idnits 2.17.1 draft-hussain-ccamp-super-channel-label-06.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- ** There are 34 instances of too long lines in the document, the longest one being 1 character in excess of 72. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == Line 301 has weird spacing: '...tiguous slot...' == The document doesn't use any RFC 2119 keywords, yet has text resembling RFC 2119 boilerplate text. -- The document date (October 8, 2013) is 3852 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Missing Reference: 'G.694.1' is mentioned on line 192, but not defined == Missing Reference: 'G.694.2' is mentioned on line 192, but not defined == Unused Reference: 'RFC6163' is defined on line 468, but no explicit reference was found in the text == Unused Reference: '4' is defined on line 486, but no explicit reference was found in the text == Unused Reference: '5' is defined on line 489, but no explicit reference was found in the text ** Downref: Normative reference to an Informational RFC: RFC 6163 Summary: 2 errors (**), 0 flaws (~~), 8 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 1 Network Working Group Iftekhar Hussain 2 Internet Draft Zhong Pan 3 Intended status: Standard Track Marco Sosa 4 Expires: April 2014 Infinera 6 Bert Basch 7 Steve Liu 8 Andrew G. Malis 9 Verizon Communications 11 Abinder Dhillon 12 Fujitsu Network Communications 14 October 8, 2013 16 Generalized Label for Super-Channel Assignment on Flexible Grid 17 draft-hussain-ccamp-super-channel-label-06.txt 19 Abstract 21 To enable scaling of existing transport systems to ultra high data 22 rates of 1 Tbps and beyond, next generation systems providing super- 23 channel switching capability are currently being developed. To allow 24 efficient allocation of optical spectral bandwidth for such high bit 25 rate systems, International Telecommunication Union 26 Telecommunication Standardization Sector (ITU-T) is extending the 27 G.694.1 grid standard (termed "Fixed-Grid") to include flexible grid 28 (termed "Flex-Grid") support (draft revised ITU-T G.694.1, revision 29 1.4, Oct 2011). This necessitates definition of new label format for 30 the Flex-Grid. This document defines a super-channel label as a 31 Super-Channel Identifier and an associated list of 12.5 GHz slices 32 representing the optical spectrum of the super-channel. The label 33 information can be encoded using a fixed length or variable length 34 format. This label format can be used in GMPLS signaling and routing 35 protocol to establish super-channel based optical label switched 36 paths (LSPs). 38 Status of this Memo 40 This Internet-Draft is submitted in full conformance with the 41 provisions of BCP 78 and BCP 79. 43 Internet-Drafts are working documents of the Internet Engineering 44 Task Force (IETF), its areas, and its working groups. Note that 45 other groups may also distribute working documents as Internet- 46 Drafts. 48 Internet-Drafts are draft documents valid for a maximum of six 49 months and may be updated, replaced, or obsoleted by other documents 50 at any time. It is inappropriate to use Internet-Drafts as 51 reference material or to cite them other than as "work in progress." 53 The list of current Internet-Drafts can be accessed at 54 http://www.ietf.org/ietf/1id-abstracts.txt 56 The list of Internet-Draft Shadow Directories can be accessed at 57 http://www.ietf.org/shadow.html 59 This Internet-Draft will expire on April 8, 2014. 61 Copyright Notice 63 Copyright (c) 2013 IETF Trust and the persons identified as the 64 document authors. All rights reserved. 66 This document is subject to BCP 78 and the IETF Trust's Legal 67 Provisions Relating to IETF Documents 68 (http://trustee.ietf.org/license-info) in effect on the date of 69 publication of this document. Please review these documents 70 carefully, as they describe your rights and restrictions with 71 respect to this document. Code Components extracted from this 72 document must include Simplified BSD License text as described in 73 Section 4.e of the Trust Legal Provisions and are provided without 74 warranty as described in the Simplified BSD License. 76 Table of Contents 78 1. Introduction...................................................3 79 2. Terminology....................................................6 80 3. Motivation for Super-Channel Label.............................6 81 3.1. Flex-Grid Slice Numbering.................................6 82 3.2. Super-Channel Label.......................................7 83 3.2.1. Super-Channel Label Encoding Format..................8 84 3.2.2. LSP Encoding Type, Switching Type, and Generalized-PID 85 (G-PID) in Generalized Label Request.......................11 86 4. Security Considerations.......................................11 87 5. IANA Considerations...........................................12 88 6. References....................................................12 89 6.1. Normative References.....................................12 90 6.2. Informative References...................................12 91 7. Acknowledgments...............................................13 92 Appendix A. Super-Channel Label Format Example...................14 94 1. Introduction 96 Future transport systems are expected to support service upgrades to 97 data rates of 1 Tbps and beyond. To scale networks beyond 100Gbps, 98 multi-carrier super-channels coupled with advanced multi-level 99 modulation formats and flexible channel spectrum bandwidth 100 allocation schemes have become pivotal for future spectral efficient 101 transport network architectures [1,2]. 103 A super-channel represents an ultra high aggregate capacity channel 104 containing multiple carriers which are co-routed through the network 105 as a single entity from the source transceiver to the sink 106 transceiver [3,7]. By multiplexing multiple carriers, modulating 107 each carrier with multi-level advanced modulation formats (such as 108 PM-QPSK, PM-8QAM, PM-16QAM), allocating an appropriate-sized 109 flexible channel spectral bandwidth slot, and using a coherent 110 receiver for detecting closely packed sub-carriers, a super-channel 111 can support ultra high data rates in a spectrally efficient manner 112 while maintaining required system reach. Figure 1 contrasts channel 113 spectrum bandwidth allocation schemes for various bit rate optical 114 paths on fixed-grid and flex-grid. ITU-T fixed-grid permits 115 allocation of channel spectrum bandwidth in "single" fixed-sized 116 slots (e.g., 50GHz, 100GHz etc) independent of the channel bit rate. 117 In contrast, a flex-grid can allocate "arbitrary" size channel 118 spectral bandwidth as an integer multiple of 12.5 GHz fine 119 granularity slices. This means, a flex-grid can support multiple 120 data rates channels (optical paths) in a spectrally efficient manner 121 as it allocates appropriate-sized spectrum bandwidth slots, as 122 opposed to fixed-sized slots. As in the examples in the figure, the 123 optical spectrum slices assigned will be to a given super-channel in 124 a contiguous manner. However, for flexibility in finding available 125 optical spectrum on fragmented fibers and to reduce signaling 126 message overhead, the two schemes proposed in this document also 127 allow for identification of a split-spectrum super-channel with 128 optical spectral slices that are non-contiguous, spread across 129 multiple slots. Note that the channel capacity available on a given 130 number of optical spectral slices depends on (among other factors) 131 how many contiguous optical slots are used. The definition of the 132 channel capacity available for a split-spectrum super-channel split 133 across multiple slots of different widths is outside the scope of 134 this document. 136 ITU-T G.694.1 137 Center frequency (f) = 193.1 THz 139 n=-3 n=-2 n=-1 n=0 n=+1 n=+2 141 ^ ^ ^ ^ ^ ^ 142 ... | | | | | | ... 143 || | | | | | | | | | 144 +--------+-------+-------+-------+-------+--- 145 <-- --> <-- --> 146 50 GHz 50 GHz 148 ^ ^ 149 | n=-2 | n= +1 150 | | 151 +------+ +------+ 152 |50 GHz| |50 GHz| 153 +------+ +------+ 155 (10 Gbps channel) (40Gbps channel) 156 (a fixed 50GHz chunk) (a fixed 50GHz chunk) 158 (a) 160 ^ ^ ^ ^ ^ ^ 161 | | | | | + +| 162 ... |-|-|-|-|-|-|-|-| |+|+|+|+|+|+|+|+|+|1|1| ... 163 |8|7|6|5|4|3|2|1|0|1|2|3|4|5|6|7|8|9|0|1| 164 ---+-------+-------+-------+-------+-------+--- 166 ^ ^ ^ 167 |<-- 200 GHz -->|<- ->| 168 | | 50GHz | 169 +-------------------------------+-------+ 170 | 1 Tbps super-channel |100Gbps| 171 | 16 slices of 12.5 GHz |Channel| 172 | |4slices| 173 +-------------------------------+-------+ 175 (b) 177 Figure 1 ITU-T (a) 50 GHz fixed-grid (G.694.1) (b) 12.5 GHz granular 178 flex-grid 180 2. Terminology 182 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL 183 NOT","SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in 184 this document are to be interpreted as described in RFC 2119 185 [RFC2119]. 187 3. Motivation for Super-Channel Label 189 [RFC3471] defines new forms of MPLS "label" for the optical domain 190 that are collectively referred to as a "generalized label". 191 [RFC6205] defines a standard wavelength label based on ITU-T fixed- 192 grids ([G.694.1] and [G.694.2]) for use by Lambda-Switch-Capable 193 (LSC) LSRs. 195 A new label format for super-channels assignment on flex-grid is 196 needed because the existing label formats (such as the waveband 197 switching label defined in RFC3471 and the wavelength label defined 198 in RFC6205) either lack necessary fields to carry required flex-grid 199 related information (e.g., channel spacing) or do not allow 200 signaling of arbitrary flexible-size optical spectral bandwidth in 201 an efficient manner (e.g., in terms of integer multiple of fine 202 granularity 12.5GHz slices). For example, 204 o Waveband switching label format (defined in section 3.3.1 of 205 RFC3471) lacks fields to carry necessary information to support 206 flex-grid. 208 o Wavelength label allows signaling of single fixed-size optical 209 spectrum bandwidth slot only. 211 o Wavelength label does not allow signaling of arbitrary flexible- 212 size optical spectrum bandwidth needed for super-channels 213 assignment on flex-grid. 215 3.1. Flex-Grid Slice Numbering 217 Given a slice spacing value (e.g., 0.0125 THz) and a slice number 218 "n", the slice left edge frequency can be calculated as follows: 220 Slice Left Edge Frequency(THz)= 193.1 THz + n*slice spacing (THz). 222 Where "n" is a two's-complement integer (i.e., positive, negative, 223 or 0) and "slice spacing" is 0.0125 THz conforming to ITU-T Flex- 224 Grid.(Editor's Note: in the future, if necessary the slice numbering 225 scheme will be updated in accordance with the Flex-Grid.) 227 Figure 2 shows an example using the slice number scheme described 228 earlier. 230 3.2. Super-Channel Label 232 In order to setup an optical path manually or dynamically, we need a 233 way to identify and reserve resources (i.e., signal optical spectral 234 bandwidth for the super-channels) along the optical path. For this 235 purpose, this document defines a super-channel label to cover the 236 cases of split-spectrum super-channels as well, such that the label 237 consists of a Super-Channel Identifier and an associated list of 238 contiguous or non-contiguous set of 12.5 GHz slices representing 239 arbitrary size optical spectrum of the super-channels (Note: in the 240 future, slice granularity could be 6.25 GHz.) 242 (n=0 is 193.1 THz) 244 n=-2 n=-1 n=0 n=+1 n=+2 246 ^ ^ ^ ^ ^ 247 | | | | | 248 ... |-|-|-|-|-|-|-|-| |+|+|+|+|+|+|+| ... 249 |8|7|6|5|4|3|2|1|0|1|2|3|4|5|6|7| 250 ---+-------+-------+-------+-------+--- 251 ^ ^ 252 | | 253 | | 254 +-----------------------+ 255 | A super-channel with | 256 | Spectral BW = 150 GHz | 257 |(12 slices of 12.5 GHz)| 258 | | 259 | n_start= -7 | 260 | n_end = +4 | 261 | | 262 | (see label encoding | 263 | format for details) | 264 +-----------------------+ 266 Figure 2 flex-grid example of the proposed slice numbering scheme. 268 3.2.1. Super-Channel Label Encoding Format 270 This section describes two options (option A and B) for encoding the 271 super-channel label by making extensions to the waveband switching 272 label[RFC3471] and wavelength label[RFC6205] formats. (Editor's 273 Note: the term super-channel is a placeholder until a new term is 274 defined for this entity). 276 o Option A: Encode a super-channel label containing N frequency 277 slots as a list of N entries in the form of (n, m) , where n is 278 an integer that defines the nominal central frequency of the 279 frequency slot and m is a positive integer that defines the slot 280 width in accordance with the G.694.1. Other than the encoding of 281 frequency slots (i.e., list of (n, m) in option A vs. list of 282 (start, end) in option B) all other fields are identical in 283 Option A and B. 285 o Option B: Encode super-channel label as a list of start and end 286 slice numbers corresponding to N slots, each consisting of 287 contiguous slices with each slot denoted by its starting and 288 ending slice number (e.g., "n_start_1" and "n_end_1" represent 289 contiguous slices in slot#1, "n_start 2" and "n_end 2" in slot#2, 290 ..., "n_start N" and "n_end N" in slot#N). 292 0 1 2 3 293 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 294 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 295 | Super-Channel Id(16-bit) |Grid | S.S. | Reserved (9-bit)| 296 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 297 | Reserved (16-bit) | Number of Entries(16-bit) | 298 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 299 |n_start_1(contiguous slot #1) | n_end_1(contiguous slot #1) | 300 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 301 |n_start_2(contiguous slot#2) | n_end_2(contiguous slot#2) | 302 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 303 | | 304 | ... | 305 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 306 |n_start_N (contiguous slot#N) | n_end_N (contiguous slot #N | 307 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 309 Super-Channel Id: 16 bits 310 This field represents a logical identifier for a super-channel or 311 split-spectrum super-channel. To disambiguate waveband switching 312 and super-channel label applications, we propose to rename the 313 Waveband Identifier (32-bit) as a Super-Channel Identifier (16- 314 bit). 316 Grid: 3 bits 318 This field indicates the Grid type. The value for Grid should be 319 set to xx (to be assigned by IANA) for the ITU-T flex-grid. 321 +----------------+---------+ 322 | Grid | Value | 323 +----------------+---------+ 324 | Reserved | 0 | 325 +----------------+---------+ 326 |ITU-T DWDM | 1 | 327 +----------------+---------+ 328 |ITU-T CWDM | 2 | 329 +----------------+---------+ 330 |ITU-T Flex-Grid | xx (TBD)| 331 +----------------+---------+ 332 |Future use | 3 - 7 | 333 +----------------+---------+ 335 S.S. (slice spacing): 4 bits 337 This field should be set to a value of 4 to indicate 12.5 GHz in 338 both labels. 340 +----------+---------+ 341 |S.S. (GHz)| Value | 342 +----------+---------+ 343 | Reserved | 0 | 344 +----------+---------+ 345 | 100 | 1 | 346 +----------+---------+ 347 | 50 | 2 | 348 +----------+---------+ 349 | 25 | 3 | 350 +----------+---------+ 351 | 12.5 | 4 | 352 +----------+---------+ 353 |Future use| 5 - 15 | 354 +----------+---------+ 356 Number of Entries: 16-bit 357 This field represents the number of 32-bit entries in the 358 super-channel label (i.e., number of slots with contiguous 359 slices). For example, in the case of a super-channel with 360 contiguous optical spectrum, this field should have a value of 1 361 (indicating one slot of contiguous slices). 363 n_start_i (i=1,2,...N): 16 bits 365 n_end_i (i=1,2,...N): 16 bits 367 A super-channel with contiguous spectrum or a split-spectrum super- 368 channel with non-contiguous optical spectrum can be represented by N 369 slots of slices where two adjacent slots can be contiguous or non- 370 contiguous, however each slot contains contiguous slices. Each slot 371 is denoted by n_start_i (which indicates the lowest or starting 12.5 372 GHz slice number of the slot) and n_end_i (which indicates the 373 highest or ending 12.5 GHz slice number of the slot). "n_start_i" 374 and "n_end_i" are two's-complement integers that can take either a 375 positive, negative, or zero value. 377 o Option C: Encode super-channel label as a first slice number of 378 the grid (denoted as "n_start of Grid") plus the entire list of 379 slices in the grid as a Bitmap 381 0 1 2 3 382 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 383 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 384 | Super-Channel Id (16-bit) |Grid | S.S. | Reserved (9-bit)| 385 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 386 |n_start of Grid (16-bit) |Num of Slices in Grid (16-bit) | 387 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 388 |Bitmap Word #1(first set of 32 slices from the left most edge) | 389 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 390 |Bitmap Word #2 (next set of 32 contiguous slice numbers) | 391 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 392 | | 393 ... 394 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 395 |Bitmap Word #N(last set of 32 contiguous slice numbers) | 396 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 398 Where: 400 Super-Channel Id, Grid, and S.S fields are same as described 401 earlier in option B. 403 n_start of Grid: 16-bit 405 This field indicates the first slice number in Grid for the 406 band being referenced (i.e., the start of the left most edge of 407 the Grid). 409 Num of Slices in Grid: 16-bit 411 This field represents the total number of slices in the band. 412 The value in this field determines the number of 32-bitmap words 413 required for the grid. 415 Bit map (Word): 32-bit 417 Each bit in the 32-bitmap word represents a particular slice 418 with a value of 1 or 0 to indicate whether for that slice 419 reservation is required (1) or not (0). Bit position zero in 420 the first word represents the first slice in the band (Grid) 421 and corresponds to the value indicated in the "n_start of 422 Grid" field. 424 All three options allow efficient encoding of a super-channel label 425 with contiguous and non-contiguous slices. Option C yields a fixed 426 length format while option A and B, a variable length format. Option 427 C is relatively simpler, more flexible, however, might be less 428 compact than option A and B for encoding a single super-channel with 429 contiguous optical spectrum. In contrast, option A and B provide a 430 very compact representation for super-channels with contiguous 431 optical spectrum, however, might be less flexible in encoding split- 432 spectrum super-channels with arbitrary non-contiguous set of slices. 434 3.2.2. LSP Encoding Type, Switching Type, and Generalized-PID (G-PID) 435 in Generalized Label Request 437 For requesting a super-channel label in a Generalized Label Request 438 defined in section 3.1.1 of RFC3471, this document proposes to use 439 LSP Encoding Type = Lambda (as defined in RFC4328), Switching Type = 440 Super-Channel-Switch-Capable(SCSC) (as defined in [6]), and a new G- 441 PID type = OTUadaptand a new G-PID value (similar to as defined in 442 section 3.1.3 of RFC4328) to be assigned by IANA. 444 4. Security Considerations 446 448 5. IANA Considerations 450 IANA needs to assign a new Grid field value to represent ITU-T Flex- 451 Grid and a new G-PID value. 453 6. References 455 6.1. Normative References 457 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 458 Requirement Levels", BCP 14, RFC 2119, March 1997. 460 [RFC3471] Berger, L., Ed., "Generalized Multi-Protocol Label 461 Switching (GMPLS) Signaling Functional Description", RFC 462 3471, January 2003. 464 [RFC6205] Otani, T., Ed., "Generalized Labels for Lambda-Switch- 465 Capable (LSC) Label Switching Routers", RFC 6205, March 466 2011. 468 [RFC6163] Lee, Y., Ed., "Framework for GMPLS and Path Computation 469 Element (PCE) Control of Wavelength Switched Optical 470 Networks (WSONs)", RFC 6163, April 2011 472 6.2. Informative References 474 [1] Gringeri, S., Basch, B. Shukla,V. Egorov, R. and Tiejun J. 475 Xia, "Flexible Architectures for Optical Transport Nodes and 476 Networks", IEEE Communications Magazine, July 2010, pp. 40-50 478 [2] M. Jinnoet. al., "Spectrum-Efficient and Scalable Elastic 479 Optical Path Network: Architecture, Benefits and Enabling 480 Technologies", IEEE Comm. Mag., Nov. 2009, pp. 66-73. 482 [3] S. Chandrasekhar and X. Liu, "Terabit Super-Channels for High 483 Spectral Efficiency Transmission",in Proc. ECOC 2010, paper 484 Tu.3.C.5, Torino (Italy), September 2010. 486 [4] ITU-T Recommendation G.694.1, "Spectral grids for WDM 487 applications: DWDM frequency grid", June 2002 489 [5] [4] "Finisar to Demonstrate Flexgrid(TM) WSS Technology at 490 ECOC 2010", press release. 492 [6] Abinder D., et. al., "OSPFTE extension to support GMPLS for 493 Flex Grid", draft-dhillon-ccamp-super-channel-ospfte-ext, work 494 in progress, October 2011. 496 [7] Sharfuddin S., et. al., "A Framework for control of Flex Grid 497 Networks", draft-syed-ccamp-flexgrid-framework-ext, work in 498 progress, March 2012. 500 7. Acknowledgments 502 504 Appendix A. Super-Channel Label Format Example 506 Suppose node A and Node Z are super-channel switching capable and 507 node A receives a request for establishing a 1 Tbps optical LSP from 508 itself to node Z. Assume the super-channel requires a "contiguous" 509 spectral bandwidth of 200 GHz with left-edge frequency of 191.475 510 THz for the left-most 12.5 GHz slice and left-edge frequency of 511 191.6625 THz for the right-most slice. This means n_start = (191.475 512 - 193.1)/0.0125 = -130 and n_end = (191.6625 - 193.1)/0.0125 = -115 513 (i.e. we need 16 slices of 12.5 GHz starting from slice number -130 514 and ending at slice number -115). 516 Node A signals the LSP via a Path message including a super-channel 517 label format encoding option B defined in section 3.3: 519 0 1 2 3 520 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 521 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 522 | Super-Channel Id (16-bit) |Grid | S.S. | Reserved (9-bit)| 523 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 524 | Reserved (16-bit) | Number of Entries (16-bit) | 525 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 526 |n_start_1 (contiguous slot #1) | n_end_1(contiguous slot#1) | 527 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 528 Where: 530 Super-Channel Id = 1 :super-channel number 1 532 Number of Entries: 1 534 Grid = xx : ITU-T Flex-Grid 536 S.S. = 4 : 12.5 GHz Slice Spacing 538 n_start_1 = -130 : left-most 12.5 GHz slice number for slot 1 540 n_end_1= -115 : Right-most 12.5 GHz slice number for slot 1 542 Authors' Addresses 544 Iftekhar Hussain 545 Infinera 546 140 Caspian Ct., Sunnyvale, CA 94089 548 Email: ihussain@infinera.com 550 Zhong Pan 551 Infinera 552 140 Caspian Ct., Sunnyvale, CA 94089 554 Email: zpan@infinera.com 556 Marco Sosa 557 Infinera 558 140 Caspian Ct., Sunnyvale, CA 94089 560 Email: msosa@infinera.com 562 BertBasch 563 Verizon Communications 564 60Sylvan Rd., Waltham, MA02451 566 Email: bert.e.basch@verizon.com 568 SteveLiu 569 Verizon Communications 570 60Sylvan Rd., Waltham, MA02451 572 Email: steve.liu@verizon.com 574 Andrew G. Malis 575 Verizon Communications 576 60Sylvan Rd., Waltham, MA02451 578 Email: andrew.g.malis@verizon.com 579 Abinder Dhillon 580 Fujitsu Network Communications 581 2801 Telecom Parkway, Richardson, TX 75082 583 Email: abinder.dhillon@us.fujitsu.com 585 Contributor's Addresses 587 Rajan Rao 588 Infinera 589 140 Caspian Ct., Sunnyvale, CA 94089 591 Email: rrao@infinera.com 593 Biao Lu 594 Infinera 595 140 Caspian Ct., Sunnyvale, CA 94089 597 Email: blu@infinera.com 599 Subhendu Chattopadhyay 600 Infinera 601 140 Caspian Ct., Sunnyvale, CA 94089 603 Email: schattopadhyay@infinera.com 605 Harpreet Uppal 606 Infinera 607 140 Caspian Ct., Sunnyvale, CA 94089 609 Email: harpreet.uppal@infinera.com