idnits 2.17.1 draft-hegde-mpls-spring-epe-oam-05.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (February 24, 2020) is 1522 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Missing Reference: 'RFC5065' is mentioned on line 326, but not defined == Missing Reference: 'RFC4271' is mentioned on line 337, but not defined == Missing Reference: 'RFC6286' is mentioned on line 337, but not defined == Outdated reference: A later version (-22) exists of draft-ietf-spring-segment-routing-policy-06 Summary: 0 errors (**), 0 flaws (~~), 5 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Routing area S. Hegde 3 Internet-Draft K. Arora 4 Intended status: Standards Track M. Srivastava 5 Expires: August 27, 2020 Juniper Networks Inc. 6 S. Ninan 7 Individual Contributor 8 X. Xu 9 Alibaba Inc. 10 February 24, 2020 12 Label Switched Path (LSP) Ping/Traceroute for Segment Routing (SR) 13 Egress Peer Engineering Segment Identifiers (SIDs) with MPLS Data Planes 14 draft-hegde-mpls-spring-epe-oam-05 16 Abstract 18 Egress Peer Engineering (EPE) is an application of Segment Routing to 19 Solve the problem of egress peer selection. The Segment Routing 20 based BGP-EPE solution allows a centralized controller, e.g. a 21 Software Defined Network (SDN) controller to program any egress peer. 22 The EPE solution requires a node to program the PeerNode SID 23 describing a session between two nodes, the PeerAdj SID describing 24 the link (one or more) that is used by sessions between peer nodes, 25 and the PeerSet SID describing an arbitrary set of sessions or links 26 between a local node and its peers. This document provides new sub- 27 TLVs for EPE Segment Identifiers (SID) that would be used in the MPLS 28 Target stack TLV (Type 1), in MPLS Ping and Traceroute procedures. 30 Status of This Memo 32 This Internet-Draft is submitted in full conformance with the 33 provisions of BCP 78 and BCP 79. 35 Internet-Drafts are working documents of the Internet Engineering 36 Task Force (IETF). Note that other groups may also distribute 37 working documents as Internet-Drafts. The list of current Internet- 38 Drafts is at https://datatracker.ietf.org/drafts/current/. 40 Internet-Drafts are draft documents valid for a maximum of six months 41 and may be updated, replaced, or obsoleted by other documents at any 42 time. It is inappropriate to use Internet-Drafts as reference 43 material or to cite them other than as "work in progress." 45 This Internet-Draft will expire on August 27, 2020. 47 Copyright Notice 49 Copyright (c) 2020 IETF Trust and the persons identified as the 50 document authors. All rights reserved. 52 This document is subject to BCP 78 and the IETF Trust's Legal 53 Provisions Relating to IETF Documents 54 (https://trustee.ietf.org/license-info) in effect on the date of 55 publication of this document. Please review these documents 56 carefully, as they describe your rights and restrictions with respect 57 to this document. Code Components extracted from this document must 58 include Simplified BSD License text as described in Section 4.e of 59 the Trust Legal Provisions and are provided without warranty as 60 described in the Simplified BSD License. 62 Table of Contents 64 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 65 2. Theory of Operation . . . . . . . . . . . . . . . . . . . . . 3 66 3. Requirements Language . . . . . . . . . . . . . . . . . . . . 3 67 4. FEC Definitions . . . . . . . . . . . . . . . . . . . . . . . 3 68 4.1. PeerAdj SID Sub-TLV . . . . . . . . . . . . . . . . . . . 3 69 4.2. PeerNode SID Sub-TLV . . . . . . . . . . . . . . . . . . 5 70 4.3. PeerSet SID Sub-TLV . . . . . . . . . . . . . . . . . . . 7 71 5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 9 72 6. Security Considerations . . . . . . . . . . . . . . . . . . . 9 73 7. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 9 74 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 10 75 8.1. Normative References . . . . . . . . . . . . . . . . . . 10 76 8.2. Informative References . . . . . . . . . . . . . . . . . 10 77 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 11 79 1. Introduction 81 Egress Peer Engineering (EPE) as defined in 82 [I-D.ietf-spring-segment-routing-central-epe] is an effective 83 mechanism to select the egress peer link based on different criteria. 84 The EPE-SIDs provide means to represent egress peer links. Many 85 network deployments have built their networks consisting of multiple 86 Autonomous Systems either for ease of operations or as a result of 87 network mergers and acquisitons. The inter-AS links connecting the 88 two Autonomous Systems could be traffic engineered using EPE-SIDs in 89 this case as well. It is important to be able to validate the 90 control plane to forwarding plane synchronization for these SIDs so 91 that any anomaly can be detected easily by the operator. 93 This document provides Target Forwarding Equivalence Class (FEC) 94 stack TLV definitions for EPE-SIDs. Other procedures for mpls Ping 95 and Traceroute as defined in [RFC8287] section 7 and clarified by 96 [RFC8690] are applicable for EPE-SIDs as well. 98 2. Theory of Operation 100 [I-D.ietf-idr-bgpls-segment-routing-epe] provides mechanisms to 101 advertise the EPE-SIDs in BGP-LS. These EPE-SIDs may be used to 102 build Segment Routing paths as described in 103 [I-D.ietf-spring-segment-routing-policy]. Data plane monitoring for 104 such paths which consist of EPE-SIDs will use extensions defined in 105 this document to build the Taget FEC stack TLV. The MPLS Ping and 106 Traceroute procedures MAY be initaited by the head-end of the Segment 107 Routing path or a centralized topology-aware data plane monitoring 108 system as described in [RFC8403]. The node initiating the data plane 109 monitoring may acquire the details of EPE-SIDs through BGP-LS 110 advertisements as described in 111 [I-D.ietf-idr-bgpls-segment-routing-epe]. The procedures to operate 112 e-BGP sessions in a scenario with unnumbered interfaces is not very 113 well defined and hence out of scope for this document. During AS 114 migration scenario procedures described in [RFC7705] may be in force. 115 In these scenarios, if the local and remote AS fields in the FEC as 116 described in Section 4carries the global AS and not the "local AS" as 117 defined in [RFC7705], the FEC validation procedures may fail. 119 3. Requirements Language 121 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 122 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and 123 "OPTIONAL" in this document are to be interpreted as described in BCP 124 14, [RFC2119], [RFC8174] when, and only when, they appear in all 125 capitals, as shown here. 127 4. FEC Definitions 129 As described in [RFC8287] sec 5, 3 new type of sub-TLVs for the 130 Target FEC Stack TLV are defined for the Target FEC stack TLV 131 corresponding to each label in the label stack. If a malformed FEC 132 sub-TLV is received, then a return code of 1, "Malformed echo request 133 received" as defined in [RFC8029] SHOULD be sent. 135 4.1. PeerAdj SID Sub-TLV 136 0 1 2 3 137 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 138 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 139 |Type = TBD | Length | 140 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 141 | Local AS Number (4 octets) | 142 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 143 | Remote As Number (4 octets) | 144 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 145 | Local BGP router ID (4 octets) | 146 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 147 | Remote BGP Router ID (4 octets) | 148 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 149 | Local Interface address (4/16 octets) | 150 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 151 | Remote Interface address (4/16 octets) | 152 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 154 Figure 1: PeerAdj SID Sub-TLV 156 Type : TBD 158 Length : variable based on ipv4/ipv6 interface address 160 Local AS Number : 162 4 octet unsigned integer representing the Member ASN inside the 163 Confederation.[RFC5065]. The AS number corresponds to the AS to 164 which PeerAdj SID advertising node belongs to. 166 Remote AS Number : 168 4 octet unsigned integer representing the Member ASN inside the 169 Confederation.[RFC5065]. The AS number corresponds to the AS of the 170 remote node for which the PeerAdj SID is advertised. 172 Local BGP Router ID : 174 4 octet unsigned integer of the advertising node representing the BGP 175 Identifier as defined in [RFC4271] and [RFC6286]. 177 Remote BGP Router ID : 179 4 octet unsigned integer of the receiving node representing the BGP 180 Identifier as defined in [RFC4271] and [RFC6286]. 182 Local Interface Address : 184 In case of PeerAdj SID Local interface address corresponding to the 185 PeerAdj SID should be apecified in this field. For IPv4,this field 186 is 4 octets; for IPv6, this field is 16 octets. Link Local IPv6 187 addresses are allowed in this field. 189 Remote Interface Address : 191 In case of PeerAdj SID Remote interface address corresponding to the 192 PeerAdj SID should be apecified in this field. For IPv4,this field 193 is 4 octets; for IPv6, this field is 16 octets.Link Local IPv6 194 addresses are allowed in this field. 196 4.2. PeerNode SID Sub-TLV 198 0 1 2 3 199 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 200 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 201 |Type = TBD | Length | 202 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 203 | Local AS Number (4 octets) | 204 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 205 | Remote As Number (4 octets) | 206 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 207 | Local BGP router ID (4 octets) | 208 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 209 | Remote BGP Router ID (4 octets) | 210 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 211 | No.of IPv4 interface pairs | No.of IPv6 interface pairs | 212 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 213 | Local Interface address1 (4/16 octets) | 214 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 215 | Remote Interface address1 (4/16 octets) | 216 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 217 | Local Interface address2 (4/16 octets) | 218 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 219 | ...... | 220 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 222 Figure 2: PeerNode SID Sub-TLV 224 Type : TBD 226 Length : variable based on ipv4/ipv6 interface address. There could 227 be multiple pairs of local and remote interface pairs. The length 228 includes all the pairs. 230 Local AS Number : 232 4 octet unsigned integer representing the Member ASN inside the 233 Confederation.[RFC5065]. The AS number corresponds to the AS to 234 which PeerNode SID advertising node belongs to. 236 Remote AS Number : 238 4 octet unsigned integer representing the Member ASN inside the 239 Confederation.[RFC5065]. The AS number corresponds to the AS of the 240 remote node for which the PeerNode SID is advertised. 242 Local BGP Router ID : 244 4 octet unsigned integer of the advertising node representing the BGP 245 Identifier as defined in [RFC4271] and [RFC6286]. 247 Remote BGP Router ID : 249 4 octet unsigned integer of the receiving node representing the BGP 250 Identifier as defined in [RFC4271] and [RFC6286]. 252 Number of IPv4 interface pairs: 254 Total number of IPV4 local and remote interface address pairs. 256 Number of IPv6 interface pairs: 258 Total number of IPV6 local and remote interface address pairs. 260 There can be multiple Layer 3 interfaces on which a peerNode SID 261 loadbalances the traffic. All such interfaces local/remote address 262 MUST be included in the FEC. 264 When a PeerNode SID load-balances over few interfaces with IPv4 only 265 address and few interfaces with IPv6 address then the FEC definition 266 should list all IPv4 address pairs together followed by IPv6 address 267 pairs. 269 Local Interface Address : 271 In case of PeerNode SID, the interface local address ipv4/ipv6 which 272 corresponds to the PeerNode SID MUST be specified. For IPv4,this 273 field is 4 octets; for IPv6, this field is 16 octets.Link Local IPv6 274 addresses are allowed in this field. 276 Remote Interface Address : 278 In case of PeerNode SID, the interface remote address ipv4/ipv6 which 279 corresponds to the PeerNode SID MUST be specified. For IPv4,this 280 field is 4 octets; for IPv6, this field is 16 octets.Link Local IPv6 281 addresses are allowed in this field. 283 4.3. PeerSet SID Sub-TLV 285 0 1 2 3 286 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 287 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 288 |Type = TBD | Length | 289 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 290 | Local AS Number (4 octets) | 291 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 292 | Local BGP router ID (4 octets) | 293 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 294 | No.of elements in set | Reserved | 295 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 296 | Remote As Number (4 octets) | 297 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 298 | Remote BGP Router ID (4 octets) | 299 ++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++ 300 | No.of IPv4 interface pairs | No.of IPv6 interface pairs | 301 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 302 | Local Interface address1 (4/16 octets) | 303 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 304 | Remote Interface address1 (4/16 octets) | 305 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 306 | Local Interface address2 (4/16 octets) | 307 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 308 | ...... | 309 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 311 Figure 3: PeerSet SID Sub-TLV 313 Type : TBD 314 Length : variable based on ipv4/ipv6 interface address and number of 315 elements in the set 317 Local AS Number : 319 4 octet unsigned integer representing the Member ASN inside the 320 Confederation.[RFC5065]. The AS number corresponds to the AS to 321 which PeerSet SID advertising node belongs to. 323 Remote AS Number : 325 4 octet unsigned integer representing the Member ASN inside the 326 Confederation.[RFC5065]. The AS number corresponds to the AS of the 327 remote node for which the PeerSet SID is advertised. 329 Advertising BGP Router ID : 331 4 octet unsigned integer of the advertising node representing the BGP 332 Identifier as defined in [RFC4271] and [RFC6286]. 334 Receiving BGP Router ID : 336 4 octet unsigned integer of the receiving node representing the BGP 337 Identifier as defined in [RFC4271] and [RFC6286]. 339 No.of elements in set: 341 Number of remote ASes, the set SID load-balances on. 343 PeerSet SID may be associated with a number of PeerNode SIDs and 344 PeerAdj SIDs. Link address details of all these SIDs should be 345 included in the peerSet SID FEC so that the data-plane can be 346 correctly verified on the remote node. 348 Number of IPv4 interface pairs: 350 Total number of IPV4 local and remote interface address pairs. 352 Number of IPv6 interface pairs: 354 Total number of IPV6 local and remote interface address pairs. 356 There can be multiple Layer 3 interfaces on which a peerNode SID 357 loadbalances the traffic. All such interfaces local/remote address 358 MUST be included in the FEC. 360 When a PeerSet SID load-balances over few interfaces with IPv4 only 361 address and few interfaces with IPv6 address then the Link address 362 TLV should list all IPv4 address pairs together followed by IPv6 363 address pairs. 365 Local Interface Address : 367 In case of PeerNodeSID/PeerAdj SID, the interface local address ipv4/ 368 ipv6 which corresponds to the PeerNode SID/PeerAdj SID MUST be 369 specified. For IPv4,this field is 4 octets; for IPv6, this field is 370 16 octets. Link Local IPv6 addresses are allowed in this field. 372 Remote Interface Address : 374 In case of PeerNodeSID/PeerAdj SID, the interface remote address 375 ipv4/ipv6 which corresponds to the PeerNode SID/PeerAdj SID MUST be 376 specified. For IPv4,this field is 4 octets; for IPv6, this field is 377 16 octets. Link Local IPv6 addresses are allowed in this field. 379 5. IANA Considerations 381 New Target FEC stack sub-TLV from the "sub-TLVs for TLV types 1,16 382 and 21" subregistry of the "Multi-Protocol Label switching (MPLs) 383 Label Switched Paths (LSPs) Ping parameters" registry 385 PeerAdj SID Sub-TLV : TBD 387 PeerNode SID Sub-TLV : TBD 389 PeerSet SID Sub-TLV : TBD 391 6. Security Considerations 393 The EPE-SIDs are advertised for egress links for Egress Peer 394 Engineering purposes or for inter-As links between co-operating ASes. 395 When co-operating domains are involved, they can allow the packets 396 arriving on trusted interfaces to reach the control plane and get 397 processed. When EPE-SIDs which are created for egress TE links where 398 the neighbor AS is an independent entity, it may not allow packets 399 arriving from external world to reach the control plane. In such 400 deployments mpls OAM packets will be dropped by the neighboring AS 401 that receives the MPLS OAM packet. 403 7. Acknowledgments 405 Thanks to Loa Andersson and Alexander Vainshtein for careful review 406 and comments. 408 8. References 410 8.1. Normative References 412 [I-D.ietf-idr-bgpls-segment-routing-epe] 413 Previdi, S., Talaulikar, K., Filsfils, C., Patel, K., Ray, 414 S., and J. Dong, "BGP-LS extensions for Segment Routing 415 BGP Egress Peer Engineering", draft-ietf-idr-bgpls- 416 segment-routing-epe-19 (work in progress), May 2019. 418 [RFC8029] Kompella, K., Swallow, G., Pignataro, C., Ed., Kumar, N., 419 Aldrin, S., and M. Chen, "Detecting Multiprotocol Label 420 Switched (MPLS) Data-Plane Failures", RFC 8029, 421 DOI 10.17487/RFC8029, March 2017, 422 . 424 [RFC8287] Kumar, N., Ed., Pignataro, C., Ed., Swallow, G., Akiya, 425 N., Kini, S., and M. Chen, "Label Switched Path (LSP) 426 Ping/Traceroute for Segment Routing (SR) IGP-Prefix and 427 IGP-Adjacency Segment Identifiers (SIDs) with MPLS Data 428 Planes", RFC 8287, DOI 10.17487/RFC8287, December 2017, 429 . 431 8.2. Informative References 433 [I-D.ietf-spring-segment-routing-central-epe] 434 Filsfils, C., Previdi, S., Dawra, G., Aries, E., and D. 435 Afanasiev, "Segment Routing Centralized BGP Egress Peer 436 Engineering", draft-ietf-spring-segment-routing-central- 437 epe-10 (work in progress), December 2017. 439 [I-D.ietf-spring-segment-routing-policy] 440 Filsfils, C., Sivabalan, S., Voyer, D., Bogdanov, A., and 441 P. Mattes, "Segment Routing Policy Architecture", draft- 442 ietf-spring-segment-routing-policy-06 (work in progress), 443 December 2019. 445 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 446 Requirement Levels", BCP 14, RFC 2119, 447 DOI 10.17487/RFC2119, March 1997, 448 . 450 [RFC7705] George, W. and S. Amante, "Autonomous System Migration 451 Mechanisms and Their Effects on the BGP AS_PATH 452 Attribute", RFC 7705, DOI 10.17487/RFC7705, November 2015, 453 . 455 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 456 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, 457 May 2017, . 459 [RFC8403] Geib, R., Ed., Filsfils, C., Pignataro, C., Ed., and N. 460 Kumar, "A Scalable and Topology-Aware MPLS Data-Plane 461 Monitoring System", RFC 8403, DOI 10.17487/RFC8403, July 462 2018, . 464 [RFC8690] Nainar, N., Pignataro, C., Iqbal, F., and A. Vainshtein, 465 "Clarification of Segment ID Sub-TLV Length for RFC 8287", 466 RFC 8690, DOI 10.17487/RFC8690, December 2019, 467 . 469 Authors' Addresses 471 Shraddha Hegde 472 Juniper Networks Inc. 473 Exora Business Park 474 Bangalore, KA 560103 475 India 477 Email: shraddha@juniper.net 479 Kapil Arora 480 Juniper Networks Inc. 482 Email: kapilaro@juniper.net 484 Mukul Srivastava 485 Juniper Networks Inc. 487 Email: msri@juniper.net 489 Samson Ninan 490 Individual Contributor 492 Email: samson.cse@gmail.com 493 Xiaohu Xu 494 Alibaba Inc. 495 Beijing 496 China 498 Email: xiaohu.xxh@alibaba-inc.com