idnits 2.17.1 draft-bonica-6man-comp-rtg-hdr-15.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (May 5, 2020) is 1451 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) -- Looks like a reference, but probably isn't: '0' on line 604 -- Looks like a reference, but probably isn't: '1' on line 585 == Unused Reference: 'RFC4443' is defined on line 431, but no explicit reference was found in the text -- Obsolete informational reference (is this intentional?): RFC 2460 (Obsoleted by RFC 8200) Summary: 0 errors (**), 0 flaws (~~), 2 warnings (==), 4 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 6man R. Bonica 3 Internet-Draft Juniper Networks 4 Intended status: Standards Track Y. Kamite 5 Expires: November 6, 2020 NTT Communications Corporation 6 T. Niwa 7 KDDI 8 A. Alston 9 Liquid Telecom 10 L. Jalil 11 Verizon 12 May 5, 2020 14 The IPv6 Compressed Routing Header (CRH) 15 draft-bonica-6man-comp-rtg-hdr-15 17 Abstract 19 This document defines two new Routing header types. Collectively, 20 they are called the Compressed Routing Headers (CRH). Individually, 21 they are called CRH-16 and CRH-32. 23 Status of This Memo 25 This Internet-Draft is submitted in full conformance with the 26 provisions of BCP 78 and BCP 79. 28 Internet-Drafts are working documents of the Internet Engineering 29 Task Force (IETF). Note that other groups may also distribute 30 working documents as Internet-Drafts. The list of current Internet- 31 Drafts is at https://datatracker.ietf.org/drafts/current/. 33 Internet-Drafts are draft documents valid for a maximum of six months 34 and may be updated, replaced, or obsoleted by other documents at any 35 time. It is inappropriate to use Internet-Drafts as reference 36 material or to cite them other than as "work in progress." 38 This Internet-Draft will expire on November 6, 2020. 40 Copyright Notice 42 Copyright (c) 2020 IETF Trust and the persons identified as the 43 document authors. All rights reserved. 45 This document is subject to BCP 78 and the IETF Trust's Legal 46 Provisions Relating to IETF Documents 47 (https://trustee.ietf.org/license-info) in effect on the date of 48 publication of this document. Please review these documents 49 carefully, as they describe your rights and restrictions with respect 50 to this document. Code Components extracted from this document must 51 include Simplified BSD License text as described in Section 4.e of 52 the Trust Legal Provisions and are provided without warranty as 53 described in the Simplified BSD License. 55 Table of Contents 57 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 58 2. Requirements Language . . . . . . . . . . . . . . . . . . . . 3 59 3. The Compressed Routing Headers (CRH) . . . . . . . . . . . . 3 60 4. The CRH Forwarding Information Base (CRH-FIB) . . . . . . . 5 61 5. Processing Rules . . . . . . . . . . . . . . . . . . . . . . 6 62 5.1. Computing Minimum CRH Length . . . . . . . . . . . . . . 7 63 6. Mutability . . . . . . . . . . . . . . . . . . . . . . . . . 7 64 7. Applications And SIDs . . . . . . . . . . . . . . . . . . . . 8 65 8. Management Considerations . . . . . . . . . . . . . . . . . . 8 66 9. Security Considerations . . . . . . . . . . . . . . . . . . . 8 67 10. Implementation and Deployment Status . . . . . . . . . . . . 8 68 11. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 9 69 12. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 9 70 13. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 9 71 14. References . . . . . . . . . . . . . . . . . . . . . . . . . 10 72 14.1. Normative References . . . . . . . . . . . . . . . . . . 10 73 14.2. Informative References . . . . . . . . . . . . . . . . . 11 74 Appendix A. CRH Processing Examples . . . . . . . . . . . . . . 11 75 Appendix B. CRH Processing Examples . . . . . . . . . . . . . . 12 76 B.1. The SID List Contains One Entry For Each Segment In The 77 Path . . . . . . . . . . . . . . . . . . . . . . . . . . 13 78 B.2. The SID List Omits The First Entry In The Path . . . . . 14 79 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 14 81 1. Introduction 83 IPv6 [RFC8200] source nodes use Routing headers to specify the path 84 that a packet takes to its destination. The IETF has defined several 85 Routing header types [IANA-RH]. RH0 [RFC2460] was the first to be 86 defined and was deprecated [RFC5095] because of security 87 vulnerabilities. 89 This document defines two new Routing header types. Collectively, 90 they are called the Compressed Routing Headers (CRH). Individually, 91 they are called CRH-16 and CRH-32. 93 The CRH, like RH0, allows IPv6 source nodes to specify the path that 94 a packet takes to its destination. The CRH differs from RH0 because: 96 o It can be encoded in fewer bytes than RH0. 98 o It addresses the security vulnerabilities that affected RH0. 100 The following are reasons for encoding the CRH in as few bytes as 101 possible: 103 o Many ASIC-based forwarders copy all headers from buffer memory to 104 on-chip memory. As header sizes increase, so does the cost of 105 this copy. 107 o Because Path MTU Discovery (PMTUD) [RFC8201] is not entirely 108 reliable, many IPv6 hosts refrain from sending packets larger than 109 the IPv6 minimum link MTU (i.e., 1280 bytes). When packets are 110 small, the overhead imposed by large Routing Headers is excessive. 112 Section 9 of this document addresses security considerations. 113 Appendix A of this document demonstrates how the CRH can be encoded 114 in fewer bytes than RH0. 116 2. Requirements Language 118 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 119 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and 120 "OPTIONAL" in this document are to be interpreted as described in BCP 121 14 [RFC2119] [RFC8174] when, and only when, they appear in all 122 capitals, as shown here. 124 3. The Compressed Routing Headers (CRH) 126 Both CRH versions (i.e., CRH-16 and CRH-32) contain the following 127 fields: 129 o Next Header - Defined in [RFC8200]. 131 o Hdr Ext Len - Defined in [RFC8200]. 133 o Routing Type - Defined in [RFC8200]. Value TBD by IANA. (For 134 CRH-16, the suggested value is 5. For CRH-32, the suggested value 135 is 6.) 137 o Segments Left - Defined in [RFC8200]. 139 o Type-specific Data - Described in [RFC8200]. 141 In the CRH, the Type-specific data field contains a list of Segment 142 Identifiers (SIDs). Each SID represents both of the following: 144 o A segment of the path that the packet takes to its destination. 146 o An entry in the CRH Forwarding Information Base (CRH-FIB) 147 (Section 4). 149 SIDs are listed in reverse order. So, the first SID in the list 150 represents the final segment in the path. Because segments are 151 listed in reverse order, the Segments Left field can be used as an 152 index into the SID list. In this document, the "current SID" is the 153 SID list entry referenced by the Segments Left field. 155 The first segment in the path can be omitted from the list. See 156 (Appendix B) for examples. 158 In the CRH-16 (Figure 1), each SID is encoded in 16-bits. In the 159 CRH-32 (Figure 2), each SID is encoded in 32-bits. 161 In all cases, the CRH MUST end on a 64-bit boundary. So, the Type- 162 specific data field MUST be padded with zeros if the CRH would 163 otherwise not end on a 64-bit boundary. 165 0 1 2 3 166 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 167 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 168 | Next Header | Hdr Ext Len | Routing Type | Segments Left | 169 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 170 | SID[0] | SID[1] | 171 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-| 172 | ......... 173 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- 175 Figure 1: CRH-16 177 0 1 2 3 178 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 179 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 180 | Next Header | Hdr Ext Len | Routing Type | Segments Left | 181 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 182 + SID[0] + 183 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 184 + SID[1] + 185 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 186 // // 187 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 188 + SID[n] + 189 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 191 Figure 2: CRH-32 193 4. The CRH Forwarding Information Base (CRH-FIB) 195 Each SID identifies a CRH-FIB entry. 197 Each CRH-FIB entry contains: 199 o A IPv6 address. 201 o A forwarding method. 203 o Method-specific parameters (optional). 205 The IPv6 address represents an interface on the next segment 206 endpoint. It MUST NOT be a link-local address. While the IPv6 207 address represents an interface on the next segment endpoint, it does 208 not necessarily represent the interface through which the packet will 209 arrive at the next segment endpoint. 211 The forwarding method specifies how the processing node will forward 212 the packet to the next segment endpoint. The following are examples: 214 o Forward the packet to the next-hop along the least-cost path to 215 the next segment endpoint. 217 o Forward the packet through a specified interface to the next 218 segment endpoint. 220 Some forwarding methods require method-specific parameters. For 221 example, a forwarding method might require a parameter that 222 identifies the interface through which the packet should be 223 forwarded. 225 The CRH-FIB can be populated: 227 o By an operator, using a Command Line Interface (CLI). 229 o By a controller, using the Path Computation Element (PCE) 230 Communication Protocol (PCEP) [RFC5440] or the Network 231 Configuration Protocol (NETCONF) [RFC6241]. 233 o By a distributed routing protocol [ISO10589-Second-Edition], 234 [RFC5340], [RFC4271]. 236 5. Processing Rules 238 The following rules describe CRH processing: 240 o If Segments Left equals 0, skip over the CRH and process the next 241 header in the packet. 243 o If Hdr Ext Len indicates that the CRH is larger than the 244 implementation can process, discard the packet and send an ICMPv6 245 Parameter Problem, Code 0, message to the Source Address, pointing 246 to the Hdr Ext Len field. 248 o Compute L, the minimum CRH length (See (Section 5.1)). 250 o If L is greater than Hdr Ext Len, discard the packet and send an 251 ICMPv6 Parameter Problem, Code 0, message to the Source Address, 252 pointing to the Segments Left field. 254 o Decrement Segments Left. 256 o Search for the current SID in the CRH-FIB. In this document, the 257 "current SID" is the SID list entry referenced by the Segments 258 Left field. 260 o If the search does not return a CRH-FIB entry, discard the packet 261 and send an ICMPv6 Parameter Problem, Code 0, message to the 262 Source Address, pointing to the current SID. 264 o If Segments Left is greater than 0 and the CRH-FIB entry contains 265 a multicast address, discard the packet and send an ICMPv6 266 Parameter Problem, Code 0, message to the Source Address, pointing 267 to the current SID. 269 o Copy the IPv6 address from the CRH-FIB entry to the Destination 270 Address field in the IPv6 header. 272 o Decrement the IPv6 Hop Limit. 274 o Resubmit the packet to the IPv6 module for transmission to the new 275 destination, ensuring that it executes the forwarding method 276 specified by the CRH-FIB entry. 278 5.1. Computing Minimum CRH Length 280 The algorithm described in this section accepts the following CRH 281 fields as its input parameters: 283 o Routing Type (i.e., CRH-16 or CRH-32). 285 o Segments Left. 287 It yields L, the minimum CRH length. The minimum CRH length is 288 measured in 8-octet units, not including the first 8 octets. 290 292 switch(Routing Type) { 293 case CRH-16: 294 if (Segments Left <= 2) 295 return(0) 296 sidsBeyondFirstWord = Segments Left - 2; 297 sidPerWord = 4; 298 case CRH-32: 299 if (Segments Left <= 1) 300 return(0) 301 sidsBeyondFirstWord = Segments Left - 1; 302 sidsPerWord = 2; 303 case default: 304 return(0xFF); 305 } 307 words = sidsBeyondFirstWord div sidsPerWord; 308 if (sidsBeyondFirstWord mod sidsPerWord) 309 words++; 311 return(words) 313 315 6. Mutability 317 In the CRH, the Segments Left field is mutable. All remaining fields 318 are immutable. 320 7. Applications And SIDs 322 A CRH contains one or more SIDs. Each SID is processed by exactly 323 one node. 325 Therefore, a SID is not required to have domain-wide significance. 326 Applications can: 328 o Allocate SIDs so that they have domain-wide significance. 330 o Allocate SIDs so that they have node-local significance. 332 8. Management Considerations 334 PING and TRACEROUTE [RFC2151] both operate correctly in the presence 335 of the CRH. 337 9. Security Considerations 339 Networks that process the CRH MUST mitigate the security 340 vulnerabilities described in [RFC5095]. Their border routers SHOULD 341 discard packets that satisfy the following criteria: 343 o The packet contains a CRH 345 o The Segments Left field in the CRH has a value greater than 0 347 o The Destination Address field in the IPv6 header represents an 348 interface that resides inside of the network. 350 Many border routers cannot filter packets based upon the Segments 351 Left value. These border routers MAY discard packets that satisfy 352 the following criteria: 354 o The packet contains a CRH 356 o The Destination Address field in the IPv6 header represents an 357 interface that resides inside of the network. 359 10. Implementation and Deployment Status 361 Juniper Networks has produced experimental implementations of the CRH 362 on: 364 o A LINUX-based software platform 366 o The MX-series (ASIC-based) router 367 Liquid Telecom has deployed the CRH, on a limited basis, in their 368 network. Other experimental deployments are in progress. 370 11. IANA Considerations 372 SID values 0-15 are reserved for future use. They may be assigned by 373 IANA, based on IETF Consensus. IANA is requested to establish a 374 "Registry of SRm6 Reserved SIDs". Values 0-15 are reserved for 375 future use. 377 IANA is requested to make the following entries in the Internet 378 Protocol Version 6 (IPv6) Parameters "Routing Type" registry 379 [IANA-RH]: 381 Suggested 382 Value Description Reference 383 --------------------------------------------------------------------- 384 5 Compressed Routing Header (16-bit) (CRH-16) This document 385 6 Compressed Routing Header (32-bit) (CRH-32) This document 387 12. Acknowledgements 389 Thanks to Dr. Vanessa Ameen, Fernando Gont, Naveen Kottapalli, Joel 390 Halpern, Tony Li, Gerald Schmidt, Nancy Shaw, and Chandra Venkatraman 391 for their contributions to this document. 393 13. Contributors 395 Daniam Henriques 397 Liquid Telecom 399 Johannesburg, South Africa 401 Email: daniam.henriques@liquidtelecom.com 403 Gang Chen 405 Baidu 407 No.10 Xibeiwang East Road Haidian District 409 Beijing 100193 P.R. China 411 Email: phdgang@gmail.com 412 Yifeng Zhou 414 ByteDance 416 Building 1, AVIC Plaza, 43 N 3rd Ring W Rd Haidian District 418 Beijing 100000 P.R. China 420 Email: yifeng.zhou@bytedance.com 422 14. References 424 14.1. Normative References 426 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 427 Requirement Levels", BCP 14, RFC 2119, 428 DOI 10.17487/RFC2119, March 1997, 429 . 431 [RFC4443] Conta, A., Deering, S., and M. Gupta, Ed., "Internet 432 Control Message Protocol (ICMPv6) for the Internet 433 Protocol Version 6 (IPv6) Specification", STD 89, 434 RFC 4443, DOI 10.17487/RFC4443, March 2006, 435 . 437 [RFC5095] Abley, J., Savola, P., and G. Neville-Neil, "Deprecation 438 of Type 0 Routing Headers in IPv6", RFC 5095, 439 DOI 10.17487/RFC5095, December 2007, 440 . 442 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 443 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, 444 May 2017, . 446 [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6 447 (IPv6) Specification", STD 86, RFC 8200, 448 DOI 10.17487/RFC8200, July 2017, 449 . 451 [RFC8201] McCann, J., Deering, S., Mogul, J., and R. Hinden, Ed., 452 "Path MTU Discovery for IP version 6", STD 87, RFC 8201, 453 DOI 10.17487/RFC8201, July 2017, 454 . 456 14.2. Informative References 458 [IANA-RH] IANA, "Routing Headers", 459 . 462 [ISO10589-Second-Edition] 463 International Organization for Standardization, 464 ""Intermediate system to Intermediate system intra-domain 465 routeing information exchange protocol for use in 466 conjunction with the protocol for providing the 467 connectionless-mode Network Service (ISO 8473)", ISO/IEC 468 10589:2002, Second Edition,", November 2001. 470 [RFC2151] Kessler, G. and S. Shepard, "A Primer On Internet and TCP/ 471 IP Tools and Utilities", FYI 30, RFC 2151, 472 DOI 10.17487/RFC2151, June 1997, 473 . 475 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6 476 (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460, 477 December 1998, . 479 [RFC4271] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A 480 Border Gateway Protocol 4 (BGP-4)", RFC 4271, 481 DOI 10.17487/RFC4271, January 2006, 482 . 484 [RFC5340] Coltun, R., Ferguson, D., Moy, J., and A. Lindem, "OSPF 485 for IPv6", RFC 5340, DOI 10.17487/RFC5340, July 2008, 486 . 488 [RFC5440] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation 489 Element (PCE) Communication Protocol (PCEP)", RFC 5440, 490 DOI 10.17487/RFC5440, March 2009, 491 . 493 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., 494 and A. Bierman, Ed., "Network Configuration Protocol 495 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, 496 . 498 Appendix A. CRH Processing Examples 500 The CRH-16 and CRH-32 encode information more efficiently than RH0. 502 +------+-----+--------+--------+ 503 | SIDs | RH0 | CRH-16 | CRH-32 | 504 +------+-----+--------+--------+ 505 | 1 | 24 | 8 | 8 | 506 | 2 | 40 | 8 | 16 | 507 | 3 | 56 | 16 | 16 | 508 | 4 | 72 | 16 | 24 | 509 | 5 | 88 | 16 | 24 | 510 | 6 | 104 | 16 | 32 | 511 | 7 | 120 | 24 | 32 | 512 | 8 | 136 | 24 | 40 | 513 | 9 | 152 | 24 | 40 | 514 | 10 | 168 | 24 | 48 | 515 | 11 | 184 | 32 | 48 | 516 | 12 | 200 | 32 | 52 | 517 | 13 | 216 | 32 | 52 | 518 | 14 | 232 | 32 | 56 | 519 | 15 | 248 | 40 | 56 | 520 | 16 | 264 | 40 | 60 | 521 | 17 | 280 | 40 | 60 | 522 | 18 | 296 | 40 | 64 | 523 +------+-----+--------+--------+ 525 Table 1: Routing Header Size (in Bytes) As A Function Of Routing 526 Header Type and Number Of SIDs 528 (Table 1) reflects Routing header size as a function of Routing 529 header type and number of SIDs contained by the Routing header. 531 Appendix B. CRH Processing Examples 533 This appendix demonstrates CRH processing in the following scenarios: 535 o The SID list contains one entry for each segment in the path 536 (Appendix B.1). 538 o The SID list omits the first entry in the path (Appendix B.2). 540 ----------- ----------- ----------- 541 |Node: S | |Node: I1 | |Node: I2 | 542 |Loopback: |---------------|Loopback: |---------------|Loopback: | 543 |2001:db8::a| |2001:db8::1| |2001:db8::2| 544 ----------- ----------- ----------- 545 | | 546 | ----------- | 547 | |Node: D | | 548 ---------------------|Loopback: |--------------------- 549 |2001:db8::b| 550 ----------- 552 Figure 3: Reference Topology 554 Figure 3 provides a reference topology that is used in all examples. 556 +-----+--------------+-------------------+ 557 | SID | IPv6 Address | Forwarding Method | 558 +-----+--------------+-------------------+ 559 | 2 | 2001:db8::2 | Least-cost path | 560 | 11 | 2001:db8::b | Least-cost path | 561 +-----+--------------+-------------------+ 563 Table 2: Node SIDs 565 Table 2 describes two entries that appear in each node's CRH-FIB. 567 B.1. The SID List Contains One Entry For Each Segment In The Path 569 In this example, Node S sends a packet to Node D, via I2. In this 570 example, I2 appears in the CRH segment list. 572 +-------------------------------------+-------------------+ 573 | As the packet travels from S to I2: | | 574 +-------------------------------------+-------------------+ 575 | Source Address = 2001:db8::a | Segments Left = 1 | 576 | Destination Address = 2001:db8::2 | SID[0] = 11 | 577 | | SID[1] = 2 | 578 +-------------------------------------+-------------------+ 580 +-------------------------------------+-------------------+ 581 | As the packet travels from I2 to D: | | 582 +-------------------------------------+-------------------+ 583 | Source Address = 2001:db8::a | Segments Left = 0 | 584 | Destination Address = 2001:db8::b | SID[0] = 11 | 585 | | SID[1] = 2 | 586 +-------------------------------------+-------------------+ 588 B.2. The SID List Omits The First Entry In The Path 590 In this example, Node S sends a packet to Node D, via I2. In this 591 example, I2 does not appear in the CRH segment list. 593 +-------------------------------------+-------------------+ 594 | As the packet travels from S to I2: | | 595 +-------------------------------------+-------------------+ 596 | Source Address = 2001:db8::a | Segments Left = 1 | 597 | Destination Address = 2001:db8::2 | SID[0] = 11 | 598 +-------------------------------------+-------------------+ 600 +-------------------------------------+-------------------+ 601 | As the packet travels from I2 to D: | | 602 +-------------------------------------+-------------------+ 603 | Source Address = 2001:db8::a | Segments Left = 0 | 604 | Destination Address = 2001:db8::b | SID[0] = 11 | 605 +-------------------------------------+-------------------+ 607 Authors' Addresses 609 Ron Bonica 610 Juniper Networks 611 2251 Corporate Park Drive 612 Herndon, Virginia 20171 613 USA 615 Email: rbonica@juniper.net 617 Yuji Kamite 618 NTT Communications Corporation 619 3-4-1 Shibaura, Minato-ku 620 Tokyo 108-8118 621 Japan 623 Email: y.kamite@ntt.com 625 Tomonobu Niwa 626 KDDI 627 3-22-7, Yoyogi, Shibuya-ku 628 Tokyo 151-0053 629 Japan 631 Email: to-niwa@kddi.com 632 Andrew Alston 633 Liquid Telecom 634 Nairobi 635 Kenya 637 Email: Andrew.Alston@liquidtelecom.com 639 Luay Jalil 640 Verizon 641 Richardson, Texas 642 USA 644 Email: luay.jalil@one.verizon.com