idnits 2.17.1 draft-farinacci-lisp-lcaf-09.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- ** The document seems to lack a both a reference to RFC 2119 and the recommended RFC 2119 boilerplate, even if it appears to use RFC 2119 keywords. RFC 2119 keyword, line 179: '...is reserved for future use and MUST be...' RFC 2119 keyword, line 213: '...is reserved for future use and MUST be...' RFC 2119 keyword, line 570: '... See [LISP-MRSIG] for details. The J-bit MUST not be set when the...' Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == Using lowercase 'not' together with uppercase 'MUST', 'SHALL', 'SHOULD', or 'RECOMMENDED' is not an accepted usage according to RFC 2119. Please use uppercase 'NOT' together with RFC 2119 keywords (if that is what you mean). Found 'MUST not' in this paragraph: J-bit: this is the Join-Request bit and is used when this LCAF type is present in the destination EID-prefix field of a Map-Request. See [LISP-MRSIG] for details. The J-bit MUST not be set when the L-bit is also set in the same LCAF block. A receiver should not take any specific Join or Leave action when both bits are set. -- The document date (July 1, 2012) is 4310 days in the past. Is this intentional? Checking references for intended status: Experimental ---------------------------------------------------------------------------- ** Obsolete normative reference: RFC 1700 (Obsoleted by RFC 3232) == Outdated reference: A later version (-10) exists of draft-ietf-lisp-alt-06 == Outdated reference: A later version (-24) exists of draft-ietf-lisp-12 == Outdated reference: A later version (-04) exists of draft-fuller-lisp-ddt-01 == Outdated reference: A later version (-06) exists of draft-farinacci-lisp-mr-signaling-00 == Outdated reference: A later version (-19) exists of draft-ermagan-lisp-nat-traversal-00 == Outdated reference: A later version (-12) exists of draft-farinacci-lisp-te-01 Summary: 2 errors (**), 0 flaws (~~), 8 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group D. Farinacci 3 Internet-Draft D. Meyer 4 Intended status: Experimental cisco Systems 5 Expires: January 2, 2013 J. Snijders 6 InTouch N.V. 7 July 1, 2012 9 LISP Canonical Address Format (LCAF) 10 draft-farinacci-lisp-lcaf-09 12 Abstract 14 This draft defines a canonical address format encoding used in LISP 15 control messages and in the encoding of lookup keys for the LISP 16 Mapping Database System. 18 Status of this Memo 20 This Internet-Draft is submitted in full conformance with the 21 provisions of BCP 78 and BCP 79. 23 Internet-Drafts are working documents of the Internet Engineering 24 Task Force (IETF). Note that other groups may also distribute 25 working documents as Internet-Drafts. The list of current Internet- 26 Drafts is at http://datatracker.ietf.org/drafts/current/. 28 Internet-Drafts are draft documents valid for a maximum of six months 29 and may be updated, replaced, or obsoleted by other documents at any 30 time. It is inappropriate to use Internet-Drafts as reference 31 material or to cite them other than as "work in progress." 33 This Internet-Draft will expire on January 2, 2013. 35 Copyright Notice 37 Copyright (c) 2012 IETF Trust and the persons identified as the 38 document authors. All rights reserved. 40 This document is subject to BCP 78 and the IETF Trust's Legal 41 Provisions Relating to IETF Documents 42 (http://trustee.ietf.org/license-info) in effect on the date of 43 publication of this document. Please review these documents 44 carefully, as they describe your rights and restrictions with respect 45 to this document. Code Components extracted from this document must 46 include Simplified BSD License text as described in Section 4.e of 47 the Trust Legal Provisions and are provided without warranty as 48 described in the Simplified BSD License. 50 Table of Contents 52 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3 53 2. Definition of Terms . . . . . . . . . . . . . . . . . . . . . 4 54 3. LISP Canonical Address Format Encodings . . . . . . . . . . . 5 55 4. LISP Canonical Address Applications . . . . . . . . . . . . . 7 56 4.1. Segmentation using LISP . . . . . . . . . . . . . . . . . 7 57 4.2. Carrying AS Numbers in the Mapping Database . . . . . . . 8 58 4.3. Convey Application Specific Data . . . . . . . . . . . . . 9 59 4.4. Assigning Geo Coordinates to Locator Addresses . . . . . . 10 60 4.5. Generic Database Mapping Lookups . . . . . . . . . . . . . 11 61 4.6. NAT Traversal Scenarios . . . . . . . . . . . . . . . . . 13 62 4.7. PETR Admission Control Functionality . . . . . . . . . . . 14 63 4.8. Multicast Group Membership Information . . . . . . . . . . 16 64 4.9. Traffic Engineering using Re-encapsulating Tunnels . . . . 17 65 4.10. Storing Security Data in the Mapping Database . . . . . . 18 66 4.11. Source/Destination 2-Tuple Lookups . . . . . . . . . . . . 19 67 4.12. Applications for AFI List Type . . . . . . . . . . . . . . 20 68 4.12.1. Binding IPv4 and IPv6 Addresses . . . . . . . . . . . 20 69 4.12.2. Layer-2 VPNs . . . . . . . . . . . . . . . . . . . . 21 70 4.12.3. ASCII Names in the Mapping Database . . . . . . . . . 21 71 4.12.4. Using Recursive LISP Canonical Address Encodings . . 22 72 4.12.5. Compatibility Mode Use Case . . . . . . . . . . . . . 23 73 5. Security Considerations . . . . . . . . . . . . . . . . . . . 24 74 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 25 75 7. References . . . . . . . . . . . . . . . . . . . . . . . . . . 26 76 7.1. Normative References . . . . . . . . . . . . . . . . . . . 26 77 7.2. Informative References . . . . . . . . . . . . . . . . . . 26 78 Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . . 27 79 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 28 81 1. Introduction 83 The LISP architecture and protocols [LISP] introduces two new 84 numbering spaces, Endpoint Identifiers (EIDs) and Routing Locators 85 (RLOCs) which are intended to replace most use of IP addresses on the 86 Internet. To provide flexibility for current and future 87 applications, these values can be encoded in LISP control messages 88 using a general syntax that includes Address Family Identifier (AFI), 89 length, and value fields. 91 Currently defined AFIs include IPv4 and IPv6 addresses, which are 92 formatted according to code-points assigned in [AFI] as follows: 94 IPv4 Encoded Address: 96 0 1 2 3 97 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 98 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 99 | AFI = 1 | IPv4 Address ... | 100 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 101 | ... IPv4 Address | 102 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 104 IPv6 Encoded Address: 106 0 1 2 3 107 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 108 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 109 | AFI = 2 | IPv6 Address ... | 110 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 111 | ... IPv6 Address ... | 112 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 113 | ... IPv6 Address ... | 114 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 115 | ... IPv6 Address ... | 116 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 117 | ... IPv6 Address | 118 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 120 This document describes the currently-defined AFIs the LISP protocol 121 uses along with their encodings and introduces the LISP Canonical 122 Address Format (LCAF) that can be used to define the LISP-specific 123 encodings for arbitrary AFI values. 125 2. Definition of Terms 127 Address Family Identifier (AFI): a term used to describe an address 128 encoding in a packet. An address family currently defined for 129 IPv4 or IPv6 addresses. See [AFI] and [RFC1700] for details. The 130 reserved AFI value of 0 is used in this specification to indicate 131 an unspecified encoded address where the the length of the address 132 is 0 bytes following the 16-bit AFI value of 0. 134 Unspecified Address Format: 136 0 1 2 3 137 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 138 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 139 | AFI = 0 | | 140 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 142 Endpoint ID (EID): a 32-bit (for IPv4) or 128-bit (for IPv6) value 143 used in the source and destination address fields of the first 144 (most inner) LISP header of a packet. The host obtains a 145 destination EID the same way it obtains a destination address 146 today, for example through a DNS lookup or SIP exchange. The 147 source EID is obtained via existing mechanisms used to set a 148 host's "local" IP address. An EID is allocated to a host from an 149 EID-prefix block associated with the site where the host is 150 located. An EID can be used by a host to refer to other hosts. 152 Routing Locator (RLOC): the IPv4 or IPv6 address of an egress 153 tunnel router (ETR). It is the output of a EID-to-RLOC mapping 154 lookup. An EID maps to one or more RLOCs. Typically, RLOCs are 155 numbered from topologically aggregatable blocks that are assigned 156 to a site at each point to which it attaches to the global 157 Internet; where the topology is defined by the connectivity of 158 provider networks, RLOCs can be thought of as PA addresses. 159 Multiple RLOCs can be assigned to the same ETR device or to 160 multiple ETR devices at a site. 162 3. LISP Canonical Address Format Encodings 164 IANA has assigned AFI value 16387 (0x4003) to the LISP architecture 165 and protocols. This specification defines the encoding format of the 166 LISP Canonical Address (LCA). 168 The first 4 bytes of an LISP Canonical Address are followed by a 169 variable length of fields: 171 0 1 2 3 172 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 173 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 174 | AFI = 16387 | Rsvd1 | Flags | 175 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 176 | Type | Rsvd2 | Length | 177 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 179 Rsvd1: this 8-bit field is reserved for future use and MUST be 180 transmitted as 0 and ignored on receipt. 182 Flags: this 8-bit field is for future definition and use. For now, 183 set to zero on transmission and ignored on receipt. 185 Type: this 8-bit field is specific to the LISP Canonical Address 186 formatted encodings, values are: 188 Type 0: Null Body Type 190 Type 1: AFI List Type 192 Type 2: Instance ID Type 194 Type 3: AS Number Type 196 Type 4: Application Data Type 198 Type 5: Geo Coordinates Type 200 Type 6: Opaque Key Type 202 Type 7: NAT-Traversal Type 204 Type 8: Nonce Locator Type 206 Type 9: Multicast Info Type 207 Type 10: Explicit Locator Path Type 209 Type 11: Security Key Type 211 Type 12: Source/Dest Key Type 213 Rsvd2: this 8-bit field is reserved for future use and MUST be 214 transmitted as 0 and ignored on receipt. 216 Length: this 16-bit field is in units of bytes and covers all of the 217 LISP Canonical Address payload, starting and including the byte 218 after the Length field. So any LCAF encoded address will have a 219 minimum length of 8 bytes when the Length field is 0. The 8 bytes 220 include the AFI, Flags, Type, Reserved, and Length fields. When 221 the AFI is not next to encoded address in a control message, then 222 the encoded address will have a minimum length of 6 bytes when the 223 Length field is 0. The 6 bytes include the Flags, Type, Reserved, 224 and Length fields. 226 4. LISP Canonical Address Applications 228 4.1. Segmentation using LISP 230 When multiple organizations inside of a LISP site are using private 231 addresses [RFC1918] as EID-prefixes, their address spaces must remain 232 segregated due to possible address duplication. An Instance ID in 233 the address encoding can aid in making the entire AFI based address 234 unique. 236 Another use for the Instance ID LISP Canonical Address Format is when 237 creating multiple segmented VPNs inside of a LISP site where keeping 238 EID-prefix based subnets is desirable. 240 Instance ID LISP Canonical Address Format: 242 0 1 2 3 243 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 244 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 245 | AFI = 16387 | Rsvd1 | Flags | 246 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 247 | Type = 2 | IID mask-len | 4 + n | 248 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 249 | Instance ID | 250 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 251 | AFI = x | Address ... | 252 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 254 IID mask-len: if the AFI is set to 0, then this format is not 255 encoding an extended EID-prefix but rather an instance-ID range 256 where the 'IID mask-len' indicates the number of high-order bits 257 used in the Instance ID field for the range. 259 Length value n: length in bytes of the AFI address that follows the 260 Instance ID field including the AFI field itself. 262 Instance ID: the low-order 24-bits that can go into a LISP data 263 header when the I-bit is set. See [LISP] for details. 265 AFI = x: x can be any AFI value from [AFI]. 267 This LISP Canonical Address Type can be used to encode either EID or 268 RLOC addresses. 270 4.2. Carrying AS Numbers in the Mapping Database 272 When an AS number is stored in the LISP Mapping Database System for 273 either policy or documentation reasons, it can be encoded in a LISP 274 Canonical Address. 276 AS Number LISP Canonical Address Format: 278 0 1 2 3 279 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 280 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 281 | AFI = 16387 | Rsvd1 | Flags | 282 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 283 | Type = 3 | Rsvd2 | 4 + n | 284 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 285 | AS Number | 286 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 287 | AFI = x | Address ... | 288 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 290 Length value n: length in bytes of the AFI address that follows the 291 AS Number field including the AFI field itself. 293 AS Number: the 32-bit AS number of the autonomous system that has 294 been assigned either the EID or RLOC that follows. 296 AFI = x: x can be any AFI value from [AFI]. 298 The AS Number Canonical Address Type can be used to encode either EID 299 or RLOC addresses. The former is used to describe the LISP-ALT AS 300 number the EID-prefix for the site is being carried for. The latter 301 is used to describe the AS that is carrying RLOC based prefixes in 302 the underlying routing system. 304 4.3. Convey Application Specific Data 306 When a locator-set needs to be conveyed based on the type of 307 application or the Per-Hop Behavior (PHB) of a packet, the 308 Application Data Type can be used. 310 Application Data LISP Canonical Address Format: 312 0 1 2 3 313 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 314 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 315 | AFI = 16387 | Rsvd1 | Flags | 316 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 317 | Type = 4 | Rsvd2 | 8 + n | 318 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 319 | IP TOS, IPv6 TC, or Flow Label | Protocol | 320 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 321 | Local Port | Remote Port | 322 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 323 | AFI = x | Address ... | 324 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 326 Length value n: length in bytes of the AFI address that follows the 327 8-byte Application Data fields including the AFI field itself. 329 IP TOS, IPv6 TC, or Flow Label: this field stores the 8-bit IPv4 TOS 330 field used in an IPv4 header, the 8-bit IPv6 Traffic Class or Flow 331 Label used in an IPv6 header. 333 Local Port/Remote Port: these fields are from the TCP, UDP, or SCTP 334 transport header. 336 AFI = x: x can be any AFI value from [AFI]. 338 The Application Data Canonical Address Type is used for an EID 339 encoding when an ITR wants a locator-set for a specific application. 340 When used for an RLOC encoding, the ETR is supplying a locator-set 341 for each specific application is has been configured to advertise. 343 4.4. Assigning Geo Coordinates to Locator Addresses 345 If an ETR desires to send a Map-Reply describing the Geo Coordinates 346 for each locator in its locator-set, it can use the Geo Coordinate 347 Type to convey physical location information. 349 Geo Coordinate LISP Canonical Address Format: 351 0 1 2 3 352 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 353 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 354 | AFI = 16387 | Rsvd1 | Flags | 355 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 356 | Type = 5 | Rsvd2 | 12 + n | 357 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 358 |N| Latitude Degrees | Minutes | Seconds | 359 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 360 |E| Longitude Degrees | Minutes | Seconds | 361 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 362 | Altitude | 363 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 364 | AFI = x | Address ... | 365 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 367 Length value n: length in bytes of the AFI address that follows the 368 8-byte Longitude and Latitude fields including the AFI field 369 itself. 371 N: When set to 1 means North, otherwise South. 373 Latitude Degrees: Valid values range from 0 to 90. degrees above or 374 below the equator (northern or southern hemisphere, respectively). 376 Latitude Minutes: Valid values range from 0 to 59. 378 Latitude Seconds: Valid values range from 0 to 59. 380 E: When set to 1 means East, otherwise West. 382 Longitude Degrees: Value values are from 0 to 90 degrees right or 383 left of the Prime Meridian. 385 Longitude Minutes: Valid values range from 0 to 59. 387 Longitude Seconds: Valid values range from 0 to 59. 389 Altitude: Height relative to sea level in meters. This is a signed 390 integer meaning that the altitude could be below sea level. A 391 value of 0x7fffffff indicates no Altitude value is encoded. 393 AFI = x: x can be any AFI value from [AFI]. 395 The Geo Coordinates Canonical Address Type can be used to encode 396 either EID or RLOC addresses. When used for EID encodings, you can 397 determine the physical location of an EID along with the topological 398 location by observing the locator-set. 400 4.5. Generic Database Mapping Lookups 402 When the LISP Mapping Database system holds information accessed by a 403 generic formatted key (where the key is not the usual IPv4 or IPv6 404 address), an opaque key may be desirable. 406 Opaque Key LISP Canonical Address Format: 408 0 1 2 3 409 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 410 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 411 | AFI = 16387 | Rsvd1 | Flags | 412 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 413 | Type = 6 | Rsvd2 | n | 414 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 415 | Key Field Num | Key Wildcard Fields | Key . . . | 416 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 417 | . . . Key | 418 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 420 Length value n: length in bytes of the type's payload. The value n 421 is the number of bytes that follow this Length field. 423 Key Field Num: the number of fields (minus 1) the key can be broken 424 up into. The width of the fields are fixed length. So for a key 425 size of 8 bytes, with a Key Field Num of 4 allows 4 fields of 2 426 bytes in length. Valid values for this field range from 0 to 15 427 supporting a maximum of 16 field separations. 429 Key Wildcard Fields: describes which fields in the key are not used 430 as part of the key lookup. This wildcard encoding is a bitfield. 431 Each bit is a don't-care bit for a corresponding field in the key. 432 Bit 0 (the low-order bit) in this bitfield corresponds the first 433 field, right-justified in the key, bit 1 the second field, and so 434 on. When a bit is set in the bitfield it is a don't-care bit and 435 should not be considered as part of the database lookup. When the 436 entire 16-bits is set to 0, then all bits of the key are used for 437 the database lookup. 439 Key: the variable length key used to do a LISP Database Mapping 440 lookup. The length of the key is the value n (shown above) minus 441 3. 443 4.6. NAT Traversal Scenarios 445 When a LISP system is conveying global address and mapped port 446 information when traversing through a NAT device, the NAT-Traversal 447 LCAF Type is used. See [LISP-NATT] for details. 449 NAT-Traversal Canonical Address Format: 451 0 1 2 3 452 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 453 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 454 | AFI = 16387 | Rsvd1 | Flags | 455 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 456 | Type = 7 | Rsvd2 | 4 + n | 457 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 458 | MS UDP Port Number | ETR UDP Port Number | 459 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 460 | AFI = x | Global ETR RLOC Address ... | 461 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 462 | AFI = x | MS RLOC Address ... | 463 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 464 | AFI = x | Private ETR RLOC Address ... | 465 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 466 | AFI = x | RTR RLOC Address 1 ... | 467 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 468 | AFI = x | RTR RLOC Address k ... | 469 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 471 Length value n: length in bytes of the AFI addresses that follows 472 the UDP Port Number field including the AFI fields themselves. 474 MS UDP Port Number: this is the UDP port number of the Map-Server 475 and is set to 4342. 477 ETR UDP Port Number: this is the port number returned to a LISP 478 system which was copied from the source port from a packet that 479 has flowed through a NAT device. 481 AFI = x: x can be any AFI value from [AFI]. 483 Global ETR RLOC Address: this is an address known to be globally 484 unique built by NAT-traversal functionality in a LISP router. 486 MS RLOC Address: this is the address of the Map-Server used in the 487 destination RLOC of a packet that has flowed through a NAT device. 489 Private ETR RLOC Address: this is an address known to be a private 490 address inserted in this LCAF format by a LISP router that resides 491 on the private side of a NAT device. 493 RTR RLOC Address: this is an encapsulation address used by an ITR or 494 PITR which resides behind a NAT device. This address is known to 495 have state in a NAT device so packets can flow from it to the LISP 496 ETR behind the NAT. There can be one or more NTR addresses 497 supplied in these set of fields. The number of NTRs encoded is 498 determined by the LCAF length field. When there are no NTRs 499 supplied, the NTR fields can be omitted and reflected by the LCAF 500 length field or an AFI of 0 can be used to indicate zero NTRs 501 encoded. 503 4.7. PETR Admission Control Functionality 505 When a public PETR device wants to verify who is encapsulating to it, 506 it can check for a specific nonce value in the LISP encapsulated 507 packet. To convey the nonce to admitted ITRs or PITRs, this LCAF 508 format is used in a Map-Register or Map-Reply locator-record. 510 Nonce Locator Canonical Address Format: 512 0 1 2 3 513 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 514 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 515 | AFI = 16387 | Rsvd1 | Flags | 516 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 517 | Type = 8 | Rsvd2 | 4 + n | 518 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 519 | Reserved | Nonce | 520 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 521 | AFI = x | Address ... | 522 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 524 Length value n: length in bytes of the AFI address that follows the 525 Nonce field including the AFI field itself. 527 Reserved: must be set to zero and ignore on receipt. 529 Nonce: this is a nonce value returned by an ETR in a Map-Reply 530 locator-record to be used by an ITR or PITR when encapsulating to 531 the locator address encoded in the AFI field of this LCAF type. 533 AFI = x: x can be any AFI value from [AFI]. 535 4.8. Multicast Group Membership Information 537 Multicast group information can be published in the mapping database 538 so a lookup on an EID based group address can return a replication 539 list of group addresses or a unicast addresses for single replication 540 or multiple head-end replications. This LCAF encoding can be used to 541 send broadcast packets to all members of a subnet when each EIDs are 542 away from their home subnet location. 544 Multicast Info Canonical Address Format: 546 0 1 2 3 547 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 548 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 549 | AFI = 16387 | Rsvd1 | Flags | 550 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 551 | Type = 9 | Rsvd2 |L|J| 4 + n | 552 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 553 | Reserved | Source MaskLen| Group MaskLen | 554 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 555 | AFI = x | Source/Subnet Address ... | 556 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 557 | AFI = x | Group Address ... | 558 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 560 Length value n: length in bytes of fields that follow. 562 Reserved: must be set to zero and ignore on receipt. 564 L-bit: this is the Leave-Request bit and is used when this LCAF type 565 is present in the destination EID-prefix field of a Map-Request. 566 See [LISP-MRSIG] for details. 568 J-bit: this is the Join-Request bit and is used when this LCAF type 569 is present in the destination EID-prefix field of a Map-Request. 570 See [LISP-MRSIG] for details. The J-bit MUST not be set when the 571 L-bit is also set in the same LCAF block. A receiver should not 572 take any specific Join or Leave action when both bits are set. 574 Source MaskLen: the mask length of the source prefix that follows. 576 Group MaskLen: the mask length of the group prefix that follows. 578 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 579 its own encoding of a multicast address, this field must be either 580 a group address or a broadcast address. 582 4.9. Traffic Engineering using Re-encapsulating Tunnels 584 For a given EID lookup into the mapping database, this LCAF format 585 can be returned to provide a list of locators in an explicit re- 586 encapsulation path. See [LISP-TE] for details. 588 Explicit Locator Path (ELP) Canonical Address Format: 590 0 1 2 3 591 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 592 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 593 | AFI = 16387 | Rsvd1 | Flags | 594 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 595 | Type = 10 | Rsvd2 | n | 596 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 597 | AFI = x | Rsvd3 |L|P|S| 598 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 599 | Reencap Hop 1 ... | 600 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 601 | AFI = x | Rsvd3 |L|P|S| 602 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 603 | Reencap Hop k ... | 604 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 606 Length value n: length in bytes of fields that follow. 608 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 609 its own encoding of a multicast address, this field must be either 610 a group address or a broadcast address. 612 Lookup bit (L): this is the Lookup bit used to indicate to the user 613 of the ELP to not use this address for encapsulation but to look 614 it up in the mapping database system to obtain an encapsulating 615 RLOC address. 617 RLOC-Probe bit (P): this is the RLOC-probe bit which means the 618 Reencap Hop allows RLOC-probe messages to be sent to it. When the 619 R-bit is set to 0, RLOC-probes must not be sent. When a Reencap 620 Hop is an anycast address then multiple physical Reencap Hops are 621 using the same RLOC address. In this case, RLOC-probes are not 622 needed because when the closest RLOC address is not reachable 623 another RLOC address can reachable. 625 Strict bit (S): this the strict bit which means the associated 626 Rencap Hop is required to be used. If this bit is 0, the 627 reencapsulator can skip this Reencap Hop and go to the next one in 628 the list. 630 4.10. Storing Security Data in the Mapping Database 632 When a locator in a locator-set has a security key associated with 633 it, this LCAF format will be used to encode key material. See 634 [LISP-DDT] for details. 636 Security Key Canonical Address Format: 638 0 1 2 3 639 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 640 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 641 | AFI = 16387 | Rsvd1 | Flags | 642 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 643 | Type = 11 | Rsvd2 | 6 + n | 644 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 645 | Key Count | Rsvd3 | Key Algorithm | Rsvd4 |R| 646 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 647 | Key Length | Key Material ... | 648 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 649 | ... Key Material | 650 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 651 | AFI = x | Locator Address ... | 652 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 654 Length value n: length in bytes of fields that start with the Key 655 Material field. 657 Key Count: the Key Count field declares the number of Key sections 658 included in this LCAF. 660 Key Algorithm: the Algorithm field identifies the key's 661 cryptographic algorithm and specifies the format of the Public Key 662 field. 664 R bit: this is the revoke bit and, if set, it specifies that this 665 Key is being Revoked. 667 Key Length: this field determines the length in bytes of the Key 668 Material field. 670 Key Material: the Key Material field stores the key material. The 671 format of the key material stored depends on the Key Algorithm 672 field. 674 AFI = x: x can be any AFI value from [AFI].This is the locator 675 address that owns the encoded security key. 677 4.11. Source/Destination 2-Tuple Lookups 679 When both a source and destination address of a flow needs 680 consideration for different locator-sets, this 2-tuple key is used in 681 EID fields in LISP control messages. When the Source/Dest key is 682 registered to the mapping database, it can be encoded as a source- 683 prefix and destination-prefix. When the Source/Dest is used as a key 684 for a mapping database lookup the source and destination come from a 685 data packet. 687 Source/Dest Key Canonical Address Format: 689 0 1 2 3 690 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 691 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 692 | AFI = 16387 | Rsvd1 | Flags | 693 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 694 | Type = 12 | Rsvd2 | 4 + n | 695 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 696 | Reserved | Source-ML | Dest-ML | 697 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 698 | AFI = x | Source-Prefix ... | 699 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 700 | AFI = x | Destination-Prefix ... | 701 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 703 Length value n: length in bytes of fields that follow. 705 Reserved: must be set to zero and ignore on receipt. 707 Source-ML: the mask length of the source prefix that follows. 709 Dest-ML: the mask length of the destination prefix that follows. 711 AFI = x: x can be any AFI value from [AFI]. When a specific AFI has 712 its own encoding of a multicast address, this field must be either 713 a group address or a broadcast address. 715 Refer to [LISP-TE] for usage details. 717 4.12. Applications for AFI List Type 719 4.12.1. Binding IPv4 and IPv6 Addresses 721 When header translation between IPv4 and IPv6 is desirable a LISP 722 Canonical Address can use the AFI List Type to carry multiple AFIs in 723 one LCA AFI. 725 Bounded Address LISP Canonical Address Format: 727 0 1 2 3 728 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 729 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 730 | AFI = 16387 | Rsvd1 | Flags | 731 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 732 | Type = 1 | Rsvd2 | 2 + 4 + 2 + 16 | 733 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 734 | AFI = 1 | IPv4 Address ... | 735 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 736 | ... IPv4 Address | AFI = 2 | 737 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 738 | IPv6 Address ... | 739 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 740 | ... IPv6 Address ... | 741 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 742 | ... IPv6 Address ... | 743 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 744 | ... IPv6 Address | 745 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 747 Length: length in bytes is fixed at 24 when IPv4 and IPv6 AFI 748 encoded addresses are used. 750 This type of address format can be included in a Map-Request when the 751 address is being used as an EID, but the Mapping Database System 752 lookup destination can use only the IPv4 address. This is so a 753 Mapping Database Service Transport System, such as LISP-ALT [ALT], 754 can use the Map-Request destination address to route the control 755 message to the desired LISP site. 757 4.12.2. Layer-2 VPNs 759 When MAC addresses are stored in the LISP Mapping Database System, 760 the AFI List Type can be used to carry AFI 6. 762 MAC Address LISP Canonical Address Format: 764 0 1 2 3 765 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 766 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 767 | AFI = 16387 | Rsvd1 | Flags | 768 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 769 | Type = 1 | Rsvd2 | 2 + 6 | 770 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 771 | AFI = 6 | Layer-2 MAC Address ... | 772 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 773 | ... Layer-2 MAC Address | 774 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 776 Length: length in bytes is fixed at 8 when MAC address AFI encoded 777 addresses are used. 779 This address format can be used to connect layer-2 domains together 780 using LISP over an IPv4 or IPv6 core network to create a layer-2 VPN. 781 In this use-case, a MAC address is being used as an EID, and the 782 locator-set that this EID maps to can be an IPv4 or IPv6 RLOCs, or 783 even another MAC address being used as an RLOC. 785 4.12.3. ASCII Names in the Mapping Database 787 If DNS names or URIs are stored in the LISP Mapping Database System, 788 the AFI List Type can be used to carry an ASCII string where it is 789 delimited by length 'n' of the LCAF Length encoding. 791 ASCII LISP Canonical Address Format: 793 0 1 2 3 794 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 795 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 796 | AFI = 16387 | Rsvd1 | Flags | 797 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 798 | Type = 1 | Rsvd2 | 2 + n | 799 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 800 | AFI = 17 | DNS Name or URI ... | 801 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 803 Length value n: length in bytes AFI=17 field and the null-terminated 804 ASCII string (the last byte of 0 is included). 806 4.12.4. Using Recursive LISP Canonical Address Encodings 808 When any combination of above is desirable, the AFI List Type value 809 can be used to carry within the LCA AFI another LCA AFI. 811 Recursive LISP Canonical Address Format: 813 0 1 2 3 814 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 815 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 816 | AFI = 16387 | Rsvd1 | Flags | 817 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 818 | Type = 1 | Rsvd2 | 4 + 8 + 2 + 4 | 819 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 820 | AFI = 16387 | Rsvd1 | Flags | 821 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 822 | Type = 4 | Rsvd2 | 12 | 823 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 824 | IP TOS, IPv6 QQS or Flow Label | Protocol | 825 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 826 | Local Port | Remote Port | 827 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 828 | AFI = 1 | IPv4 Address ... | 829 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 830 | ... IPv4 Address | 831 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 833 Length: length in bytes is fixed at 18 when an AFI=1 IPv4 address is 834 included. 836 This format could be used by a Mapping Database Transport System, 837 such as LISP-ALT [ALT], where the AFI=1 IPv4 address is used as an 838 EID and placed in the Map-Request destination address by the sending 839 LISP system. The ALT system can deliver the Map-Request to the LISP 840 destination site independent of the Application Data Type AFI payload 841 values. When this AFI is processed by the destination LISP site, it 842 can return different locator-sets based on the type of application or 843 level of service that is being requested. 845 4.12.5. Compatibility Mode Use Case 847 A LISP system should use the AFI List Type format when sending to 848 LISP systems that do not support a particular LCAF Type used to 849 encode locators. This allows the receiving system to be able to 850 parse a locator address for encapsulation purposes. The list of AFIs 851 in an AFI List LCAF Type has no semantic ordering and a receiver 852 should parse each AFI element no matter what the ordering. 854 Compatibility Mode Address Format: 856 0 1 2 3 857 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 858 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 859 | AFI = 16387 | Rsvd1 | Flags | 860 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 861 | Type = 1 | Rsvd2 | 22 + 6 | 862 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 863 | AFI = 16387 | Rsvd1 | Flags | 864 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 865 | Type = 5 | Rsvd2 | 12 + 2 | 866 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 867 |N| Latitude Degrees | Minutes | Seconds | 868 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 869 |E| Longitude Degrees | Minutes | Seconds | 870 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 871 | Altitude | 872 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 873 | AFI = 0 | AFI = 1 | 874 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 875 | IPv4 Address | 876 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 878 If a system does not recognized the Geo Coordinate LCAF Type that is 879 accompanying a locator address, an encoder can include the Geo 880 Coordinate LCAF Type embedded in a AFI List LCAF Type where the AFI 881 in the Geo Coordinate LCAF is set to 0 and the AFI encoded next in 882 the list is encoded with a valid AFI value to identify the locator 883 address. 885 A LISP system is required to support the AFI List LCAF Type to use 886 this procedure. It would skip over 10 bytes of the Geo Coordinate 887 LCAF Type to get to the locator address encoding (an IPv4 locator 888 address). A LISP system that does support the Geo Coordinate LCAF 889 Type can support parsing the locator address within the Geo 890 Coordinate LCAF encoding or in the locator encoding that follows in 891 the AFI List LCAF. 893 5. Security Considerations 895 There are no security considerations for this specification. The 896 security considerations are documented for the protocols that use 897 LISP Canonical Addressing. Refer to the those relevant 898 specifications. 900 6. IANA Considerations 902 The Address Family AFI definitions from [AFI] only allocate code- 903 points for the AFI value itself. The length of the address or entity 904 that follows is not defined and is implied based on conventional 905 experience. Where the LISP protocol uses LISP Canonical Addresses 906 specifically, the address length definitions will be in this 907 specification and take precedent over any other specification. 909 An IANA Registry for LCAF Type values will be created. The values 910 that are considered for use by the main LISP specification [LISP] 911 will be in the IANA Registry. Other Type values used for 912 experimentation will be defined and described in this document. 914 7. References 916 7.1. Normative References 918 [RFC1700] Reynolds, J. and J. Postel, "Assigned Numbers", RFC 1700, 919 October 1994. 921 [RFC1918] Rekhter, Y., Moskowitz, R., Karrenberg, D., Groot, G., and 922 E. Lear, "Address Allocation for Private Internets", 923 BCP 5, RFC 1918, February 1996. 925 7.2. Informative References 927 [AFI] IANA, "Address Family Identifier (AFIs)", ADDRESS FAMILY 928 NUMBERS http://www.iana.org/numbers.html, Febuary 2007. 930 [ALT] Fuller, V., Farinacci, D., Meyer, D., and D. Lewis, "LISP 931 Alternative Topology (LISP+ALT)", 932 draft-ietf-lisp-alt-06.txt (work in progress), March 2011. 934 [LISP] Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, 935 "Locator/ID Separation Protocol (LISP)", 936 draft-ietf-lisp-12.txt (work in progress), April 2011. 938 [LISP-DDT] 939 Fuller, V., Lewis, D., and V. Ermagan, "LISP Delegated 940 Database Tree", draft-fuller-lisp-ddt-01.txt (work in 941 progress). 943 [LISP-MRSIG] 944 Farinacci, D., Spencer, T., and M. Napierala, "LISP 945 Control-Plane Multicast Signaling", 946 draft-farinacci-lisp-mr-signaling-00.txt (work in 947 progress). 949 [LISP-NATT] 950 Ermagan, V., Farinacci, D., Lewis, D., Skriver, J., Maino, 951 F., and C. White, "NAT traversal for LISP", 952 draft-ermagan-lisp-nat-traversal-00.txt (work in 953 progress). 955 [LISP-TE] Farinacci, D., Lahiri, P., and M. Kowal, "LISP Traffic 956 Engineering Use-Cases", draft-farinacci-lisp-te-01.txt 957 (work in progress). 959 Appendix A. Acknowledgments 961 The authors would like to thank Vince Fuller, Gregg Schudel, Jesper 962 Skriver, Luigi Iannone, and Isidor Kouvelas for their technical and 963 editorial commentary. 965 The authors would like to thank Victor Moreno for discussions that 966 lead to the definition of the Multicast Info LCAF type. 968 The authors would like to thank Parantap Lahiri and Michael Kowal for 969 discussions that lead to the definition of the Explicit Locator Path 970 (ELP) LCAF type. 972 The authors would like to thank Fabio Maino and Vina Ermagan for 973 discussions that lead to the definition of the Security Key LCAF 974 type. 976 Thanks also goes to Terry Manderson for assistance obtaining a LISP 977 AFI value from IANA. 979 Authors' Addresses 981 Dino Farinacci 982 cisco Systems 983 Tasman Drive 984 San Jose, CA 95134 985 USA 987 Email: dino@cisco.com 989 Dave Meyer 990 cisco Systems 991 170 Tasman Drive 992 San Jose, CA 993 USA 995 Email: dmm@cisco.com 997 Job Snijders 998 InTouch N.V. 999 Middenweg 76 1000 1097 BS Amsterdam 1001 The Netherlands 1003 Email: job@instituut.net