identifier format can result in more compact WSON encodings 238 when the assignments are done in a reasonable fashion. 240 3.3. Wavelength Sets 242 Wavelength sets come up frequently in WSONs to describe the range of 243 a laser transmitter, the wavelength restrictions on ROADM ports, or 244 the availability of wavelengths on a DWDM link. The general format 245 for a wavelength set is given below. This format uses the Action 246 concept from [RFC3471] with an additional Action to define a "bit 247 map" type of label set. Note that the second 32 bit field is a lambda 248 label in the previously defined format. This provides important 249 information on the WDM grid type and channel spacing that will be 250 used in the compact encodings listed. 252 0 1 2 3 253 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 254 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 255 | Action | Reserved | Num Wavelengths | 256 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 257 |Grid | C.S. |S| Reserved | n for lowest frequency | 258 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 259 | Additional fields as necessary per action | 260 | 262 Action: 264 0 - Inclusive List 266 1 - Exclusive List 268 2 - Inclusive Range 270 3 - Exclusive Range 271 4 - Bitmap Set 273 Note that the "Application" field will be used initially in the 274 specification of ROADM/OXC wavelength restrictions, but may be used 275 in other contexts as well. 277 3.3.1. Inclusive/Exclusive Wavelength Lists 279 In the case of the inclusive/exclusive lists the wavelength set 280 format is given by: 282 0 1 2 3 283 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 284 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 285 |Action=0 or 1 | Reserved | Num Wavelengths | 286 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 287 |Grid | C.S. |S| Reserved | n for lowest frequency | 288 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 289 | n2 | n3 | 290 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 291 | ... | 292 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 293 | nm | | 294 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 295 Where Num Wavelengths tells us the number of wavelength in this 296 inclusive or exclusive list this does not include the initial 297 wavelength in the list hence if the number of wavelengths is odd then 298 zero padding of the last half word is required. 300 3.3.2. Inclusive/Exclusive Wavelength Ranges 302 In the case of inclusive/exclusive ranges the wavelength set format 303 is given by: 305 0 1 2 3 306 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 307 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 308 |Action=2 or 3 | Reserved | Num Wavelengths | 309 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 310 |Grid | C.S. |S| Reserved | n for lowest frequency | 311 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 313 In this case Num Wavelengths specifies the number of wavelengths in 314 the range starting at the given wavelength and incrementing the Num 315 Wavelengths number of channel spacing up in frequency (regardless of 316 the value of the sign bit). 318 3.3.3. Bitmap Wavelength Set 320 In the case of Action = the bitmap the wavelength set format is given 321 by: 323 0 1 2 3 324 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 325 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 326 | Action = 4 | Reserved | Num Wavelengths | 327 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 328 |Grid | C.S. |S| Reserved | n for lowest frequency | 329 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 330 | Bit Map Word #1 (Lowest frequency channels) | 331 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 332 | ... | 333 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 334 | Bit Map Word #N (Highest frequency channels) | 335 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 337 Where Num Wavelengths in this case tells us the number of wavelengths 338 represented by the bit map which is required to be ceiling[(Num 339 Wavelengths)/32]. Each bit in the bit map represents a particular 340 frequency with a value of 1/0 indicating whether the frequency is in 341 the set or not. Bit position zero represents the lowest frequency, 342 while each succeeding bit position represents the next frequency a 343 channel spacing (C.S.) above the previous. 345 Example: 347 A 40 channel C-Band DWDM system with 100GHz spacing with lowest 348 frequency 192.0THz (1561.4nm) and highest frequency 195.9THz 349 (1530.3nm). These frequencies correspond to n = -11, and n = 28 350 respectively. Now suppose the following channels are available: 352 Frequency(THz) n Value bit map position 353 -------------------------------------------------- 354 192.0 -11 0 355 192.5 -6 5 356 193.1 0 11 357 193.9 8 19 358 194.0 9 20 359 195.2 21 32 360 195.8 27 38 361 With the Grid value set to indicate an ITU-T G.694.1 DWDM grid, C.S. 362 set to indicate 100GHz, and with S (sign) set to indicate negative 363 this lambda bit map set would then be encoded as follows: 365 0 1 2 3 366 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 367 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 368 | Action = 4 | Reserved | Num Wavelengths = 40 | 369 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 370 |Grid | C.S. |S| Reserved | n for lowest frequency = -11 | 371 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 372 |1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0| 373 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 374 |1 0 0 0 0 0 1 0| Not used in 40 Channel system (all zeros) | 375 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 377 4. WSON Information for Routing and Wavelength Assignment 379 From [WSON-Frame] the following WSON information needs to be conveyed 380 via GMPLS routing or some other mechanism. 382 Information Static/Dynamic Node/Link 383 ------------------------------------------------------------------ 384 Connectivity matrix Static Node 385 Per port wavelength restrictions Static Node(1) 386 WDM link (fiber) lambda ranges Static(4) Link 387 WDM link channel spacing Static(4) Link 388 Laser Transmitter range Static(4) Link(2) 389 Wavelength conversion capabilities Static(3),(4) Node 390 Wavelength Availability Dynamic(4) Link 392 Notes: 394 1. These are the per port wavelength restrictions of an optical 395 device such as a ROADM and are independent of any optical 396 constraints imposed by a fiber link. 398 2. This could also be viewed as a node capability. 400 3. This could be dynamic in the case of a limited pool of converters 401 where the number available can change with connection 402 establishment. Note we may want to include regeneration 403 capabilities here since OEO converters are also regenerators. 405 4. Not necessarily needed in the case of distributed wavelength 406 assignment via signaling. 408 See [WSON-Frame] for more details on these types of WSON information 409 and their use. 411 4.1. Connectivity Matrix 413 The potential connectivity matrix for asymmetric switches (e.g. 414 ROADMs and such) and the connectivity matrix for asymmetric fixed 415 devices can be represented by a matrix A where Amn = 0 or 1, 416 depending upon whether a wavelength on ingress port m can be 417 connected to egress port n. 419 This can be compactly represented link sets as follows: 421 0 1 2 3 422 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 423 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 424 |Connectivity | Reserved | 425 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 426 | Ingress Link Set #1 | 427 : : : 428 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 429 | Egress Link Set #1 430 : : : 431 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 432 | Additional Link set pairs as needed | 433 : to specify connectivity : 434 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 436 Where Connectivity = 0 if the device is fixed 438 1 if the device is reconfigurable (ROADM/OXC) 440 Example: 442 Suppose we have a 2-degree 40 channel ROADM. In addition to its line 443 side ingress and egress ports it has 40 add and 40 drop ports. Assume 444 that the line side ingress port is given the link local identifier 445 #1, the 40 add ports are given the link local identifiers #2-#41, the 446 egress line side port is given the link local identifier #42, and the 447 40 drop ports are given the link local identifiers #43-#82. Then to 448 express the connectivity of this ROADM, i.e., that the line side 449 ingress can connect to any drop port or the line side egress, and 450 that the add ports can only connect to the line side egress (but not 451 the drop ports) we have: 453 0 1 2 3 454 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 455 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 456 | Conn = 1 | Reserved | 457 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 458 Note: Ingress Link Set A 459 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 460 | Action=2 |0 1|0 0 0 0 0 0|Reserved(Note:inclusive range) | 461 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 462 | Link Local Identifier = #1 | 463 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 464 | Link Local Identifier = #41 | 465 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 466 Note: Egress Link Set A 467 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 468 | Action=0 |1 0|0 0 0 0 0 0|Reserved (Note:inclusive list) | 469 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 470 | Link Local Identifier = #42 | 471 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 472 Note: Ingress Link Set B line side ingress 473 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 474 | Action=0 |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) | 475 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 476 | Link Local Identifier = #1 | 477 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 478 Note: Egress Link Set #B drop ports 479 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 480 | Action=2 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)| 481 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 482 | Link Local Identifier = #43 | 483 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 484 | Link Local Identifier = #82 | 485 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 487 For a total of eleven 32 bit words. 489 4.2. Port Wavelength Restrictions 491 An optical switching device can have the following wavelength 492 restrictions: 494 o Multiple wavelengths, full range port 495 o Single wavelength, full range port 497 o Single wavelength, fixed lambda port 499 o Multiple wavelengths, reduced range port (like wave band 500 switching) 502 This can be encoded as a doublet of link set and wavelength set 503 information: 505 0 1 2 3 506 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 507 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 508 |M| Mapping | Multiplier | Reserved | 509 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 510 | Link Set | 511 | .. | 512 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 513 | Wavelength Set | 514 | .. | 515 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 517 Where the "M" bit indicates whether the set of ports are single 518 wavelength M = 0, or multi-wavelength, M = 1, ports. 520 The "Mapping" tells us how the wavelengths in the wavelength set get 521 assigned to the links in the link set. 523 Mapping = 0: One to Many 525 Each link in the link set can take any of the values in the 526 wavelength set. This is applicable to both single channel and multi- 527 channel ports. 529 Mapping = 1: One to One 531 Links are assigned a single wavelength with respect to the order of 532 links and wavelengths in their respective sets. This is applicable 533 only to single channel ports (M=0). 535 Mapping = 2: One to One via ranges and increments 537 For single channel ports (M=0) where the wavelength is specified via 538 a range then the frequency assigned to a port is given by 540 Freq = freq_low + k*(Multiplier + 1)*(C.S.) 541 Where k is the ordinal of the link in the link set starting from 542 zero, C.S. the channel spacing, and freq_low is the lowest frequency 543 in the wavelength range. Such a formulation gives a compact way to 544 represent ROADMs with colored drop ports with a regular frequency 545 plan. 547 Note that the link set has an indication of whether these constraints 548 apply to ingress, egress or bidirectionally to the ports. 550 4.3. WDM Link Characterization 552 This has the same form as the port wavelength restrictions of a 553 device, hence can be encoded in the same way as was done in section 554 4.2. 556 4.4. Laser Transmitter Range 558 The tuning range of a laser transmitter can be represented via the 559 wavelength set mechanism of section 3.3. 561 4.5. Wavelength Converter Characterization 563 An OEO based wavelength converter can be characterized by an input 564 wavelength set and an output wavelength set. In addition we'd want 565 to know constraints on the signal formats and rates accommodated by 566 the converter. 568 Hence we'd have something like: 570 := , , , 573 4.6. Wavelength Availability 575 The availability of a specific wavelength on a WDM link is key 576 dynamic information that is required by the RWA process. This 577 information needs to be accurate; luckily it can also be represented 578 quite compactly via the wavelength set encodings of section 3.3. 580 For example a 120 channel system, utilizing the bit map wavelength 581 set encoding would only require four bit map words in addition to the 582 two general words in the encoding to fully characterize wavelength 583 availability. Note that a subset of the total system range could be 584 sent representing only those lambdas whose availabilities have 585 changed resulting in very efficient use of control plane bandwidth. 587 5. Security Considerations 589 This document has no requirement for a change to the security models 590 within GMPLS and associated protocols. That is the OSPF-TE, RSVP-TE, 591 and PCEP security models could be operated unchanged. 593 6. IANA Considerations 595 TBD. Once finalized in our approach we will need identifiers for such 596 things and modulation types, modulation parameters, wavelength 597 assignment methods, etc... 599 7. Acknowledgments 601 This document was prepared using 2-Word-v2.0.template.dot. 603 8. References 605 8.1. Normative References 607 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 608 Requirement Levels", BCP 14, RFC 2119, March 1997. 610 [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching 611 (GMPLS) Signaling Functional Description", RFC 3471, 612 January 2003. 614 [G.694.1] ITU-T Recommendation G.694.1, "Spectral grids for WDM 615 applications: DWDM frequency grid", June, 2002. 617 [RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing Extensions 618 in Support of Generalized Multi-Protocol Label Switching 619 (GMPLS)", RFC 4202, October 2005 621 [RFC4203] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions in 622 Support of Generalized Multi-Protocol Label Switching 623 (GMPLS)", RFC 4203, October 2005. 625 8.2. Informative References 627 [Otani] T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized 628 Labels of Lambda-Switching Capable Label Switching Routers 629 (LSR)", work in progress: draft-otani-ccamp-gmpls-lambda- 630 labels-00.txt, June 2007. 632 [G.694.1] ITU-T Recommendation G.694.1, Spectral grids for WDM 633 applications: DWDM frequency grid, June 2002. 635 [G.694.2] ITU-T Recommendation G.694.2, Spectral grids for WDM 636 applications: CWDM wavelength grid, December 2003. 638 [RFC4205] Kompella, K., Ed., and Y. Rekhter, Ed., "Intermediate 639 System to Intermediate System (IS-IS) Extensions in Support 640 of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 641 4205, October 2005. 643 [WSON-Frame] G. Bernstein, Y. Lee, W. Imajuku, "Framework for GMPLS 644 and PCE Control of Wavelength Switched Optical Networks", 645 work in progress: draft-bernstein-ccamp-wavelength- 646 switched-01.txt, September 2007. 648 9. Contributors 650 Author's Addresses 652 Greg Bernstein (ed.) 653 Grotto Networking 654 Fremont, CA, USA 656 Phone: (510) 573-2237 657 Email: gregb@grotto-networking.com 659 Young Lee (ed.) 660 Huawei Technologies 661 1700 Alma Drive, Suite 100 662 Plano, TX 75075 663 USA 665 Phone: (972) 509-5599 (x2240) 666 Email: ylee@huawei.com 668 Dan Li 669 Huawei Technologies Co., Ltd. 670 F3-5-B R&D Center, Huawei Base, 671 Bantian, Longgang District 672 Shenzhen 518129 P.R.China 674 Phone: +86-755-28973237 675 Email: danli@huawei.com 677 Intellectual Property Statement 679 The IETF takes no position regarding the validity or scope of any 680 Intellectual Property Rights or other rights that might be claimed to 681 pertain to the implementation or use of the technology described in 682 this document or the extent to which any license under such rights 683 might or might not be available; nor does it represent that it has 684 made any independent effort to identify any such rights. Information 685 on the procedures with respect to rights in RFC documents can be 686 found in BCP 78 and BCP 79. 688 Copies of IPR disclosures made to the IETF Secretariat and any 689 assurances of licenses to be made available, or the result of an 690 attempt made to obtain a general license or permission for the use of 691 such proprietary rights by implementers or users of this 692 specification can be obtained from the IETF on-line IPR repository at 693 http://www.ietf.org/ipr. 695 The IETF invites any interested party to bring to its attention any 696 copyrights, patents or patent applications, or other proprietary 697 rights that may cover technology that may be required to implement 698 this standard. Please address the information to the IETF at 699 ietf-ipr@ietf.org. 701 Disclaimer of Validity 703 This document and the information contained herein are provided on an 704 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS 705 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND 706 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS 707 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF 708 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED 709 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 711 Copyright Statement 713 Copyright (C) The IETF Trust (2007). 715 This document is subject to the rights, licenses and restrictions 716 contained in BCP 78, and except as set forth therein, the authors 717 retain all their rights. 719 Acknowledgment 721 Funding for the RFC Editor function is currently provided by the 722 Internet Society.