idnits 2.17.1 draft-galimbe-ccamp-iv-yang-07.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == The document doesn't use any RFC 2119 keywords, yet seems to have RFC 2119 boilerplate text. -- The document date (October 22, 2018) is 2006 days in the past. Is this intentional? Checking references for intended status: Informational ---------------------------------------------------------------------------- == Missing Reference: 'RFC6566' is mentioned on line 163, but not defined == Missing Reference: 'ITU.G680' is mentioned on line 162, but not defined == Missing Reference: 'RFC6241' is mentioned on line 901, but not defined == Missing Reference: 'RFC6242' is mentioned on line 903, but not defined == Missing Reference: 'RFC6536' is mentioned on line 903, but not defined ** Obsolete undefined reference: RFC 6536 (Obsoleted by RFC 8341) == Missing Reference: 'RFC3688' is mentioned on line 911, but not defined == Missing Reference: 'RFC6020' is mentioned on line 925, but not defined == Unused Reference: 'ITU.G694.1' is defined on line 968, but no explicit reference was found in the text == Unused Reference: 'ITU.G709' is defined on line 979, but no explicit reference was found in the text == Unused Reference: 'ITU.G7710' is defined on line 984, but no explicit reference was found in the text == Unused Reference: 'ITU.G798' is defined on line 989, but no explicit reference was found in the text == Unused Reference: 'ITU.G8201' is defined on line 995, but no explicit reference was found in the text == Unused Reference: 'ITU.G826' is defined on line 1001, but no explicit reference was found in the text == Unused Reference: 'ITU.G872' is defined on line 1007, but no explicit reference was found in the text == Unused Reference: 'ITU.G874' is defined on line 1012, but no explicit reference was found in the text == Unused Reference: 'ITU.G874.1' is defined on line 1017, but no explicit reference was found in the text == Unused Reference: 'ITU.G959.1' is defined on line 1023, but no explicit reference was found in the text == Unused Reference: 'RFC2578' is defined on line 1033, but no explicit reference was found in the text == Unused Reference: 'RFC2579' is defined on line 1039, but no explicit reference was found in the text == Unused Reference: 'RFC2580' is defined on line 1044, but no explicit reference was found in the text == Unused Reference: 'RFC2863' is defined on line 1049, but no explicit reference was found in the text == Unused Reference: 'RFC3591' is defined on line 1053, but no explicit reference was found in the text == Unused Reference: 'RFC6205' is defined on line 1058, but no explicit reference was found in the text == Unused Reference: 'I-D.ietf-ccamp-dwdm-if-mng-ctrl-fwk' is defined on line 1065, but no explicit reference was found in the text == Unused Reference: 'RFC2629' is defined on line 1071, but no explicit reference was found in the text == Unused Reference: 'RFC4054' is defined on line 1081, but no explicit reference was found in the text == Unused Reference: 'RFC4181' is defined on line 1086, but no explicit reference was found in the text == Outdated reference: A later version (-13) exists of draft-ietf-ccamp-dwdm-if-mng-ctrl-fwk-11 -- Obsolete informational reference (is this intentional?): RFC 2629 (Obsoleted by RFC 7749) Summary: 1 error (**), 0 flaws (~~), 30 warnings (==), 2 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Internet Engineering Task Force G.Galimberti, Ed. 3 Internet-Draft Cisco 4 Intended status: Informational R. Kunze, Ed. 5 Expires: April 25, 2019 Deutsche Telekom 6 D. Hiremagalur, Ed. 7 G. Grammel, Ed. 8 Juniper 9 October 22, 2018 11 A YANG model to manage the optical parameters for in a WDM network 12 draft-galimbe-ccamp-iv-yang-07 14 Abstract 16 This memo defines a Yang model that translate the information model 17 to support Impairment-Aware (IA) Routing and Wavelength Assignment 18 (RWA) functionality. The information model is defined in draft-ietf- 19 ccamp-wson-iv-info and draft-martinelli-ccamp-wson-iv-encode. This 20 document defines proper encoding and extend to the models defined in 21 draft-lee-ccamp-wson-yang tu support Impairment-Aware (IA) Routing 22 and Wavelength Assignment (RWA) functions 24 The Yang model defined in this memo can be used for Optical 25 Parameters monitoring and/or configuration of the multivendor 26 Endpoints and ROADMs. The use of this model does not guarantee 27 interworking of transceivers over a DWDM. Optical path feasibility 28 and interoperability has to be determined by means outside the scope 29 of this document. The purpose of this model is to program interface 30 parameters to consistently configure the mode of operation of 31 transceivers. 33 Copyright Notice 35 Copyright (c) 2014 IETF Trust and the persons identified as the 36 document authors. All rights reserved. 38 Status of This Memo 40 This Internet-Draft is submitted in full conformance with the 41 provisions of BCP 78 and BCP 79. 43 Internet-Drafts are working documents of the Internet Engineering 44 Task Force (IETF). Note that other groups may also distribute 45 working documents as Internet-Drafts. The list of current Internet- 46 Drafts is at https://datatracker.ietf.org/drafts/current/. 48 Internet-Drafts are draft documents valid for a maximum of six months 49 and may be updated, replaced, or obsoleted by other documents at any 50 time. It is inappropriate to use Internet-Drafts as reference 51 material or to cite them other than as "work in progress." 53 This Internet-Draft will expire on April 25, 2019. 55 Copyright Notice 57 Copyright (c) 2018 IETF Trust and the persons identified as the 58 document authors. All rights reserved. 60 This document is subject to BCP 78 and the IETF Trust's Legal 61 Provisions Relating to IETF Documents 62 (https://trustee.ietf.org/license-info) in effect on the date of 63 publication of this document. Please review these documents 64 carefully, as they describe your rights and restrictions with respect 65 to this document. Code Components extracted from this document must 66 include Simplified BSD License text as described in Section 4.e of 67 the Trust Legal Provisions and are provided without warranty as 68 described in the Simplified BSD License. 70 Table of Contents 72 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 73 2. The Internet-Standard Management Framework . . . . . . . . . 3 74 3. Conventions . . . . . . . . . . . . . . . . . . . . . . . . . 4 75 4. Definition . . . . . . . . . . . . . . . . . . . . . . . . . 4 76 5. Applicability . . . . . . . . . . . . . . . . . . . . . . . . 4 77 6. Properties . . . . . . . . . . . . . . . . . . . . . . . . . 4 78 7. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 4 79 7.1. Optical Parameters Description . . . . . . . . . . . . . 5 80 7.1.1. Optical path from point Ss to Rs . . . . . . . . . . 6 81 7.1.2. Rs and Ss Configuration . . . . . . . . . . . . . . . 7 82 7.1.3. Table of Application Codes . . . . . . . . . . . . . 7 83 7.2. Use Cases . . . . . . . . . . . . . . . . . . . . . . . . 7 84 7.3. Optical Parameters for impairment validation in a WDM 85 network . . . . . . . . . . . . . . . . . . . . . . . . . 7 86 8. Structure of the Yang Module . . . . . . . . . . . . . . . . 8 87 9. Yang Module . . . . . . . . . . . . . . . . . . . . . . . . . 9 88 10. Security Considerations . . . . . . . . . . . . . . . . . . . 20 89 11. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 20 90 12. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 20 91 13. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 21 92 14. References . . . . . . . . . . . . . . . . . . . . . . . . . 21 93 14.1. Normative References . . . . . . . . . . . . . . . . . . 21 94 14.2. Informative References . . . . . . . . . . . . . . . . . 23 95 Appendix A. Change Log . . . . . . . . . . . . . . . . . . . . . 24 96 Appendix B. Open Issues . . . . . . . . . . . . . . . . . . . . 24 97 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 24 99 1. Introduction 101 This memo defines a Yang model that translates the existing mib 102 module defined in draft-ietf-ccamp-wson-iv-info and draft-martinelli- 103 ccamp-wson-iv-encode to provide the network impairment information to 104 an SDN controller. One of the key SDN controller features is to 105 support multivendor network and support the service calculation and 106 deployment in multilayer topologies, for the DWDM layer it is 107 fundamental that the SDN controller is aware of the optical 108 impairments to verify the feasibility of new circuits before their 109 provisioning. Although SDN controller will not apply exhaustive and 110 accurate algorithms and the optical channel feasibility verification 111 may have a degree of unreliability this function can work on a 112 multivendor common set of parameter and algorithms to ensure the 113 operator the best change to set a circuit. This document follows the 114 same impairment definition and applicability of draft-ietf-ccamp- 115 wson-iv-info. 117 The optical impairments related to the DWDM Transceiver are described 118 by draft draft-dharini-ccamp-if-param-yang. Applications are defined 119 in G.698.2 [ITU.G698.2] using optical interface parameters at the 120 single-channel connection points between optical transmitters and the 121 optical multiplexer, as well as between optical receivers and the 122 optical demultiplexer in the DWDM system. This Recommendation uses a 123 methodology which explicitly specify the details of the optical 124 network between reference point Ss and Rs, e.g., the passive and 125 active elements or details of the design. 127 This draft refers and supports the draft-ietf-ccamp-dwdm-if-mng-ctrl- 128 fwk 130 The building of a yang model describing the optical parameters allows 131 the different vendors and operator to retrieve, provision and 132 exchange information across multi-vendor domains in a standardized 133 way. In addition to the parameters specified in ITU recommendations 134 the Yang models support also the "vendor specific parameters". 136 2. The Internet-Standard Management Framework 138 For a detailed overview of the documents that describe the current 139 Internet-Standard Management Framework, please refer to section 7 of 140 RFC 3410 [RFC3410]. 142 This memo specifies a Yang model for optical interfaces. 144 3. Conventions 146 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 147 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 148 document are to be interpreted as described in RFC 2119 [RFC2119] In 149 the description of OIDs the convention: Set (S) Get (G) and Trap (T) 150 conventions will describe the action allowed by the parameter. 152 4. Definition 154 For a detailed definition this draft refers to draft-ietf-ccamp-wson- 155 iv-info. 157 5. Applicability 159 This document targets at Scenario C defined in [RFC6566] section 160 4.1.1. as approximate impairment estimation. The Approximate 161 concept refer to the fact that this Information Model covers 162 information mainly provided by [ITU.G680] Computational Model. 163 Although the [RFC6566] provides no or little approximation the 164 parameters described in this draft can be applied to the algorithms 165 verifying the circuit feasibility in the new coherent non compensated 166 DWDM networks In this case the impairments verification can reach a 167 good reliability and accuracy. This draft does not address 168 computational matters but provides all the information suitable to 169 cover most of the full coherent network algorithms, not being 170 exhaustive the information can give a acceptable or even good 171 approximation in term of connection feasibility. This may not be 172 true for legacy compensated network. 174 6. Properties 176 For the signal properties this traft refers the draft-ietf-ccamp- 177 wson-iv-info Ch.2.3 with some extension of the parameters. 179 7. Overview 180 Figure 1 shows a set of reference points, for single-channel 181 connection between transmitters (Tx) and receivers (Rx). Here the 182 DWDM network elements include an OM and an OD (which are used as a 183 pair with the opposing element), one or more optical amplifiers and 184 may also include one or more OADMs. 186 +-------------------------------------------------+ 187 Ss | DWDM Network | Rs 188 +--+ | | | \ / | | | +--+ 189 Tx L1--|->| \ / |--|-->Rx L1 190 +---+ | | | +------+ | | | +--+ 191 +---+ | | | | | | | | +--+ 192 Tx L2--|->| OM |------------>|ROADM |-- -------->| OD |--|-->Rx L2 193 +---+ | | | DWDM | | DWDM | | | +--+ 194 +---+ | | | Link +------+ Link | | | +--+ 195 Tx L3--|->| / | ^ \ |--|-->Rx L3 196 +---+ | | / | | \ | | +--+ 197 +-----------------------|--|----------------------+ 198 +--+ +--+ 199 | | 200 Rs v | Ss 201 +-----+ +-----+ 202 |RxLx | |TxLx | 203 +-----+ +-----+ 204 Ss = reference point at the DWDM network element tributary output 205 Rs = reference point at the DWDM network element tributary input 206 Lx = Lambda x 207 OM = Optical Mux 208 OD = Optical Demux 209 ROADM = Reconfigurable Optical Add Drop Mux 211 from Fig. 5.1/G.698.2 213 Figure 1: External transponder in WDM netwoks 215 7.1. Optical Parameters Description 217 The link between the external transponders through a WDM network 218 media channels are managed at the edges, i.e. at the transmitters 219 (Tx) and receivers (Rx) attached to the S and R reference points 220 respectively. The set of parameters that could be managed are 221 defined by the "application code" notation 223 The definitions of the optical parameters are provided below to 224 increase the readability of the document, where the definition is 225 ended by (R) the parameter can be retrieve with a read, when (W) it 226 can be provisioned by a write, (R,W) can be either read or written. 228 7.1.1. Optical path from point Ss to Rs 230 The following parameters for the optical path from point S and R are 231 defined in G.698.2 [ITU.G698.2]. 233 Maximum and minimum (residual) chromatic dispersion: 234 These parameters define the maximum and minimum value of the 235 optical path "end to end chromatic dispersion" (in ps/nm) that the 236 system shall be able to tolerate. (R) 238 Minimum optical return loss at Ss: 239 These parameter defines minimum optical return loss (in dB) of the 240 cable plant at the source reference point (Ss), including any 241 connectors (R) 243 Maximum discrete reflectance between Ss and Rs: 244 Optical reflectance is defined to be the ratio of the reflected 245 optical power present at a point, to the optical power incident to 246 that point. Control of reflections is discussed extensively in 247 ITU-T Rec. G.957 (R) 249 Maximum differential group delay: 250 Differential group delay (DGD) is the time difference between the 251 fractions of a pulse that are transmitted in the two principal 252 states of polarization of an optical signal. For distances 253 greater than several kilometers, and assuming random (strong) 254 polarization mode coupling, DGD in a fiber can be statistically 255 modelled as having a Maxwellian distribution. (R) 257 Maximum polarization dependent loss: 258 The polarization dependent loss (PDL) is the difference (in dB) 259 between the maximum and minimum values of the channel insertion 260 loss (or gain) of the black link from point SS to RS due to a 261 variation of the state of polarization (SOP) over all SOPs. (R) 263 Maximum inter-channel crosstalk: 264 Inter-channel crosstalk is defined as the ratio of total power in 265 all of the disturbing channels to that in the wanted channel, 266 where the wanted and disturbing channels are at different 267 wavelengths. The parameter specifies the isolation of a link 268 conforming to the "black link" approach such that under the worst- 269 case operating conditions the inter-channel crosstalk at any 270 reference point RS is less than the maximum inter-channel 271 crosstalk value (R) 273 Maximum interferometric crosstalk: 274 This parameter places a requirement on the isolation of a link 275 conforming to the "black link" approach such that under the worst 276 case operating conditions the interferometric crosstalk at any 277 reference point RS is less than the maximum interferometric 278 crosstalk value. (R) 280 Maximum optical path OSNR penalty: 281 The optical path OSNR penalty is defined as the difference between 282 the Lowest OSNR at Rs and Lowest OSNR at Ss that meets the BER 283 requirement (R) 285 Maximum ripple: 286 Although is defined in G.698.2 (R). 288 7.1.2. Rs and Ss Configuration 290 For the Rs and Ss configuration this draft refers the draft-dharini- 291 ccamp-dwdm-if-param-yang while for the Rs-Ss extended parameters for 292 coherent transmission interfaces refer to draft-dharini-ccamp-dwdm- 293 if-param-yang 295 7.1.3. Table of Application Codes 297 For Application Codes configuration this draft refers the draft- 298 dharini-ccamp-dwdm-if-param-yang 300 7.2. Use Cases 302 The use cases are described in draft-ietf-ccamp-dwdm-if-mng-ctrl-fwk 304 7.3. Optical Parameters for impairment validation in a WDM network 306 The ietf-opt-parameters-wdm is an augment to the ????. It allows the 307 user to get and set the application Optical Parameters of a DWDM 308 network. 310 module: ietf-opt-parameters-wdm 311 augment /if:interfaces/if:interface: 312 +--rw optical-transport 313 | +--rw attenuator-value? attenuator-t 314 | +--rw offset? decimal64 315 | +--rw channel-power-ref? decimal64 316 | +--rw tilt-calibration? tilt-t 317 +--rw opwr-threshold-warning 318 | +--rw opwr-min? dbm-t 319 | +--rw opwr-min-clear? dbm-t 320 | +--rw opwr-max? dbm-t 321 +--rw gain-degrade-alarm 322 | +--rw gain-degrade-low? dbm-t 323 | +--rw gain-degrade-high? dbm-t 324 +--rw power-degrade-high-alarm 325 | +--rw gain-degrade-high? dbm-t 326 +--rw power-degrade-low-alarm 327 | +--ro power-degrade-low? dbm-t 328 +--rw noise 329 | +--rw noise? decimal64 330 +--rw noise-sigma 331 | +--rw noise? decimal64 332 +--rw chromatic-dispersion 333 | +--rw noise-sigma? decimal64 334 +--rw chromatic-dispersion-slope 335 | +--rw chromatic-dispersion-slope? decimal64 336 +--rw pmd 337 | +--rw pmd? decimal64 338 +--rw pdl 339 | +--rw pdl? decimal64 340 +--rw drop-power 341 | +--rw drop-power? decimal64 342 +--rw drop-power-sigma 343 | +--rw noise? decimal64 344 +--rw ripple 345 | +--rw drop-power-sigma? decimal64 346 +--ro ch-noise-figure 347 | +--ro ch-noise-figure* [ch-noise-fig] 348 | +--ro ch-noise-fig ch-noise-figure-point 349 | +--ro input-to-output? decimal64 350 | +--ro input-to-drop? decimal64 351 | +--ro add-to-output? decimal64 352 +--rw dgd 353 | +--rw dgd? decimal64 354 +--ro ch-isolation 355 | +--ro ch-isolation* [ch-isolat] 356 | +--ro ch-isolat ch-isolation-cross 357 | +--ro ad-ch-isol? decimal64 358 | +--ro no-ad-ch-iso? decimal64 359 +--rw ch-extinction 360 +--rw cer? decimal64 362 8. Structure of the Yang Module 364 ietf-opt-parameters-wdm is a top level model for the support of this 365 feature. 367 9. Yang Module 369 The ietf-opt-parameters-wdm is defined as an extension to ietf 370 interfaces ????. 372 file "ietf-opt-parameters-wdm.yang" 374 module ietf-opt-parameters-wdm { 375 namespace "urn:ietf:params:xml:ns:yang:ietf-opt-parameters-wdm"; 376 prefix iietf-opt-parameters-wdm; 378 import ietf-interfaces { 379 prefix if; 380 } 382 import iana-if-type { 383 prefix ianaift; 384 } 386 organization 387 "IETF CCAMP 388 Working Group"; 390 contact 391 "WG Web: 392 WG List: 394 Editor: Gabriele Galimberti 395 "; 397 description 398 "This module contains a collection of YANG definitions for 399 collecting and configuring Optical Parameters 400 in Optical Networks and calculate the circuit feasibility. 402 Copyright (c) 2016 IETF Trust and the persons identified 403 as authors of the code. All rights reserved. 405 Redistribution and use in source and binary forms, with or 406 without modification, is permitted pursuant to, and 407 subject to the license terms contained in, the Simplified 408 BSD License set forth in Section 4.c of the IETF Trust's 409 Legal Provisions Relating to IETF Documents 410 (http://trustee.ietf.org/license-info)."; 412 revision "2018-10-22" { 413 description 414 "Revision 1.1"; 415 reference 416 ""; 417 } 419 revision "2018-03-06" { 420 description 421 "Revision 1.0"; 422 reference 423 ""; 424 } 426 revision "2016-10-30" { 427 description 428 "Initial revision."; 429 reference 430 "RFC XXXX: A YANG Data Model for Optical Paramenters 431 of DWDM Networks 432 "; 433 } 435 typedef tilt-t { 436 type decimal64 { 437 fraction-digits 2; 438 range "-5..5"; 439 } 440 description "Tilt Type"; 441 } 443 typedef signal-output-power-t { 444 type decimal64 { 445 fraction-digits 2; 446 range "-10..30"; 447 } 448 description " 449 Amplifier Power provisioning "; 450 } 452 typedef active-channel-t { 453 type union { 454 type uint8 { 455 range "0..200"; 456 } 457 } 458 description " 459 Number of channels active on a span - and on an amplifier"; 460 } 462 typedef dbm-t { 463 type decimal64 { 464 fraction-digits 2; 465 range "-50..-30 | -10..5 | 10000000"; 466 } 467 description " 468 Amplifier Power in dBm "; 469 } 471 typedef attenuator-t { 472 type decimal64 { 473 fraction-digits 2; 474 range "-15..-5"; 475 } 476 description " 477 Attenuation value (attenuator) applied after the Amplifier"; 478 } 480 typedef ch-noise-figure-point { 481 type decimal64 { 482 fraction-digits 2; 483 range "-15..-5"; 484 } 485 description " 486 Amplifier noise figure of point power"; 487 } 489 typedef ch-isolation-cross { 490 type decimal64 { 491 fraction-digits 2; 492 range "-15..-5"; 493 } 494 description " 495 cross channel isolation value"; 496 } 498 grouping opwr-threshold-warning-grp { 499 description " 500 Minimum Optical Power threshold 501 - this is used to rise Power alarm "; 503 leaf opwr-min { 504 type dbm-t; 505 units "dBm"; 506 default -1; 507 description "Minimum Power Value"; 508 } 510 leaf opwr-min-clear { 511 type dbm-t; 512 units "dBm"; 513 default -1; 514 description "threshold to clear Minimum Power value Alarm"; 515 } 517 leaf opwr-max { 518 type dbm-t; 519 units "dBm"; 520 default 1; 521 description " 522 Maximum Optical Power threshold 523 - this is used to rise Power alarm "; 524 } 525 } 527 grouping gain-degrade-alarm-grp { 528 description " 529 Low Optical Power gain threshold 530 - this is used to rise Power alarm "; 532 leaf gain-degrade-low { 533 type dbm-t; 534 units "dBm"; 535 default -1; 536 description "Low Gain Degrade Value"; 537 } 539 leaf gain-degrade-high { 540 type dbm-t; 541 units "dBm"; 542 default 1; 543 description " 544 High Optical Power gain threshold 545 - this is used to rise Power alarm "; 546 } 547 } 549 grouping power-degrade-high-alarm-grp { 550 description " 551 High Optical Power gain alarm "; 553 leaf gain-degrade-high { 554 type dbm-t; 555 units "dBm"; 556 default 1; 557 description "Low Gain Degrade Value"; 558 } 559 } 561 grouping power-degrade-low-alarm-grp { 562 description " 563 Low Optical Power gain alarm "; 565 leaf power-degrade-low { 566 type dbm-t; 567 units "dBm"; 568 default -1; 569 config false; 570 description "High Gain Degrade Value"; 571 } 572 } 574 grouping noise-grp { 575 description "Noise feasibility"; 576 leaf noise { 577 type decimal64 { 578 fraction-digits 2; 579 } 580 units "dB"; 581 description "Noise feasibility - reference ITU-T G.680 582 OSNR added to the signal by the OMS. The noise is intended 583 per channel and is independent of the number of active 584 channels in OMS"; 585 } 586 } 588 grouping noise-sigma-grp { 589 description "Noise sigma feasibility"; 590 leaf noise-sigma { 591 type decimal64 { 592 fraction-digits 2; 593 } 594 units "dB"; 595 description "Noise Sigma feasibility - accuracy of the 596 OSNR added to 598 the signal by the OMS"; 599 } 600 } 602 grouping chromatic-dispersion-grp { 603 description "Chromatic Dispersion"; 604 leaf chromatic-dispersion { 605 type decimal64 { 606 fraction-digits 2; 607 } 608 units "ps/nm"; 609 description "Chromatic Dispersion (CD) related to the OMS"; 610 } 611 } 613 grouping chromatic-dispersion-slope-grp { 614 description "Chromatic Dispersion slope"; 615 leaf chromatic-dispersion-slope { 616 type decimal64 { 617 fraction-digits 2; 618 } 619 units "ps/nm^2"; 620 description "Chromatic Dispersion (CD) Slope related to 621 the OMS"; 622 } 623 } 625 grouping pmd-grp { 626 description "Polarization Mode Dispersion"; 627 leaf pmd { 628 type decimal64 { 629 fraction-digits 2; 630 } 631 units "ps"; 632 description "Polarization Mode Dispersion (PMD) related 633 to OMS"; 634 } 635 } 637 grouping pdl-grp { 638 description "Polarization Dependent Loss"; 639 leaf pdl { 640 type decimal64 { 641 fraction-digits 2; 642 } 643 units "dB"; 644 description "Polarization Dependent Loss (PDL) related to 645 the OMS"; 647 } 648 } 650 grouping drop-power-grp { 651 description "Drop power at DWDM if RX feasibility"; 652 leaf drop-power { 653 type decimal64 { 654 fraction-digits 2; 655 } 656 units "dBm"; 657 description "Drop Power value at the DWDM Transceiver RX 658 side"; 659 } 660 } 662 grouping drop-power-sigma-grp { 663 description "Drop power sigma at DWDM if RX feasibility "; 664 leaf drop-power-sigma { 665 type decimal64 { 666 fraction-digits 2; 667 } 668 units "db"; 669 description "Drop Power Sigma value at the DWDM Transceiver 670 RX side"; 671 } 672 } 674 grouping ripple-grp { 675 description "Channel Ripple"; 676 leaf ripple { 677 type decimal64 { 678 fraction-digits 2; 679 } 680 units "db"; 681 description "Channel Ripple"; 682 } 683 } 685 grouping ch-noise-figure-grp { 686 list ch-noise-figure { 687 key "ch-noise-fig"; 688 description "Channel signal-spontaneous noise figure"; 690 leaf ch-noise-fig { 691 type ch-noise-figure-point; 692 description "Channel signal-spontaneous noise 693 figure point"; 694 } 696 leaf input-to-output { 697 type decimal64 { 698 fraction-digits 2; 699 } 700 units "dB"; 701 description "from input port to output port"; 702 } 704 leaf input-to-drop { 705 type decimal64 { 706 fraction-digits 2; 707 } 708 units "dB"; 709 description "from input port to drop port"; 710 } 712 leaf add-to-output { 713 type decimal64 { 714 fraction-digits 2; 715 } 716 units "dB"; 717 description "from add port to output port"; 718 } 719 } 720 description "Channel signal-spontaneous noise figure"; 721 } 723 grouping dgd-grp { 724 description "Differential Group Delay"; 725 leaf dgd { 726 type decimal64 { 727 fraction-digits 2; 728 } 729 units "db"; 730 description "differential group delay"; 731 } 732 } 734 grouping ch-isolation-grp { 735 list ch-isolation { 736 key "ch-isolat"; 737 description "adjacent and not adjacent channel isolation"; 739 leaf ch-isolat { 740 type ch-isolation-cross; 741 description "channel isolation from adjacent"; 742 } 744 leaf ad-ch-isol { 745 type decimal64 { 746 fraction-digits 2; 747 } 748 units "dB"; 749 description "adjecent channel isolation"; 750 } 752 leaf no-ad-ch-iso { 753 type decimal64 { 754 fraction-digits 2; 755 } 756 units "dB"; 757 description "non adjecent channel isolation"; 758 } 759 } 760 description "djacent and not adjacent channel isolation"; 761 } 763 grouping ch-extinction-grp { 764 description "Channel Extinsion"; 765 leaf cer { 766 type decimal64 { 767 fraction-digits 2; 768 } 769 units "db"; 770 description "channel extinction"; 771 } 772 } 774 grouping att-coefficient-grp { 775 description "Attenuation coefficient (for a fibre segment)"; 776 leaf att { 777 type decimal64 { 778 fraction-digits 2; 779 } 780 units "db"; 781 description "Attenuation coefficient (for a fibre segment)"; 782 } 783 } 785 augment "/if:interfaces/if:interface" { 786 when "if:type = 'ianaift:opticalTransport'" { 787 description "Specific optical-transport Interface Data"; 788 } 789 description "Specific optical-transport Interface Data"; 790 container optical-transport { 791 description "Specific optical-transport Data"; 793 leaf attenuator-value { 794 type attenuator-t; 795 description "External attenuator value "; 796 } 798 leaf offset { 799 type decimal64 { 800 fraction-digits 2; 801 range "-30..30"; 802 } 803 description "Raman and power amplifiers offset"; 804 } 806 leaf channel-power-ref { 807 type decimal64 { 808 fraction-digits 2; 809 range "-10..15"; 810 } 811 description "Optical power per channel"; 812 } 814 leaf tilt-calibration { 815 type tilt-t; 816 description "Amplifier Tilt tuning"; 817 } 818 } 819 container opwr-threshold-warning { 820 description "Optical power threshold warning"; 821 uses opwr-threshold-warning-grp; 822 } 823 container gain-degrade-alarm { 824 description "Gain degrade alarm"; 825 uses gain-degrade-alarm-grp; 826 } 827 container power-degrade-high-alarm { 828 description "Power degrade high aparm"; 829 uses power-degrade-high-alarm-grp; 830 } 831 container power-degrade-low-alarm { 832 description "Power degrade low alarm"; 833 uses power-degrade-low-alarm-grp; 834 } 835 container noise { 836 description "Channel Noise feasibility"; 837 uses noise-grp; 838 } 840 container noise-sigma { 841 description "Channel Noise sigma feasibility"; 842 uses noise-grp; 843 } 844 container chromatic-dispersion { 845 description "Chromatic Dispersion"; 846 uses noise-sigma-grp; 847 } 848 container chromatic-dispersion-slope { 849 description "Chromatic Dispersion slope"; 850 uses chromatic-dispersion-slope-grp; 851 } 852 container pmd { 853 description "Polarization Mode Dispersion"; 854 uses pmd-grp; 855 } 856 container pdl { 857 description "Polarization Dependent Loss"; 858 uses pdl-grp; 859 } 860 container drop-power { 861 description "Drop power at DWDM if RX feasibility"; 862 uses drop-power-grp; 863 } 864 container drop-power-sigma { 865 description "Drop power sigma at DWDM if RX feasibility"; 866 uses noise-grp; 867 } 868 container ripple { 869 description "Channel Ripple"; 870 uses drop-power-sigma-grp; 871 } 872 container ch-noise-figure { 873 config false; 874 description "Channel signal-spontaneous noise figure"; 875 uses ch-noise-figure-grp; 876 } 877 container dgd { 878 description "Differential Group Delay"; 879 uses dgd-grp; 880 } 881 container ch-isolation { 882 config false; 883 description "adjacent and not adjacent channel isolation"; 884 uses ch-isolation-grp; 885 } 886 container ch-extinction { 887 description "Channel Extinsion"; 889 uses ch-extinction-grp; 890 } 892 } 893 } 894 } 896 898 10. Security Considerations 900 The YANG module defined in this memo is designed to be accessed via 901 the NETCONF protocol [RFC6241]. he lowest NETCONF layer is the secure 902 transport layer and the mandatory-to-implement secure transport is 903 SSH [RFC6242]. The NETCONF access control model [RFC6536] provides 904 the means to restrict access for particular NETCONF users to a pre- 905 configured subset of all available NETCONF protocol operation and 906 content. 908 11. IANA Considerations 910 This document registers a URI in the IETF XML registry [RFC3688]. 911 Following the format in [RFC3688], the following registration is 912 requested to be made: 914 URI: urn:ietf:params:xml:ns:yang:ietf-interfaces:ietf-ext-xponder- 915 wdm-if 917 Registrant Contact: The IESG. 919 XML: N/A, the requested URI is an XML namespace. 921 This document registers a YANG module in the YANG Module Names 922 registry [RFC6020]. 924 This document registers a YANG module in the YANG Module Names 925 registry [RFC6020]. 927 prefix: ietf-ext-xponder-wdm-if reference: RFC XXXX 929 12. Acknowledgements 931 Marco Cardani. 933 13. Contributors 935 Dean Bogdanovic 937 Westford 938 U.S.A. 939 email 941 Walid Wakim 942 Cisco 943 9501 Technology Blvd 944 ROSEMONT, ILLINOIS 60018 945 UNITED STATES 946 email wwakim@cisco.com 948 Marco Cardani 949 Cisco 950 vis S.Maria Molgora, 48c 951 20871 - Vimercate 952 Monza Brianza 953 Italy 954 email mcardani@cisco.com 956 Giovanni Martinelli 957 Cisco 958 vis S.Maria Molgora, 48c 959 20871 - Vimercate 960 Monza Brianza 961 Italy 962 email giomarti@cisco.com 964 14. References 966 14.1. Normative References 968 [ITU.G694.1] 969 International Telecommunications Union, "Spectral grids 970 for WDM applications: DWDM frequency grid", 971 ITU-T Recommendation G.694.1, February 2012. 973 [ITU.G698.2] 974 International Telecommunications Union, "Amplified 975 multichannel dense wavelength division multiplexing 976 applications with single channel optical interfaces", 977 ITU-T Recommendation G.698.2, November 2009. 979 [ITU.G709] 980 International Telecommunications Union, "Interface for the 981 Optical Transport Network (OTN)", ITU-T Recommendation 982 G.709, June 2016. 984 [ITU.G7710] 985 International Telecommunications Union, "Common equipment 986 management function requirements", ITU-T Recommendation 987 G.7710, August 2017. 989 [ITU.G798] 990 International Telecommunications Union, "Characteristics 991 of optical transport network hierarchy equipment 992 functional blocks", ITU-T Recommendation G.798, December 993 2017. 995 [ITU.G8201] 996 International Telecommunications Union, "Error performance 997 parameters and objectives for multi-operator international 998 paths within the Optical Transport Network (OTN)", 999 ITU-T Recommendation G.8201, April 2011. 1001 [ITU.G826] 1002 International Telecommunications Union, "End-to-end error 1003 performance parameters and objectives for international, 1004 constant bit-rate digital paths and connections", 1005 ITU-T Recommendation G.826, December 2002. 1007 [ITU.G872] 1008 International Telecommunications Union, "Architecture of 1009 optical transport networks", ITU-T Recommendation G.872, 1010 January 2017. 1012 [ITU.G874] 1013 International Telecommunications Union, "Management 1014 aspects of optical transport network elements", 1015 ITU-T Recommendation G.874, August 2017. 1017 [ITU.G874.1] 1018 International Telecommunications Union, "Optical transport 1019 network (OTN): Protocol-neutral management information 1020 model for the network element view", ITU-T Recommendation 1021 G.874.1, November 2016. 1023 [ITU.G959.1] 1024 International Telecommunications Union, "Optical transport 1025 network physical layer interfaces", ITU-T Recommendation 1026 G.959.1, July 2018. 1028 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 1029 Requirement Levels", BCP 14, RFC 2119, 1030 DOI 10.17487/RFC2119, March 1997, 1031 . 1033 [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J. 1034 Schoenwaelder, Ed., "Structure of Management Information 1035 Version 2 (SMIv2)", STD 58, RFC 2578, 1036 DOI 10.17487/RFC2578, April 1999, 1037 . 1039 [RFC2579] McCloghrie, K., Ed., Perkins, D., Ed., and J. 1040 Schoenwaelder, Ed., "Textual Conventions for SMIv2", 1041 STD 58, RFC 2579, DOI 10.17487/RFC2579, April 1999, 1042 . 1044 [RFC2580] McCloghrie, K., Ed., Perkins, D., Ed., and J. 1045 Schoenwaelder, Ed., "Conformance Statements for SMIv2", 1046 STD 58, RFC 2580, DOI 10.17487/RFC2580, April 1999, 1047 . 1049 [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group 1050 MIB", RFC 2863, DOI 10.17487/RFC2863, June 2000, 1051 . 1053 [RFC3591] Lam, H-K., Stewart, M., and A. Huynh, "Definitions of 1054 Managed Objects for the Optical Interface Type", RFC 3591, 1055 DOI 10.17487/RFC3591, September 2003, 1056 . 1058 [RFC6205] Otani, T., Ed. and D. Li, Ed., "Generalized Labels for 1059 Lambda-Switch-Capable (LSC) Label Switching Routers", 1060 RFC 6205, DOI 10.17487/RFC6205, March 2011, 1061 . 1063 14.2. Informative References 1065 [I-D.ietf-ccamp-dwdm-if-mng-ctrl-fwk] 1066 Kunze, R., Grammel, G., Beller, D., Galimberti, G., and J. 1067 Meuric, "A framework for Management and Control of DWDM 1068 optical interface parameters", draft-ietf-ccamp-dwdm-if- 1069 mng-ctrl-fwk-11 (work in progress), June 2018. 1071 [RFC2629] Rose, M., "Writing I-Ds and RFCs using XML", RFC 2629, 1072 DOI 10.17487/RFC2629, June 1999, 1073 . 1075 [RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart, 1076 "Introduction and Applicability Statements for Internet- 1077 Standard Management Framework", RFC 3410, 1078 DOI 10.17487/RFC3410, December 2002, 1079 . 1081 [RFC4054] Strand, J., Ed. and A. Chiu, Ed., "Impairments and Other 1082 Constraints on Optical Layer Routing", RFC 4054, 1083 DOI 10.17487/RFC4054, May 2005, 1084 . 1086 [RFC4181] Heard, C., Ed., "Guidelines for Authors and Reviewers of 1087 MIB Documents", BCP 111, RFC 4181, DOI 10.17487/RFC4181, 1088 September 2005, . 1090 Appendix A. Change Log 1092 This optional section should be removed before the internet draft is 1093 submitted to the IESG for publication as an RFC. 1095 Note to RFC Editor: please remove this appendix before publication as 1096 an RFC. 1098 Appendix B. Open Issues 1100 Note to RFC Editor: please remove this appendix before publication as 1101 an RFC. 1103 Authors' Addresses 1105 Gabriele Galimberti (editor) 1106 Cisco 1107 Via Santa Maria Molgora, 48 c 1108 20871 - Vimercate 1109 Italy 1111 Phone: +390392091462 1112 Email: ggalimbe@cisco.com 1114 Ruediger Kunze (editor) 1115 Deutsche Telekom 1116 Winterfeldtstr. 21-27 1117 10781 Berlin 1118 Germany 1120 Phone: +491702275321 1121 Email: RKunze@telekom.de 1122 Dharini Hiremagalur (editor) 1123 Juniper 1124 1194 N Mathilda Avenue 1125 Sunnyvale - 94089 California 1126 USA 1128 Email: dharinih@juniper.net 1130 Gert Grammel (editor) 1131 Juniper 1132 Oskar-Schlemmer Str. 15 1133 80807 Muenchen 1134 Germany 1136 Phone: +49 1725186386 1137 Email: ggrammel@juniper.net