idnits 2.17.1 draft-bernstein-ccamp-wson-info-01.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- ** It looks like you're using RFC 3978 boilerplate. You should update this to the boilerplate described in the IETF Trust License Policy document (see https://trustee.ietf.org/license-info), which is required now. -- Found old boilerplate from RFC 3978, Section 5.1 on line 21. -- Found old boilerplate from RFC 3978, Section 5.5, updated by RFC 4748 on line 806. -- Found old boilerplate from RFC 3979, Section 5, paragraph 1 on line 783. -- Found old boilerplate from RFC 3979, Section 5, paragraph 2 on line 790. -- Found old boilerplate from RFC 3979, Section 5, paragraph 3 on line 796. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- The document has an RFC 3978 Section 5.2(a) Derivative Works Limitation clause. == The copyright year in the IETF Trust Copyright Line does not match the current year -- The document seems to lack a disclaimer for pre-RFC5378 work, but may have content which was first submitted before 10 November 2008. If you have contacted all the original authors and they are all willing to grant the BCP78 rights to the IETF Trust, then this is fine, and you can ignore this comment. If not, you may need to add the pre-RFC5378 disclaimer. (See the Legal Provisions document at https://trustee.ietf.org/license-info for more information.) -- The document date (November 19, 2007) is 5995 days in the past. Is this intentional? -- Found something which looks like a code comment -- if you have code sections in the document, please surround them with '' and '' lines. Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Unused Reference: 'G.694.1' is defined on line 707, but no explicit reference was found in the text == Unused Reference: 'G.694.2' is defined on line 710, but no explicit reference was found in the text -- Possible downref: Non-RFC (?) normative reference: ref. 'G.694.1' == Outdated reference: A later version (-02) exists of draft-otani-ccamp-gmpls-lambda-labels-00 -- Obsolete informational reference (is this intentional?): RFC 4205 (Obsoleted by RFC 5307) == Outdated reference: A later version (-03) exists of draft-bernstein-ccamp-wavelength-switched-01 Summary: 1 error (**), 0 flaws (~~), 5 warnings (==), 10 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 1 Network Working Group Greg Bernstein 2 Internet Draft Grotto Networking 3 Intended status: Standards Track Young Lee 4 Expires: May 2008 Dan Li 5 Huawei 6 Wataru Imajuku 7 NTT 9 November 19, 2007 11 Routing and Wavelength Assignment Information for Wavelength 12 Switched Optical Networks 13 draft-bernstein-ccamp-wson-info-01.txt 15 Status of this Memo 17 By submitting this Internet-Draft, each author represents that 18 any applicable patent or other IPR claims of which he or she is 19 aware have been or will be disclosed, and any of which he or she 20 becomes aware will be disclosed, in accordance with Section 6 of 21 BCP 79. 23 This document may not be modified, and derivative works of it may not 24 be created, except to publish it as an RFC and to translate it into 25 languages other than English. 27 Internet-Drafts are working documents of the Internet Engineering 28 Task Force (IETF), its areas, and its working groups. Note that 29 other groups may also distribute working documents as Internet- 30 Drafts. 32 Internet-Drafts are draft documents valid for a maximum of six months 33 and may be updated, replaced, or obsoleted by other documents at any 34 time. It is inappropriate to use Internet-Drafts as reference 35 material or to cite them other than as "work in progress." 37 The list of current Internet-Drafts can be accessed at 38 http://www.ietf.org/ietf/1id-abstracts.txt 40 The list of Internet-Draft Shadow Directories can be accessed at 41 http://www.ietf.org/shadow.html 43 This Internet-Draft will expire on May 19, 2007. 45 Copyright Notice 46 Copyright (C) The IETF Trust (2007). 48 Abstract 50 This memo provides compact encodings for information needed for path 51 computation and wavelength assignment in wavelength switched optical 52 networks. Such encodings can be used in extensions to Generalized 53 Multi-Protocol Label Switching (GMPLS) routing for control of 54 wavelength switched optical networks (WSON). 56 Conventions used in this document 58 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 59 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 60 document are to be interpreted as described in RFC-2119 [RFC2119]. 62 Table of Contents 64 1. Introduction...................................................3 65 2. Terminology....................................................3 66 3. Generic Information............................................3 67 3.1. Wavelength Information Encoding...........................3 68 3.2. Link Sets.................................................4 69 3.3. Wavelength Sets...........................................6 70 3.3.1. Inclusive/Exclusive Wavelength Lists.................7 71 3.3.2. Inclusive/Exclusive Wavelength Ranges................7 72 3.3.3. Bitmap Wavelength Set................................8 73 4. WSON Information for Routing and Wavelength Assignment.........9 74 4.1. Connectivity Matrix......................................10 75 4.2. Port Wavelength Restrictions.............................13 76 4.3. WDM Link Characterization................................15 77 4.4. Laser Transmitter Range..................................15 78 4.5. Wavelength Converter Characterization....................15 79 4.6. Wavelength Availability..................................15 80 5. Security Considerations.......................................15 81 6. IANA Considerations...........................................16 82 7. Acknowledgments...............................................16 83 8. References....................................................17 84 8.1. Normative References.....................................17 85 8.2. Informative References...................................17 86 9. Contributors..................................................18 87 Author's Addresses...............................................18 88 Intellectual Property Statement..................................19 89 Disclaimer of Validity...........................................19 90 1. Introduction 92 This document provides efficient encodings of information needed by 93 the routing and wavelength assignment (RWA) process in wavelength 94 switched optical networks (WSONs). Such encodings can be applied to 95 GMPLS IGP extensions to accommodate this WSON/RWA information. In 96 addition these encodings could be used by other mechanisms to convey 97 this same information to a path computation element (PCE). Note since 98 these encodings are relatively efficient they can provide more 99 accurate analysis of the control plane communications/processing load 100 for WSONs looking to utilize a GMPLS control plane. 102 2. Terminology 104 CWDM: Coarse Wavelength Division Multiplexing. 106 DWDM: Dense Wavelength Division Multiplexing. 108 FOADM: Fixed Optical Add/Drop Multiplexer. 110 ROADM: Reconfigurable Optical Add/Drop Multiplexer. A reduced port 111 count wavelength selective switching element featuring ingress and 112 egress line side ports as well as add/drop side ports. 114 RWA: Routing and Wavelength Assignment. 116 Wavelength Conversion/Converters: The process of converting an 117 information bearing optical signal centered at a given wavelength to 118 one with "equivalent" content centered at a different wavelength. 119 Wavelength conversion can be implemented via an optical-electronic- 120 optical (OEO) process or via a strictly optical process. 122 WDM: Wavelength Division Multiplexing. 124 Wavelength Switched Optical Networks (WSON): WDM based optical 125 networks in which switching is performed selectively based on the 126 center wavelength of an optical signal. 128 3. Generic Information 130 The following encodings have multiple uses in specifying WSON 131 information. 133 3.1. Wavelength Information Encoding 135 This document makes frequent use of the lambda label format defined 136 in [Otani] shown below: 138 0 1 2 3 139 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 140 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 141 |Grid | C.S. |S| Reserved | n | 142 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 143 Where 145 Grid is used to indicate which ITU-T grid specification is being 146 used. 148 C.S. = Channel spacing used in a DWDM system, i.e., with a ITU-T 149 G.694.1 grid. 151 S = sign of the offset from the center frequency of 193.1THz for the 152 ITU-T 6.694.1 grid. 154 n = Used to specify the frequency as 193.1THz +/- n*(channel spacing) 155 where the + or - is chosen based on the sign (S) bit. 157 3.2. Link Sets 159 We will frequently want to describe properties of links. To do so 160 efficiently we can make use of a link set concept similar to the 161 label set concept of [RFC3471]. All links will be denoted by their 162 local link identifier as defined an used in[RFC4202, RFC4203, 163 RFC4205]. 165 The information carried in a Link Set is defined by: 167 0 1 2 3 168 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 169 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 170 | Action |Dir| Format | Reserved | 171 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 172 | Link Identifier 1 | 173 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 174 : : : 175 : : : 176 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 177 | Link Identifier N | 178 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 180 Action: 8 bits 182 0 - Inclusive List 183 Indicates that the object/TLV contains one or more link elements 184 that are included in the Link Set. 186 1 - Exclusive List 188 Indicates that the object/TLV contains one or more link elements that 189 are excluded from the Link Set. 191 2 - Inclusive Range 193 Indicates that the object/TLV contains a range of links. The 194 object/TLV contains two link elements. The first element indicates 195 the start of the range. The second element indicates the end of the 196 range. A value of zero indicates that there is no bound on the 197 corresponding portion of the range. 199 3 - Exclusive Range 201 Indicates that the object/TLV contains a range of links that are 202 excluded from the Link Set. The object/TLV contains two link 203 elements. The first element indicates the start of the range. The 204 second element indicates the end of the range. A value of zero 205 indicates that there is no bound on the corresponding portion of the 206 range. 208 Dir: Directionality of the Link Set (2 bits) 210 0 -- bidirectional 212 1 -- ingress 214 2 -- egress 216 In optical networks we think in terms of unidirectional as well as 217 bidirectional links. For example wavelength restrictions or 218 connectivity may be much different for an ingress port, than for its 219 "companion" egress port if it has one. Note that "interfaces" such as 220 discussed in the Interfaces MIB are assumed bidirectional, as well as 221 the links of various link state IGPs. 223 Format: The format of the link identifier (6 bits) 225 0 -- Link Local Identifier 227 Others TBD. 229 Reserved: 16 bits 230 This field is reserved. It MUST be set to zero on transmission and 231 MUST be ignored on receipt. 233 Link Identifier: 235 The link identifier represents the port which is being described 236 either for connectivity or wavelength restrictions. This can be the 237 link local identifier of [RFC4202], GMPLS routing, [RFC4203] GMPLS 238 OSPF routing, and [RFC4205] IS-IS GMPLS routing. The use of the link 239 local identifier format can result in more compact WSON encodings 240 when the assignments are done in a reasonable fashion. 242 3.3. Wavelength Sets 244 Wavelength sets come up frequently in WSONs to describe the range of 245 a laser transmitter, the wavelength restrictions on ROADM ports, or 246 the availability of wavelengths on a DWDM link. The general format 247 for a wavelength set is given below. This format uses the Action 248 concept from [RFC3471] with an additional Action to define a "bit 249 map" type of label set. Note that the second 32 bit field is a lambda 250 label in the previously defined format. This provides important 251 information on the WDM grid type and channel spacing that will be 252 used in the compact encodings listed. 254 0 1 2 3 255 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 256 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 257 | Action | Reserved | Num Wavelengths | 258 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 259 |Grid | C.S. |S| Reserved | n for lowest frequency | 260 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 261 | Additional fields as necessary per action | 262 | 264 Action: 266 0 - Inclusive List 268 1 - Exclusive List 270 2 - Inclusive Range 272 3 - Exclusive Range 273 4 - Bitmap Set 275 Note that the "Application" field will be used initially in the 276 specification of ROADM/OXC wavelength restrictions, but may be used 277 in other contexts as well. 279 3.3.1. Inclusive/Exclusive Wavelength Lists 281 In the case of the inclusive/exclusive lists the wavelength set 282 format is given by: 284 0 1 2 3 285 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 286 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 287 |Action=0 or 1 | Reserved | Num Wavelengths | 288 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 289 |Grid | C.S. |S| Reserved | n for lowest frequency | 290 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 291 | n2 | n3 | 292 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 293 | ... | 294 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 295 | nm | | 296 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 297 Where Num Wavelengths tells us the number of wavelength in this 298 inclusive or exclusive list this does not include the initial 299 wavelength in the list hence if the number of wavelengths is odd then 300 zero padding of the last half word is required. 302 3.3.2. Inclusive/Exclusive Wavelength Ranges 304 In the case of inclusive/exclusive ranges the wavelength set format 305 is given by: 307 0 1 2 3 308 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 309 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 310 |Action=2 or 3 | Reserved | Num Wavelengths | 311 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 312 |Grid | C.S. |S| Reserved | n for lowest frequency | 313 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 315 In this case Num Wavelengths specifies the number of wavelengths in 316 the range starting at the given wavelength and incrementing the Num 317 Wavelengths number of channel spacing up in frequency (regardless of 318 the value of the sign bit). 320 3.3.3. Bitmap Wavelength Set 322 In the case of Action = the bitmap the wavelength set format is given 323 by: 325 0 1 2 3 326 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 327 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 328 | Action = 4 | Reserved | Num Wavelengths | 329 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 330 |Grid | C.S. |S| Reserved | n for lowest frequency | 331 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 332 | Bit Map Word #1 (Lowest frequency channels) | 333 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 334 | ... | 335 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 336 | Bit Map Word #N (Highest frequency channels) | 337 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 339 Where Num Wavelengths in this case tells us the number of wavelengths 340 represented by the bit map which is required to be ceiling[(Num 341 Wavelengths)/32]. Each bit in the bit map represents a particular 342 frequency with a value of 1/0 indicating whether the frequency is in 343 the set or not. Bit position zero represents the lowest frequency, 344 while each succeeding bit position represents the next frequency a 345 channel spacing (C.S.) above the previous. 347 Example: 349 A 40 channel C-Band DWDM system with 100GHz spacing with lowest 350 frequency 192.0THz (1561.4nm) and highest frequency 195.9THz 351 (1530.3nm). These frequencies correspond to n = -11, and n = 28 352 respectively. Now suppose the following channels are available: 354 Frequency(THz) n Value bit map position 355 -------------------------------------------------- 356 192.0 -11 0 357 192.5 -6 5 358 193.1 0 11 359 193.9 8 19 360 194.0 9 20 361 195.2 21 32 362 195.8 27 38 363 With the Grid value set to indicate an ITU-T G.694.1 DWDM grid, C.S. 364 set to indicate 100GHz, and with S (sign) set to indicate negative 365 this lambda bit map set would then be encoded as follows: 367 0 1 2 3 368 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 369 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 370 | Action = 4 | Reserved | Num Wavelengths = 40 | 371 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 372 |Grid | C.S. |S| Reserved | n for lowest frequency = -11 | 373 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 374 |1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0| 375 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 376 |1 0 0 0 0 0 1 0| Not used in 40 Channel system (all zeros) | 377 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 379 4. WSON Information for Routing and Wavelength Assignment 381 From [WSON-Frame] the following WSON information needs to be conveyed 382 via GMPLS routing or some other mechanism. 384 Information Static/Dynamic Node/Link 385 ------------------------------------------------------------------ 386 Connectivity matrix Static Node 387 Per port wavelength restrictions Static Node(1) 388 WDM link (fiber) lambda ranges Static(4) Link 389 WDM link channel spacing Static(4) Link 390 Laser Transmitter range Static(4) Link(2) 391 Wavelength conversion capabilities Static(3),(4) Node 392 Wavelength Availability Dynamic(4) Link 394 Notes: 396 1. These are the per port wavelength restrictions of an optical 397 device such as a ROADM and are independent of any optical 398 constraints imposed by a fiber link. 400 2. This could also be viewed as a node capability. 402 3. This could be dynamic in the case of a limited pool of converters 403 where the number available can change with connection 404 establishment. Note we may want to include regeneration 405 capabilities here since OEO converters are also regenerators. 407 4. Not necessarily needed in the case of distributed wavelength 408 assignment via signaling. 410 See [WSON-Frame] for more details on these types of WSON information 411 and their use. 413 4.1. Connectivity Matrix 415 The potential connectivity matrix for asymmetric switches (e.g. 416 ROADMs and such) and the connectivity matrix for asymmetric fixed 417 devices can be represented by a matrix A where Amn = 0 or 1, 418 depending upon whether a wavelength on ingress port m can be 419 connected to egress port n. 421 This can be compactly represented link sets as follows: 423 0 1 2 3 424 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 425 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 426 |Connectivity | Reserved | 427 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 428 | Ingress Link Set #1 | 429 : : : 430 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 431 | Egress Link Set #1 432 : : : 433 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 434 | Additional Link set pairs as needed | 435 : to specify connectivity : 436 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 438 Where Connectivity = 0 if the device is fixed 440 1 if the device is reconfigurable (ROADM/OXC) 442 Example: 444 Suppose we have a typical 2-degree 40 channel ROADM. In addition to 445 its two line side ports it has 80 add and 80 drop ports. The picture 446 below illustrates how a typical 2-degree ROADM system that works with 447 bi-directional fiber pairs is a highly asymmetrical system composed 448 of two unidirectional ROADM subsystems. 450 (Tributary) Ports #3-#42 451 Ingress added to Egress dropped from 452 West Line Egress East Line Ingress 453 vvvv ^^^^ 454 | |...| | |...| 455 +-----| |...|--------| |...|------+ 456 | +----------------------+ | 457 | | | | 458 Egress | | Unidirectional ROADM | | 459 -----------------+ | | +-------------- 460 <=====================| |===================< 461 -----------------+ +----------------------+ +-------------- 462 | | 463 Port #1 | | Port #2 464 (West Line Side) | |(East Line Side) 465 -----------------+ +----------------------+ +-------------- 466 >=====================| |===================> 467 -----------------+ | Unidirectional ROADM | +-------------- 468 | | | | 469 | | _ | | 470 | +----------------------+ | 471 +-----| |...|--------| |...|------+ 472 | |...| | |...| 473 vvvv ^^^^ 474 (Tributary) Ports #43-#82 475 Egress dropped from Ingress added to 476 West Line ingress East Line egress 478 Referring to the figure we see that the ingress direction of ports 479 #3-#42 (add ports) can only potentially egress on port #1. While in 480 ingress side of port #2 (line side) can egress only on ports #3-#42 481 (drop) and #1 (pass through). Similarly, the ingress direction of 482 ports #43-#82 can only potentially egress on port #2 (line). While 483 the ingress direction of port #1 can only potentially egress on ports 484 #43-#82 (drop) or port #2 (pass through). We can now represent this 485 potential connectivity matrix as follows. This representation uses 486 only 30 32-bit words. 488 0 1 2 3 489 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 490 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 491 | Conn = 1 | Reserved |1 492 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 493 Note: adds to line 494 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 495 | Action=2 |0 1|0 0 0 0 0 0|Reserved(Note:inclusive range) |2 496 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 497 | Link Local Identifier = #3 |3 498 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 499 | Link Local Identifier = #42 |4 500 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 501 | Action=0 |1 0|0 0 0 0 0 0|Reserved (Note:inclusive list) |5 502 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 503 | Link Local Identifier = #1 |6 504 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 505 Note: line to drops 506 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 507 | Action=0 |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |7 508 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 509 | Link Local Identifier = #2 |8 510 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 511 | Action=2 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|9 512 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 513 | Link Local Identifier = #3 |10 514 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 515 | Link Local Identifier = #42 |11 516 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 517 Note: line to line 518 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 519 | Action=0 |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |12 520 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 521 | Link Local Identifier = #2 |13 522 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 523 | Action=0 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|14 524 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 525 | Link Local Identifier = #1 |15 526 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 527 Note: adds to line 528 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 529 | Action=2 |0 1|0 0 0 0 0 0|Reserved(Note:inclusive range) |16 530 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 531 | Link Local Identifier = #42 |17 532 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 533 | Link Local Identifier = #82 |18 534 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 535 | Action=0 |1 0|0 0 0 0 0 0|Reserved (Note:inclusive list) |19 536 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 537 | Link Local Identifier = #2 |20 538 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 539 Note: line to drops 540 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 541 | Action=0 |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |21 542 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 543 | Link Local Identifier = #1 |22 544 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 545 | Action=2 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|23 546 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 547 | Link Local Identifier = #43 |24 548 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 549 | Link Local Identifier = #82 |25 550 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 551 Note: line to line 552 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 553 | Action=0 |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |26 554 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 555 | Link Local Identifier = #1 |27 556 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 557 | Action=0 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|28 558 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 559 | Link Local Identifier = #2 |30 560 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 562 4.2. Port Wavelength Restrictions 564 An optical switching device can have the following wavelength 565 restrictions: 567 o Multiple wavelengths, full range port 569 o Single wavelength, full range port 571 o Single wavelength, fixed lambda port 573 o Multiple wavelengths, reduced range port (like wave band 574 switching) 576 This can be encoded as a doublet of link set and wavelength set 577 information: 579 0 1 2 3 580 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 581 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 582 |M| Mapping | Multiplier | Reserved | 583 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 584 | Link Set | 585 | .. | 586 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 587 | Wavelength Set | 588 | .. | 589 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 591 Where the "M" bit indicates whether the set of ports are single 592 wavelength M = 0, or multi-wavelength, M = 1, ports. 594 The "Mapping" tells us how the wavelengths in the wavelength set get 595 assigned to the links in the link set. 597 Mapping = 0: One to Many 599 Each link in the link set can take any of the values in the 600 wavelength set. This is applicable to both single channel and multi- 601 channel ports. 603 Mapping = 1: One to One 605 Links are assigned a single wavelength with respect to the order of 606 links and wavelengths in their respective sets. This is applicable 607 only to single channel ports (M=0). 609 Mapping = 2: One to One via ranges and increments 611 For single channel ports (M=0) where the wavelength is specified via 612 a range then the frequency assigned to a port is given by 614 Freq = freq_low + k*(Multiplier + 1)*(C.S.) 616 Where k is the ordinal of the link in the link set starting from 617 zero, C.S. the channel spacing, and freq_low is the lowest frequency 618 in the wavelength range. Such a formulation gives a compact way to 619 represent ROADMs with colored drop ports with a regular frequency 620 plan. 622 Note that the link set has an indication of whether these constraints 623 apply to ingress, egress or bidirectionally to the ports. 625 4.3. WDM Link Characterization 627 This has the same form as the port wavelength restrictions of a 628 device, hence can be encoded in the same way as was done in section 629 4.2. 631 4.4. Laser Transmitter Range 633 The tuning range of a laser transmitter can be represented via the 634 wavelength set mechanism of section 3.3. 636 4.5. Wavelength Converter Characterization 638 An OEO based wavelength converter can be characterized by an input 639 wavelength set and an output wavelength set. In addition we'd want 640 to know constraints on the signal formats and rates accommodated by 641 the converter. 643 Hence we'd have something like: 645 := , , , 648 4.6. Wavelength Availability 650 The availability of a specific wavelength on a WDM link is key 651 dynamic information that is required by the RWA process. This 652 information needs to be accurate; luckily it can also be represented 653 quite compactly via the wavelength set encodings of section 3.3. 655 For example a 120 channel system, utilizing the bit map wavelength 656 set encoding would only require four bit map words in addition to the 657 two general words in the encoding to fully characterize wavelength 658 availability. Note that a subset of the total system range could be 659 sent representing only those lambdas whose availabilities have 660 changed resulting in very efficient use of control plane bandwidth. 662 5. Security Considerations 664 This document has no requirement for a change to the security models 665 within GMPLS and associated protocols. That is the OSPF-TE, RSVP-TE, 666 and PCEP security models could be operated unchanged. 668 6. IANA Considerations 670 TBD. Once finalized in our approach we will need identifiers for such 671 things and modulation types, modulation parameters, wavelength 672 assignment methods, etc... 674 7. Acknowledgments 676 This document was prepared using 2-Word-v2.0.template.dot. 678 8. References 680 8.1. Normative References 682 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 683 Requirement Levels", BCP 14, RFC 2119, March 1997. 685 [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching 686 (GMPLS) Signaling Functional Description", RFC 3471, 687 January 2003. 689 [G.694.1] ITU-T Recommendation G.694.1, "Spectral grids for WDM 690 applications: DWDM frequency grid", June, 2002. 692 [RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing Extensions 693 in Support of Generalized Multi-Protocol Label Switching 694 (GMPLS)", RFC 4202, October 2005 696 [RFC4203] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions in 697 Support of Generalized Multi-Protocol Label Switching 698 (GMPLS)", RFC 4203, October 2005. 700 8.2. Informative References 702 [Otani] T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized 703 Labels of Lambda-Switching Capable Label Switching Routers 704 (LSR)", work in progress: draft-otani-ccamp-gmpls-lambda- 705 labels-00.txt, June 2007. 707 [G.694.1] ITU-T Recommendation G.694.1, Spectral grids for WDM 708 applications: DWDM frequency grid, June 2002. 710 [G.694.2] ITU-T Recommendation G.694.2, Spectral grids for WDM 711 applications: CWDM wavelength grid, December 2003. 713 [RFC4205] Kompella, K., Ed., and Y. Rekhter, Ed., "Intermediate 714 System to Intermediate System (IS-IS) Extensions in Support 715 of Generalized Multi-Protocol Label Switching (GMPLS)", RFC 716 4205, October 2005. 718 [WSON-Frame] G. Bernstein, Y. Lee, W. Imajuku, "Framework for GMPLS 719 and PCE Control of Wavelength Switched Optical Networks", 720 work in progress: draft-bernstein-ccamp-wavelength- 721 switched-01.txt, September 2007. 723 9. Contributors 725 Diego Caviglia 726 Ericsson 727 Via A. Negrone 1/A 16153 728 Genoa Italy 730 Phone: +39 010 600 3736 731 Email: diego.caviglia@(marconi.com, ericsson.com) 733 Itaru Nishioka 734 NEC Corp. 735 1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666 736 Japan 737 Phone: +81 44 396 3287 738 Email: i-nishioka@cb.jp.nec.com 740 Author's Addresses 742 Greg Bernstein (ed.) 743 Grotto Networking 744 Fremont, CA, USA 746 Phone: (510) 573-2237 747 Email: gregb@grotto-networking.com 749 Young Lee (ed.) 750 Huawei Technologies 751 1700 Alma Drive, Suite 100 752 Plano, TX 75075 753 USA 755 Phone: (972) 509-5599 (x2240) 756 Email: ylee@huawei.com 757 Dan Li 758 Huawei Technologies Co., Ltd. 759 F3-5-B R&D Center, Huawei Base, 760 Bantian, Longgang District 761 Shenzhen 518129 P.R.China 763 Phone: +86-755-28973237 764 Email: danli@huawei.com 766 Wataru Imajuku 767 NTT Network Innovation Labs 768 1-1 Hikari-no-oka, Yokosuka, Kanagawa 769 Japan 771 Phone: +81-(46) 859-4315 772 Email: imajuku.wataru@lab.ntt.co.jp 774 Intellectual Property Statement 776 The IETF takes no position regarding the validity or scope of any 777 Intellectual Property Rights or other rights that might be claimed to 778 pertain to the implementation or use of the technology described in 779 this document or the extent to which any license under such rights 780 might or might not be available; nor does it represent that it has 781 made any independent effort to identify any such rights. Information 782 on the procedures with respect to rights in RFC documents can be 783 found in BCP 78 and BCP 79. 785 Copies of IPR disclosures made to the IETF Secretariat and any 786 assurances of licenses to be made available, or the result of an 787 attempt made to obtain a general license or permission for the use of 788 such proprietary rights by implementers or users of this 789 specification can be obtained from the IETF on-line IPR repository at 790 http://www.ietf.org/ipr. 792 The IETF invites any interested party to bring to its attention any 793 copyrights, patents or patent applications, or other proprietary 794 rights that may cover technology that may be required to implement 795 this standard. Please address the information to the IETF at 796 ietf-ipr@ietf.org. 798 Disclaimer of Validity 800 This document and the information contained herein are provided on an 801 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS 802 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND 803 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS 804 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF 805 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED 806 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. 808 Copyright Statement 810 Copyright (C) The IETF Trust (2007). 812 This document is subject to the rights, licenses and restrictions 813 contained in BCP 78, and except as set forth therein, the authors 814 retain all their rights. 816 Acknowledgment 818 Funding for the RFC Editor function is currently provided by the 819 Internet Society.