idnits 2.17.1 draft-fan-ccamp-gmpls-g709v5-ospf-ext-00.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- ** The document seems to lack a Security Considerations section. (A line matching the expected section header was found, but with an unexpected indentation: ' 5. Security Considerations' ) ** The document seems to lack an IANA Considerations section. (See Section 2.2 of https://www.ietf.org/id-info/checklist for how to handle the case when there are no actions for IANA.) (A line matching the expected section header was found, but with an unexpected indentation: ' 6. IANA considerations' ) Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (March 10, 2017) is 2598 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) -- Possible downref: Non-RFC (?) normative reference: ref. 'G.709-2016' ** Downref: Normative reference to an Informational RFC: RFC 5920 ** Downref: Normative reference to an Informational RFC: RFC 6163 ** Downref: Normative reference to an Informational RFC: RFC 6566 -- Possible downref: Non-RFC (?) normative reference: ref. 'GMPLSv5-fwk' -- Possible downref: Non-RFC (?) normative reference: ref. 'GMPLSv5-signal' Summary: 5 errors (**), 0 flaws (~~), 1 warning (==), 4 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 1 CCAMP Working Group Zheyu Fan 2 Internet-Draft Huawei 3 Intended status: Standards Track 5 Expires: September 10, 2017 March 10, 2017 7 GMPLS Routing Extension for Optical Transport Networks with Beyond 100G 8 in G.709 Edition 5 10 draft-fan-ccamp-gmpls-g709v5-ospf-ext-00.txt 12 Abstract 14 The International Telecommunication Union Telecommunication 15 Standardization Sector (ITU-T) has extended the Recommendation G.709 16 to support beyond 100G (B100G) features. Corresponding Open Shortest 17 Path First - Traffic Engineering (OSPF-TE) routing protocol 18 extensions are included in this document. 20 Status of this Memo 22 This Internet-Draft is submitted to IETF in full conformance with 23 the provisions of BCP 78 and BCP 79. 25 Internet-Drafts are working documents of the Internet Engineering 26 Task Force (IETF), its areas, and its working groups. Note that 27 other groups may also distribute working documents as Internet- 28 Drafts. 30 Internet-Drafts are draft documents valid for a maximum of six 31 months and may be updated, replaced, or obsoleted by other documents 32 at any time. It is inappropriate to use Internet-Drafts as 33 reference material or to cite them other than as "work in progress." 35 The list of current Internet-Drafts can be accessed at 36 http://www.ietf.org/ietf/1id-abstracts.txt. 38 The list of Internet-Draft Shadow Directories can be accessed at 39 http://www.ietf.org/shadow.html. 41 This Internet-Draft will expire on September 10, 2017. 43 Copyright Notice 45 Copyright (c) 2017 IETF Trust and the persons identified as the 46 document authors. All rights reserved. 48 This document is subject to BCP 78 and the IETF Trust's Legal 49 Provisions Relating to IETF Documents 50 (http://trustee.ietf.org/license-info) in effect on the date of 51 publication of this document. Please review these documents 52 carefully, as they describe your rights and restrictions with 53 respect to this document. Code Components extracted from this 54 document must include Simplified BSD License text as described in 55 Section 4.e of the Trust Legal Provisions and are provided without 56 warranty as described in the Simplified BSD License. 58 Table of Contents 60 1. Introduction ................................................ 2 61 2. Terminology ................................................. 2 62 3. OSPF-TE Extensions for B100G ................................ 3 63 4. ISCD Format Extensions for B100G ............................ 3 64 4.1. Switching Capability Specific Information .............. 3 65 4.2. Supporting of OTUCn sub rates (OTUCn-M) ................ 6 66 5. Security Considerations ..................................... 7 67 6. IANA considerations ......................................... 7 68 7. References .................................................. 7 69 7.1. Normative References ................................... 7 70 7.2. Informative References ................................. 8 71 Authors' Addresses ............................................. 8 73 1. Introduction 75 G.709 [G.709-2016] defines the interfaces to Optical Transport 76 Network (OTN) and includes new features to support beyond 100G 77 (B100G). In order to advertise this information in routing, this 78 document extends the encoding specific to OTN technology for use in 79 GMPLS OSPF-TE as defined in [RFC7138]. 81 Routing information for Optical Channel (OCh) layer is beyond the 82 scope of this document. Please refer to [RFC6163] and [RFC6566] for 83 further information. 85 2. Terminology 87 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 88 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 89 document are to be interpreted as described in [RFC2119]. 91 3. OSPF-TE Extensions for B100G 93 As discussed in [GMPLSv5-fwk], OSPF-TE must be extended to be able 94 to advertise the 5G Tributary Slot Granularity, the multiplexing 95 capabilities of ODUCn connection requests, and the support 96 information of OTUCn sub rates (OTUCn-M). 98 4. ISCD Format Extensions for B100G 100 As defined in [RFC4203], the ISCD describes the Switching Capability 101 of an interface. [RFC7138] defines a new Switching Capability value 102 for OTN. 104 4.1. Switching Capability Specific Information 106 [RFC7138] defines Bandwidth sub-TLVs for the technology-specific 107 part of the OTN-TDM ISCD and considers two types of Bandwidth sub- 108 TLVs, unreserved bandwidth for fixed containers (Type 1) and 109 unreserved bandwidth for flexible containers (Type 2). In order to 110 support B100G features in OTN, a new signal type value for ODUCn is 111 defined in [GMPLSv5-signal]. ODUCn can represent different fixed bit 112 rates for different values of n. Like ODUk signals, an ODUCn signal 113 occupies fixed bandwidth which does not change over time. Type 1 114 Bandwidth sub-TLV can be extended to advertise the value of n for 115 ODUCn signal type. 117 As discussed in [GMPLSv5-fwk], OTUCn-M link carries ODUCn signal as 118 OTUCn does, e.g. OTUC3-50 link supporting 250 Gbps bandwidth carries 119 an ODUC3 signal and OTUC3 link supporting 300 Gbps bandwidth also 120 carries an ODUC3 signal. In order to distinguish the ODUCn signals 121 in OTUCn-M link from that in OTUCn link, Type 1 Bandwidth sub-TLV 122 must be able to advertise the number of available Tributary Slots 123 for ODUCn signal type. 125 As only ODUCn signal type is with 5-Gbps TS granularity, Signal Type 126 being ODUCn can indicate that the TS granularity is 5 Gbps and extra 127 definition for TS granularity is not needed. 129 This document extends the Type 1 Bandwidth sub-TLV to advertise the 130 value of n, the number of available Tributary Slots, and the 131 Tributary Slot Granularity for ODUCn signal type. 133 The format of extended Bandwidth sub-TLV for Type 1 containers is 134 depicted in the following figure: 136 0 1 2 3 137 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 138 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 139 | Type = 1 (Unres-fix) | Length | 140 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 141 | Signal Type | Num of stages |T|S| TSG | Res | Priority | 142 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 143 ~ Stage#1 | ... | Stage#N | Padding ~ 144 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 145 | Unreserved ODUCn at Prio 0 | ...... | 146 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 147 | Unreserved ODUCn at Prio 7 | Unreserved Padding | 148 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 149 | n | Reserved | Num of TS | 150 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 152 Figure 1: extended Bandwidth sub-TLV for Type 1 containers 154 TSG (3 bits): Tributary Slot Granularity. TSG MUST be set to 0 155 (Ignored) when Signal Type is ODUCn. 157 Stage (8 bits): in extreme case (e.g. ODU0->ODU1->ODU2->ODU3->ODU4- 158 >ODUC1), the number of stages can be 5, thus stage fields can occupy 159 two rows. 161 n (8 bits): the number of client data entities for ODUCn. When 162 Signal Type is not ODUCn, n MUST be set to 0 and ignored on receipt. 164 Reserved (8 bits): this field is reserved and MUST be set to 0 and 165 ignored on receipt. 167 Num of TS (16 bits): the number of 5-Gbps TS that ODUCn can occupy 168 to support OTUCn-M link. If a particular value of M is not indicated 169 in OTUCn-M link, the signal contains 20*n 5-Gbps TS. When Signal 170 Type is not ODUCn, this field MUST be set to 0 and ignored on 171 receipt. 173 Note that the above three fields (n, Reserved, and Num of TS fields) 174 are useful only when Signal Type is ODUCn. When Signal Type is not 175 ODUCn, these three fields MUST be omitted. 177 The values of rest fields are the same as defined in Section 4.1.3 178 of [RFC7138]. 180 The following example shows the multiplexing to ODUCn. In this 181 example, an OTUC1 component link is considered with multiplexing 182 hierarchy ODU0->ODU1->ODU2->ODU3->ODU4->ODUC1 and with supported 183 priorities 0 and 2. The T and S fields are not relevant to this 184 example and filled with Xs. 186 0 1 2 3 187 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 188 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 189 | Type = 1 (Unres-fix) | Length = 12 | 190 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 191 | Sig type=ODUCn| #stages = 0 |X|X|TSG=0|0 0 0|1|0|1|0|0|0|0|0| 192 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 193 | Unres ODUCn at Prio 0 = 1 | Unres ODUCn at Prio 2 = 1 | 194 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 195 | n = 1 |0 0 0 0 0 0 0 0| Num of TS = 20 | 196 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 197 | Type = 1 (Unres-fix) | Length = 12 | 198 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 199 | Sig type=ODU4 | #stages = 1 |X|X|TSG=3|0 0 0|1|0|1|0|0|0|0|0| 200 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 201 | Stage#1=ODUCn | Padding (all zeros) | 202 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 203 | Unres ODU4 at Prio 0 = 1 | Unres ODU4 at Prio 2 = 1 | 204 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 205 | Type = 1 (Unres-fix) | Length = 12 | 206 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 207 | Sig type=ODU3 | #stages = 2 |X|X|TSG=1|0 0 0|1|0|1|0|0|0|0|0| 208 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 209 | Stage#1=ODU4 | Stage#2=ODUCn | Padding (all zeros) | 210 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 211 | Unres ODU3 at Prio 0 = 2 | Unres ODU3 at Prio 2 = 2 | 212 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 213 | Type = 1 (Unres-fix) | Length = 12 | 214 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 215 | Sig type=ODU2 | #stages = 3 |X|X|TSG=1|0 0 0|1|0|1|0|0|0|0|0| 216 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 217 | Stage#1=ODU3 | Stage#2=ODU4 | Stage#3=ODUCn | Padding | 218 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 219 | Unres ODU2 at Prio 0 = 10 | Unres ODU2 at Prio 2 = 10 | 220 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 221 | Type = 1 (Unres-fix) | Length = 12 | 222 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 223 | Sig type=ODU1 | #stages = 4 |X|X|TSG=1|0 0 0|1|0|1|0|0|0|0|0| 224 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 225 | Stage#1=ODU2 | Stage#2=ODU3 | Stage#3=ODU4 | Stage#4=ODUCn | 226 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 227 | Unres ODU1 at Prio 0 = 4 | Unres ODU1 at Prio 2 = 4 | 228 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 229 | Type = 1 (Unres-fix) | Length = 16 | 230 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 231 | Sig type=ODU0 | #stages = 5 |X|X|TSG=0|0 0 0|1|0|1|0|0|0|0|0| 232 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 233 | Stage#1=ODU1 | Stage#2=ODU2 | Stage#3=ODU3 | Stage#4=ODU4 | 234 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 235 | Stage#5=ODUCn | Padding (all zeros) | 236 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 237 | Unres ODU0 at Prio 0 = 2 | Unres ODU0 at Prio 2 = 2 | 238 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 240 Figure 2: Multiplexing to ODUC1 242 4.2. Supporting of OTUCn sub rates (OTUCn-M) 244 The OTUCn-M frame is a type of OTUCn frame which contains n 245 instances of OTUC, ODUC and OPUC overhead and M 5-Gbit/s OPUCn 246 tributary slots. If a particular value of M is not indicated, the 247 frame contains 20*n tributary slots. 249 For path computation, OTUCn-M link can provide a bandwidth which is 250 not an integral multiple of the bandwidth of OTUC1. The MAX LSP 251 Bandwidth field and SCSI field for ODUCn signal in ISCD shall be 252 configured as the capacity of OTUCn-M can provide. 254 The following example illustrates the MAX LSP Bandwidth fields of 255 the ISCD for OTUCn-M link and the Bandwidth sub-TLV for ODUCn signal. 256 In this example, an OTUC2-30 link is considered with supported 257 priorities 0 and 2. The T and S fields are not relevant to this 258 example and filled with Xs. 260 0 1 2 3 261 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 262 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 263 | SwCap=OTN_TDM | Encoding = 12 | Reserved (all zeros) | 264 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 265 | MAX LSP Bandwidth at priority 0 = 150 Gbps | 266 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 267 | MAX LSP Bandwidth at priority 1 = 0 | 268 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 269 | MAX LSP Bandwidth at priority 2 = 150 Gbps | 270 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 271 | MAX LSP Bandwidth at priority 3 = 0 | 272 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 273 | MAX LSP Bandwidth at priority 4 = 0 | 274 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 275 | MAX LSP Bandwidth at priority 5 = 0 | 276 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 277 | MAX LSP Bandwidth at priority 6 = 0 | 278 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 279 | MAX LSP Bandwidth at priority 7 = 0 | 280 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 281 | Switching Capability Specific Information | 282 | (variable length) | 283 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 285 Figure 3: ISCD for ODUC2 in OTUC2-30 link 287 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 288 | Type = 1 (Unres-fix) | Length = 12 | 289 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 290 | Sig type=ODUCn| #stages = 0 |X|X|TSG=0|0 0 0|1|0|1|0|0|0|0|0| 291 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 292 | Unres ODUCn at Prio 0 = 1 | Unres ODUCn at Prio 2 = 1 | 293 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 294 | n = 2 | Reserved | Num of TS = 30 | 295 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 297 Figure 4: ODUC2 in OTUC2-30 link 299 5. Security Considerations 301 This document does not introduce any new security considerations to 302 the existing OSPF-TE protocols. Refer to [RFC7138] for further 303 details of the specific security measures. Additionally, [RFC5920] 304 provides an overview of security vulnerabilities and protection 305 mechanisms for the GMPLS control plane. 307 6. IANA considerations 309 TBD. 311 7. References 313 7.1. Normative References 315 [G.709-2016] ITU-T, "Interface for the Optical Transport Network 316 (OTN)", G.709/Y.1331 Recommendation, June 2016. 318 [RFC2119] S. Bradner, "Key words for use in RFCs to indicate 319 requirements levels", RFC 2119, March 1997. 321 [RFC4203] K. Kompella, Y. Rekhter, 'OSPF Extensions in Support of 322 Generalized Multi-Protocol Label Switching (GMPLS)', 323 RFC4203, October 2005. 325 [RFC5920] L. Fang, 'Security Framework for MPLS and GMPLS Networks', 326 RFC5920, July 2010. 328 [RFC6163] Y. Lee, G. Bernstein, W. Imajuku, 'Framework for GMPLS and 329 Path Computation Element (PCE) Control of Wavelength 330 Switched Optical Networks (WSONs)', RFC6163, April 2011. 332 [RFC6566] Y. Lee, G. Bernstein, D. Li, G. Martinelli, 'A Framework 333 for the Control of Wavelength Switched Optical Networks 334 (WSONs) with Impairments', RFC6566, March 2012. 336 [RFC7138] D. Ceccarelli, F. Zhang, S. Belotti, R. Rao, J. Drake, 337 'Traffic Engineering Extensions to OSPF for GMPLS Control 338 of Evolving G.709 Optical Transport Networks', RFC7138, 339 March 2014. 341 [GMPLSv5-fwk] H. Zheng, I. Busi, Z. Ali, S. Belotti, D. Ceccarelli, 342 D. King, 'Framework for GMPLS Control of Optical Transport 343 Networks in G.709 Edition 5', Work in Progress, March 2017. 345 [GMPLSv5-signal] H. Zheng, I. Busi, Z. Ali, D. Ceccarelli, D. King, 346 'GMPLS Signaling Extension for Optical Transport Networks 347 with Beyond 100G in G.709 Edition 5', Work in Progress, 348 March 2017. 350 7.2. Informative References 352 Authors' Addresses 354 Zheyu Fan 355 Huawei Technologies 356 Email: fanzheyu2@huawei.com