idnits 2.17.1 draft-ietf-ccamp-general-constraint-encode-04.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (December 1, 2010) is 4893 days in the past. Is this intentional? -- Found something which looks like a code comment -- if you have code sections in the document, please surround them with '' and '' lines. Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Unused Reference: 'G.694.1' is defined on line 942, but no explicit reference was found in the text == Unused Reference: 'G.694.2' is defined on line 945, but no explicit reference was found in the text -- Possible downref: Non-RFC (?) normative reference: ref. 'G.694.1' Summary: 0 errors (**), 0 flaws (~~), 3 warnings (==), 3 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 1 Network Working Group G. Bernstein 2 Internet Draft Grotto Networking 3 Intended status: Standards Track Y. Lee 4 Expires: June 2011 D. Li 5 Huawei 6 W. Imajuku 7 NTT 9 December 1, 2010 11 General Network Element Constraint Encoding for GMPLS Controlled 12 Networks 14 draft-ietf-ccamp-general-constraint-encode-04.txt 16 Status of this Memo 18 This Internet-Draft is submitted to IETF in full conformance with the 19 provisions of BCP 78 and BCP 79. 21 Internet-Drafts are working documents of the Internet Engineering 22 Task Force (IETF), its areas, and its working groups. Note that 23 other groups may also distribute working documents as Internet- 24 Drafts. 26 Internet-Drafts are draft documents valid for a maximum of six months 27 and may be updated, replaced, or obsoleted by other documents at any 28 time. It is inappropriate to use Internet-Drafts as reference 29 material or to cite them other than as "work in progress." 31 The list of current Internet-Drafts can be accessed at 32 http://www.ietf.org/ietf/1id-abstracts.txt 34 The list of Internet-Draft Shadow Directories can be accessed at 35 http://www.ietf.org/shadow.html 37 This Internet-Draft will expire on June 1, 2011. 39 Copyright Notice 41 Copyright (c) 2010 IETF Trust and the persons identified as the 42 document authors. All rights reserved. 44 This document is subject to BCP 78 and the IETF Trust's Legal 45 Provisions Relating to IETF Documents 46 (http://trustee.ietf.org/license-info) in effect on the date of 47 publication of this document. Please review these documents 48 carefully, as they describe your rights and restrictions with respect 49 to this document. Code Components extracted from this document must 50 include Simplified BSD License text as described in Section 4.e of 51 the Trust Legal Provisions and are provided without warranty as 52 described in the Simplified BSD License. 54 Abstract 56 Generalized Multiprotocol Label Switching can be used to control a 57 wide variety of technologies. In some of these technologies network 58 elements and links may impose additional routing constraints such as 59 asymmetric switch connectivity, non-local label assignment, and label 60 range limitations on links. 62 This document provides efficient, protocol-agnostic encodings for 63 general information elements representing connectivity and label 64 constraints as well as label availability. It is intended that 65 protocol-specific documents will reference this memo to describe how 66 information is carried for specific uses. 68 Conventions used in this document 70 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 71 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 72 document are to be interpreted as described in RFC-2119 [RFC2119]. 74 Table of Contents 76 1. Introduction...................................................3 77 1.1. Node Switching Asymmetry Constraints......................3 78 1.2. Non-Local Label Assignment Constraints....................4 79 1.3. Change Log................................................5 80 2. Encoding.......................................................5 81 2.1. Link Set Field............................................5 82 2.2. Label Set Field...........................................7 83 2.2.1. Inclusive/Exclusive Label Lists......................8 84 2.2.2. Inclusive/Exclusive Label Ranges.....................9 85 2.2.3. Bitmap Label Set.....................................9 86 2.3. Available Labels Sub-TLV.................................10 87 2.4. Shared Backup Labels Sub-TLV.............................11 88 2.5. Connectivity Matrix Sub-TLV..............................11 89 2.6. Port Label Restriction sub-TLV...........................12 90 2.6.1. SIMPLE_LABEL........................................13 91 2.6.2. CHANNEL_COUNT.......................................14 92 2.6.3. LABEL_RANGE1........................................14 93 2.6.4. SIMPLE_LABEL & CHANNEL_COUNT........................15 94 2.6.5. Link Label Exclusivity..............................15 95 3. Security Considerations.......................................15 96 4. IANA Considerations...........................................16 97 5. Acknowledgments...............................................16 98 APPENDIX A: Encoding Examples....................................17 99 A.1. Link Set Field...........................................17 100 A.2. Label Set Field..........................................17 101 A.3. Connectivity Matrix Sub-TLV..............................18 102 A.4. Connectivity Matrix with Bi-directional Symmetry.........21 103 6. References....................................................24 104 6.1. Normative References.....................................24 105 6.2. Informative References...................................24 106 7. Contributors..................................................25 107 Authors' Addresses...............................................26 108 Intellectual Property Statement..................................27 109 Disclaimer of Validity...........................................27 111 1. Introduction 113 Some data plane technologies that wish to make use of a GMPLS control 114 plane contain additional constraints on switching capability and 115 label assignment. In addition, some of these technologies must 116 perform non-local label assignment based on the nature of the 117 technology, e.g., wavelength continuity constraint in WSON [WSON- 118 Frame]. Such constraints can lead to the requirement for link by link 119 label availability in path computation and label assignment. 121 This document provides efficient encodings of information needed by 122 the routing and label assignment process in technologies such as WSON 123 and are potentially applicable to a wider range of technologies. Such 124 encodings can be used to extend GMPLS signaling and routing 125 protocols. In addition these encodings could be used by other 126 mechanisms to convey this same information to a path computation 127 element (PCE). 129 1.1. Node Switching Asymmetry Constraints 131 For some network elements the ability of a signal or packet on a 132 particular ingress port to reach a particular egress port may be 133 limited. In addition, in some network elements the connectivity 134 between some ingress ports and egress ports may be fixed, e.g., a 135 simple multiplexer. To take into account such constraints during path 136 computation we model this aspect of a network element via a 137 connectivity matrix. 139 The connectivity matrix (ConnectivityMatrix) represents either the 140 potential connectivity matrix for asymmetric switches or fixed 141 connectivity for an asymmetric device such as a multiplexer. Note 142 that this matrix does not represent any particular internal blocking 143 behavior but indicates which ingress ports and labels (e.g., 144 wavelengths) could possibly be connected to a particular output port. 145 Representing internal state dependent blocking for a node is beyond 146 the scope of this document and due to it's highly implementation 147 dependent nature would most likely not be subject to standardization 148 in the future. The connectivity matrix is a conceptual M by N matrix 149 representing the potential switched or fixed connectivity, where M 150 represents the number of ingress ports and N the number of egress 151 ports. 153 1.2. Non-Local Label Assignment Constraints 155 If the nature of the equipment involved in a network results in a 156 requirement for non-local label assignment we can have constraints 157 based on limits imposed by the ports themselves and those that are 158 implied by the current label usage. Note that constraints such as 159 these only become important when label assignment has a non-local 160 character. For example in MPLS an LSR may have a limited range of 161 labels available for use on an egress port and a set of labels 162 already in use on that port and hence unavailable for use. This 163 information, however, does not need to be shared unless there is some 164 limitation on the LSR's label swapping ability. For example if a TDM 165 node lacks the ability to perform time-slot interchange or a WSON 166 lacks the ability to perform wavelength conversion then the label 167 assignment process is not local to a single node and it may be 168 advantageous to share the label assignment constraint information for 169 use in path computation. 171 Port label restrictions (PortLabelRestriction) model the label 172 restrictions that the network element (node) and link may impose on a 173 port. These restrictions tell us what labels may or may not be used 174 on a link and are intended to be relatively static. More dynamic 175 information is contained in the information on available labels. Port 176 label restrictions are specified relative to the port in general or 177 to a specific connectivity matrix for increased modeling flexibility. 178 Reference [Switch] gives an example where both switch and fixed 179 connectivity matrices are used and both types of constraints occur on 180 the same port. 182 1.3. Change Log 184 Changes from 03 version: 186 (a)Removed informational BNF from section 1. 188 (b) Removed section on "Extension Encoding Usage Recommendations" 190 2. Encoding 192 A type-length-value (TLV) encoding of the general connectivity and 193 label restrictions and availability extensions is given in this 194 section. This encoding is designed to be suitable for use in the 195 GMPLS routing protocols OSPF [RFC4203] and IS-IS [RFC5307] and in the 196 PCE protocol PCEP [PCEP]. Note that the information distributed in 197 [RFC4203] and [RFC5307] is arranged via the nesting of sub-TLVs 198 within TLVs and this document makes use of such constructs. First, 199 however we define two general purpose fields that will be used 200 repeatedly in the subsequent TLVs. 202 2.1. Link Set Field 204 We will frequently need to describe properties of groups of links. To 205 do so efficiently we can make use of a link set concept similar to 206 the label set concept of [RFC3471]. This Link Set Field is used in 207 the sub-TLV, which is defined in Section 2.5. 208 The information carried in a Link Set is defined by: 210 0 1 2 3 211 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 212 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 213 | Action |Dir| Format | Length | 214 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 215 | Link Identifier 1 | 216 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 217 : : : 218 : : : 219 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 220 | Link Identifier N | 221 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 223 Action: 8 bits 225 0 - Inclusive List 227 Indicates that one or more link identifiers are included in the Link 228 Set. Each identifies a separate link that is part of the set. 230 1 - Inclusive Range 232 Indicates that the Link Set defines a range of links. It contains 233 two link identifiers. The first identifier indicates the start of the 234 range (inclusive). The second identifier indicates the end of the 235 range (inclusive). All links with numeric values between the bounds 236 are considered to be part of the set. A value of zero in either 237 position indicates that there is no bound on the corresponding 238 portion of the range. Note that the Action field can be set to 239 0x02(Inclusive Range) only when unnumbered link identifier is used. 241 Dir: Directionality of the Link Set (2 bits) 243 0 -- bidirectional 244 1 -- ingress 246 2 -- egress 248 For example in optical networks we think in terms of unidirectional 249 as well as bidirectional links. For example, label restrictions or 250 connectivity may be different for an ingress port, than for its 251 "companion" egress port if one exists. Note that "interfaces" such as 252 those discussed in the Interfaces MIB [RFC2863] are assumed to be 253 bidirectional. This also applies to the links advertised in various 254 link state routing protocols. 256 Format: The format of the link identifier (6 bits) 258 0 -- Link Local Identifier 260 Indicates that the links in the Link Set are identified by link local 261 identifiers. All link local identifiers are supplied in the context 262 of the advertising node. 264 1 -- Local Interface IPv4 Address 266 2 -- Local Interface IPv6 Address 268 Indicates that the links in the Link Set are identified by Local 269 Interface IP Address. All Local Interface IP Address are supplied in 270 the context of the advertising node. 272 Others TBD. 274 Note that all link identifiers in the same list must be of the same 275 type. 277 Length: 16 bits 279 This field indicates the total length in bytes of the Link Set field. 281 Link Identifier: length is dependent on the link format 283 The link identifier represents the port which is being described 284 either for connectivity or label restrictions. This can be the link 285 local identifier of [RFC4202], GMPLS routing, [RFC4203] GMPLS OSPF 286 routing, and [RFC5307] IS-IS GMPLS routing. The use of the link local 287 identifier format can result in more compact encodings when the 288 assignments are done in a reasonable fashion. 290 2.2. Label Set Field 292 Label Set Field is used within the sub-TLV or the 293 sub-TLV, which is defined in Section 2.3. and 294 2.4. , respectively. 296 The general format for a label set is given below. This format uses 297 the Action concept from [RFC3471] with an additional Action to define 298 a "bit map" type of label set. The second 32 bit field is a base 299 label used as a starting point in many of the specific formats. 301 0 1 2 3 302 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 303 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 304 | Action| Num Labels | Length | 305 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 306 | Base Label | 307 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 308 | Additional fields as necessary per action | 309 | 311 Action: 313 0 - Inclusive List 315 1 - Exclusive List 317 2 - Inclusive Range 319 3 - Exclusive Range 321 4 - Bitmap Set 323 Num Labels is only meaningful for Action value of 4 (Bitmap Set). It 324 indicates the number of labels represented by the bit map. See more 325 detail in section 3.2.3. 327 Length is the length in bytes of the entire field. 329 2.2.1. Inclusive/Exclusive Label Lists 331 In the case of the inclusive/exclusive lists the wavelength set 332 format is given by: 334 0 1 2 3 335 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 336 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 337 |0 or 1 | Num Labels (not used) | Length | 338 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 339 | Base Label | 340 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 341 : : 342 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 343 | Last Label | 344 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 346 Where: 348 Num Labels is not used in this particular format since the Length 349 parameter is sufficient to determine the number of labels in the 350 list. 352 2.2.2. Inclusive/Exclusive Label Ranges 354 In the case of inclusive/exclusive ranges the label set format is 355 given by: 357 0 1 2 3 358 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 359 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 360 |2 or 3 | Num Labels(not used) | Length | 361 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 362 | Start Label | 363 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 364 | End Label | 365 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 367 Note that the start and end label must in some sense "compatible" in 368 the technology being used. 370 2.2.3. Bitmap Label Set 372 In the case of Action = 4, the bitmap the label set format is given 373 by: 375 0 1 2 3 376 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 377 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 378 | 4 | Num Labels | Length | 379 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 380 | Base Label | 381 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 382 | Bit Map Word #1 (Lowest numerical labels) | 383 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 384 : : 385 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 386 | Bit Map Word #N (Highest numerical labels) | 387 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 389 Where Num Labels in this case tells us the number of labels 390 represented by the bit map. Each bit in the bit map represents a 391 particular label with a value of 1/0 indicating whether the label is 392 in the set or not. Bit position zero represents the lowest label and 393 corresponds to the base label, while each succeeding bit position 394 represents the next label logically above the previous. 396 The size of the bit map is Num Label bits, but the bit map is padded 397 out to a full multiple of 32 bits so that the TLV is a multiple of 398 four bytes. Bits that do not represent labels (i.e., those in 399 positions (Num Labels) and beyond SHOULD be set to zero and MUST be 400 ignored. 402 2.3. Available Labels Sub-TLV 404 To indicate the labels available for use on a link the Available 405 Labels sub-TLV consists of a single variable length label set field 406 as follows: 408 0 1 2 3 409 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 410 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 411 | Label Set Field | 412 : : 413 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 415 Note that Label Set Field is defined in Section 3.2. 417 2.4. Shared Backup Labels Sub-TLV 419 To indicate the labels available for shared backup use on a link the 420 Shared Backup Labels sub-TLV consists of a single variable length 421 label set field as follows: 423 0 1 2 3 424 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 425 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 426 | Label Set Field | 427 : : 428 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 430 2.5. Connectivity Matrix Sub-TLV 432 The Connectivity Matrix represents how ingress ports are connected to 433 egress ports for network elements. The switch and fixed connectivity 434 matrices can be compactly represented in terms of a minimal list of 435 ingress and egress port set pairs that have mutual connectivity. As 436 described in [Switch] such a minimal list representation leads 437 naturally to a graph representation for path computation purposes 438 that involves the fewest additional nodes and links. 440 A TLV encoding of this list of link set pairs is: 442 0 1 2 3 443 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 444 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 445 | Connectivity | MatrixID | Reserved | 446 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 447 | Link Set A #1 | 448 : : : 449 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 450 | Link Set B #1 : 451 : : : 452 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 453 | Additional Link set pairs as needed | 454 : to specify connectivity : 455 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 457 Where 458 Connectivity is the device type. 460 0 -- the device is fixed 462 1 -- the device is switched(e.g., ROADM/OXC) 464 MatrixID represents the ID of the connectivity matrix and is an 8 bit 465 integer. The value of 0xFF is reserved for use with port wavelength 466 constraints and should not be used to identify a connectivity matrix. 468 Link Set A #1 and Link Set B #1 together represent a pair of link 469 sets. There are two permitted combinations for the link set field 470 parameter "dir" for Link Set A and B pairs: 472 o Link Set A dir=ingress, Link Set B dir=egress 474 The meaning of the pair of link sets A and B in this case is that 475 any signal that ingresses a link in set A can be potentially 476 switched out of an egress link in set B. 478 o Link Set A dir=bidirectional, Link Set B dir=bidirectional 480 The meaning of the pair of link sets A and B in this case is that 481 any signal that ingresses on the links in set A can potentially 482 egress on a link in set B, and any ingress signal on the links in 483 set B can potentially egress on a link in set A. 485 See Appendix A for both types of encodings as applied to a ROADM 486 example. 488 2.6. Port Label Restriction sub-TLV 490 Port Label Restriction tells us what labels may or may not be used on 491 a link. 493 The port label restriction of section 1.2. can be encoded as a sub- 494 TLV as follows. More than one of these sub-TLVs may be needed to 495 fully specify a complex port constraint. When more than one of these 496 sub-TLVs are present the resulting restriction is the intersection of 497 the restrictions expressed in each sub-TLV. To indicate that a 498 restriction applies to the port in general and not to a specific 499 connectivity matrix use the reserved value of 0xFF for the MatrixID. 501 0 1 2 3 502 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 503 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 504 | MatrixID | RestrictionType | Reserved/Parameter | 505 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 506 | Additional Restriction Parameters per RestrictionType | 507 : : 508 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 510 Where: 512 MatrixID: either is the value in the corresponding Connectivity 513 Matrix sub-TLV or takes the value OxFF to indicate the restriction 514 applies to the port regardless of any Connectivity Matrix. 516 RestrictionType can take the following values and meanings: 518 0: SIMPLE_LABEL (Simple label selective restriction) 520 1: CHANNEL_COUNT (Channel count restriction) 522 2: LABEL_RANGE1 (Label range device with a movable center label 523 and width) 525 3: SIMPLE_LABEL & CHANNEL_COUNT (Combination of SIMPLE_LABEL 526 and CHANNEL_COUNT restriction. The accompanying label set and 527 channel count indicate labels permitted on the port and the 528 maximum number of channels that can be simultaneously used on 529 the port) 531 4: LINK_LABEL_EXCLUSIVITY (A label may be used at most once 532 amongst a set of specified ports) 534 2.6.1. SIMPLE_LABEL 536 In the case of the SIMPLE_LABEL the GeneralPortRestrictions (or 537 MatrixSpecificRestrictions) format is given by: 539 0 1 2 3 540 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 541 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 542 | MatrixID | RstType = 0 | Reserved | 543 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 544 | Label Set Field | 545 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 547 In this case the accompanying label set indicates the labels 548 permitted on the port. 550 2.6.2. CHANNEL_COUNT 552 In the case of the CHANNEL_COUNT the format is given by: 554 0 1 2 3 555 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 556 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 557 | MatrixID | RstType = 1 | MaxNumChannels | 558 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 560 In this case the accompanying MaxNumChannels indicates the maximum 561 number of channels (labels) that can be simultaneously used on the 562 port/matrix. 564 2.6.3. LABEL_RANGE1 566 In the case of the LABEL_RANGE1 the GeneralPortRestrictions (or 567 MatrixSpecificRestrictions) format is given by: 569 0 1 2 3 570 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 571 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 572 | MatrixID | RstType = 2 | MaxLabelRange | 573 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 574 | Label Set Field | 575 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 577 In this case the accompanying MaxLabelRange indicates the maximum 578 range of the labels. The corresponding label set is used to indicate 579 the overall label range. Specific center label information can be 580 obtained from dynamic label in use information. It is assumed that 581 both center label and range tuning can be done without causing faults 582 to existing signals. 584 2.6.4. SIMPLE_LABEL & CHANNEL_COUNT 586 In the case of the SIMPLE_LABEL & CHANNEL_COUNT the format is given 587 by: 589 0 1 2 3 590 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 591 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 592 | MatrixID | RstType = 3 | MaxNumChannels | 593 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 594 | Label Set Field | 595 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 597 In this case the accompanying label set and MaxNumChannels indicate 598 labels permitted on the port and the maximum number of labels that 599 can be simultaneously used on the port. 601 2.6.5. Link Label Exclusivity 603 In the case of the SIMPLE_LABEL & CHANNEL_COUNT the format is given 604 by: 606 0 1 2 3 607 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 608 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 609 | MatrixID | RstType = 4 | Reserved | 610 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 611 | Link Set Field | 612 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 614 In this case the accompanying port set indicate that a label may be 615 used at most once among the ports in the link set field. 617 3. Security Considerations 619 This document defines protocol-independent encodings for WSON 620 information and does not introduce any security issues. 622 However, other documents that make use of these encodings within 623 protocol extensions need to consider the issues and risks associated 624 with, inspection, interception, modification, or spoofing of any of 625 this information. It is expected that any such documents will 626 describe the necessary security measures to provide adequate 627 protection. 629 4. IANA Considerations 631 TBD. Once our approach is finalized we may need identifiers for the 632 various TLVs and sub-TLVs. 634 5. Acknowledgments 636 This document was prepared using 2-Word-v2.0.template.dot. 638 APPENDIX A: Encoding Examples 640 Here we give examples of the general encoding extensions applied to 641 some simple ROADM network elements and links. 643 A.1. Link Set Field 645 Suppose that we wish to describe a set of ingress ports that are have 646 link local identifiers number 3 through 42. In the link set field we 647 set the Action = 1 to denote an inclusive range; the Dir = 1 to 648 denote ingress links; and, the Format = 0 to denote link local 649 identifiers. In particular we have: 651 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 652 | Action=1 |0 1|0 0 0 0 0 0| Length = 12 | 653 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 654 | Link Local Identifier = #3 | 655 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 656 | Link Local Identifier = #42 | 657 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 659 A.2. Label Set Field 661 Example: 663 A 40 channel C-Band DWDM system with 100GHz spacing with lowest 664 frequency 192.0THz (1561.4nm) and highest frequency 195.9THz 665 (1530.3nm). These frequencies correspond to n = -11, and n = 28 666 respectively. Now suppose the following channels are available: 668 Frequency (THz) n Value bit map position 669 -------------------------------------------------- 670 192.0 -11 0 671 192.5 -6 5 672 193.1 0 11 673 193.9 8 19 674 194.0 9 20 675 195.2 21 32 676 195.8 27 38 678 With the Grid value set to indicate an ITU-T G.694.1 DWDM grid, C.S. 679 set to indicate 100GHz this lambda bit map set would then be encoded 680 as follows: 682 0 1 2 3 683 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 684 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 685 | 4 | Num Wavelengths = 40 | Length = 16 bytes | 686 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 687 |Grid | C.S. | Reserved | n for lowest frequency = -11 | 688 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 689 |1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0| 690 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 691 |1 0 0 0 0 0 1 0| Not used in 40 Channel system (all zeros) | 692 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 694 To encode this same set as an inclusive list we would have: 696 0 1 2 3 697 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 698 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 699 | 0 | Num Wavelengths = 40 | Length = 20 bytes | 700 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 701 |Grid | C.S. | Reserved | n for lowest frequency = -11 | 702 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 703 |Grid | C.S. | Reserved | n for lowest frequency = -6 | 704 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 705 |Grid | C.S. | Reserved | n for lowest frequency = -0 | 706 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 707 |Grid | C.S. | Reserved | n for lowest frequency = 8 | 708 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 709 |Grid | C.S. | Reserved | n for lowest frequency = 9 | 710 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 711 |Grid | C.S. | Reserved | n for lowest frequency = 21 | 712 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 713 |Grid | C.S. | Reserved | n for lowest frequency = 27 | 714 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 716 A.3. Connectivity Matrix Sub-TLV 718 Example: 720 Suppose we have a typical 2-degree 40 channel ROADM. In addition to 721 its two line side ports it has 80 add and 80 drop ports. The picture 722 below illustrates how a typical 2-degree ROADM system that works with 723 bi-directional fiber pairs is a highly asymmetrical system composed 724 of two unidirectional ROADM subsystems. 726 (Tributary) Ports #3-#42 727 Ingress added to Egress dropped from 728 West Line Egress East Line Ingress 729 vvvvv ^^^^^ 730 | |||.| | |||.| 731 +-----| |||.|--------| |||.|------+ 732 | +----------------------+ | 733 | | | | 734 Egress | | Unidirectional ROADM | | Ingress 735 -----------------+ | | +-------------- 736 <=====================| |===================< 737 -----------------+ +----------------------+ +-------------- 738 | | 739 Port #1 | | Port #2 740 (West Line Side) | |(East Line Side) 741 -----------------+ +----------------------+ +-------------- 742 >=====================| |===================> 743 -----------------+ | Unidirectional ROADM | +-------------- 744 Ingress | | | | Egress 745 | | _ | | 746 | +----------------------+ | 747 +-----| |||.|--------| |||.|------+ 748 | |||.| | |||.| 749 vvvvv ^^^^^ 750 (Tributary) Ports #43-#82 751 Egress dropped from Ingress added to 752 West Line ingress East Line egress 754 Referring to the figure we see that the ingress direction of ports 755 #3-#42 (add ports) can only connect to the egress on port #1. While 756 the ingress side of port #2 (line side) can only connect to the 757 egress on ports #3-#42 (drop) and to the egress on port #1 (pass 758 through). Similarly, the ingress direction of ports #43-#82 can only 759 connect to the egress on port #2 (line). While the ingress direction 760 of port #1 can only connect to the egress on ports #43-#82 (drop) or 761 port #2 (pass through). We can now represent this potential 762 connectivity matrix as follows. This representation uses only 30 32- 763 bit words. 765 0 1 2 3 766 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 767 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 768 | Conn = 1 | MatrixID | Reserved |1 769 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 770 Note: adds to line 771 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 772 | Action=1 |0 1|0 0 0 0 0 0| Length = 12 |2 773 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 774 | Link Local Identifier = #3 |3 775 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 776 | Link Local Identifier = #42 |4 777 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 778 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 |5 779 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 780 | Link Local Identifier = #1 |6 781 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 782 Note: line to drops 783 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 784 | Action=0 |0 1|0 0 0 0 0 0| Length = 8 |7 785 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 786 | Link Local Identifier = #2 |8 787 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 788 | Action=1 |1 0|0 0 0 0 0 0| Length = 12 |9 789 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 790 | Link Local Identifier = #3 |10 791 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 792 | Link Local Identifier = #42 |11 793 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 794 Note: line to line 795 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 796 | Action=0 |0 1|0 0 0 0 0 0| Length = 8 |12 797 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 798 | Link Local Identifier = #2 |13 799 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 800 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 |14 801 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 802 | Link Local Identifier = #1 |15 803 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 804 Note: adds to line 805 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 806 | Action=1 |0 1|0 0 0 0 0 0| Length = 12 |16 807 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 808 | Link Local Identifier = #43 |17 809 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 810 | Link Local Identifier = #82 |18 811 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 812 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 |19 813 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 814 | Link Local Identifier = #2 |20 815 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 816 Note: line to drops 817 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 818 | Action=0 |0 1|0 0 0 0 0 0|| Length = 8 |21 819 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 820 | Link Local Identifier = #1 |22 821 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 822 | Action=1 |1 0|0 0 0 0 0 0| Length = 12 |23 823 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 824 | Link Local Identifier = #43 |24 825 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 826 | Link Local Identifier = #82 |25 827 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 828 Note: line to line 829 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 830 | Action=0 |0 1|0 0 0 0 0 0| Length = 8 |26 831 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 832 | Link Local Identifier = #1 |27 833 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 834 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 |28 835 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 836 | Link Local Identifier = #2 |30 837 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 839 A.4. Connectivity Matrix with Bi-directional Symmetry 841 If one has the ability to renumber the ports of the previous example 842 as shown in the next figure then we can take advantage of the bi- 843 directional symmetry and use bi-directional encoding of the 844 connectivity matrix. Note that we set dir=bidirectional in the link 845 set fields. 847 (Tributary) 848 Ports #3-42 Ports #43-82 849 West Line Egress East Line Ingress 850 vvvvv ^^^^^ 851 | |||.| | |||.| 852 +-----| |||.|--------| |||.|------+ 853 | +----------------------+ | 854 | | | | 855 Egress | | Unidirectional ROADM | | Ingress 856 -----------------+ | | +-------------- 857 <=====================| |===================< 858 -----------------+ +----------------------+ +-------------- 859 | | 860 Port #1 | | Port #2 861 (West Line Side) | |(East Line Side) 862 -----------------+ +----------------------+ +-------------- 863 >=====================| |===================> 864 -----------------+ | Unidirectional ROADM | +-------------- 865 Ingress | | | | Egress 866 | | _ | | 867 | +----------------------+ | 868 +-----| |||.|--------| |||.|------+ 869 | |||.| | |||.| 870 vvvvv ^^^^^ 871 Ports #3-#42 Ports #43-82 872 Egress dropped from Ingress added to 873 West Line ingress East Line egress 875 0 1 2 3 876 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 877 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 878 | Conn = 1 | MatrixID | Reserved |1 879 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 880 Add/Drops #3-42 to Line side #1 881 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 882 | Action=1 |0 0|0 0 0 0 0 0| Length = 12 |2 883 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 884 | Link Local Identifier = #3 |3 885 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 886 | Link Local Identifier = #42 |4 887 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 888 | Action=0 |0 0|0 0 0 0 0 0| Length = 8 |5 889 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 890 | Link Local Identifier = #1 |6 891 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 892 Note: line #2 to add/drops #43-82 893 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 894 | Action=0 |0 0|0 0 0 0 0 0| Length = 8 |7 895 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 896 | Link Local Identifier = #2 |8 897 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 898 | Action=1 |0 0|0 0 0 0 0 0| Length = 12 |9 899 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 900 | Link Local Identifier = #43 |10 901 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 902 | Link Local Identifier = #82 |11 903 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 904 Note: line to line 905 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 906 | Action=0 |0 0|0 0 0 0 0 0| Length = 8 |12 907 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 908 | Link Local Identifier = #1 |13 909 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 910 | Action=0 |0 0|0 0 0 0 0 0| Length = 8 |14 911 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 912 | Link Local Identifier = #2 |15 913 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 915 6. References 917 6.1. Normative References 919 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 920 Requirement Levels", BCP 14, RFC 2119, March 1997. 922 [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group 923 MIB", RFC 2863, June 2000. 925 [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching 926 (GMPLS) Signaling Functional Description", RFC 3471, 927 January 2003. 929 [G.694.1] ITU-T Recommendation G.694.1, "Spectral grids for WDM 930 applications: DWDM frequency grid", June, 2002. 932 [RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing Extensions 933 in Support of Generalized Multi-Protocol Label Switching 934 (GMPLS)", RFC 4202, October 2005 936 [RFC4203] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions in 937 Support of Generalized Multi-Protocol Label Switching 938 (GMPLS)", RFC 4203, October 2005. 940 6.2. Informative References 942 [G.694.1] ITU-T Recommendation G.694.1, Spectral grids for WDM 943 applications: DWDM frequency grid, June 2002. 945 [G.694.2] ITU-T Recommendation G.694.2, Spectral grids for WDM 946 applications: CWDM wavelength grid, December 2003. 948 [RFC5307] Kompella, K., Ed., and Y. Rekhter, Ed., "IS-IS Extensions 949 in Support of Generalized Multi-Protocol Label Switching 950 (GMPLS)", RFC 5307, October 2008. 952 [Switch] G. Bernstein, Y. Lee, A. Gavler, J. Martensson, " Modeling 953 WDM Wavelength Switching Systems for Use in GMPLS and Automated 954 Path Computation", Journal of Optical Communications and 955 Networking, vol. 1, June, 2009, pp. 187-195. 957 [PCEP] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation 958 Element (PCE) communication Protocol (PCEP) - Version 1", 959 RFC5440. 961 7. Contributors 963 Diego Caviglia 964 Ericsson 965 Via A. Negrone 1/A 16153 966 Genoa Italy 968 Phone: +39 010 600 3736 969 Email: diego.caviglia@(marconi.com, ericsson.com) 971 Anders Gavler 972 Acreo AB 973 Electrum 236 974 SE - 164 40 Kista Sweden 976 Email: Anders.Gavler@acreo.se 978 Jonas Martensson 979 Acreo AB 980 Electrum 236 981 SE - 164 40 Kista, Sweden 983 Email: Jonas.Martensson@acreo.se 985 Itaru Nishioka 986 NEC Corp. 987 1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666 988 Japan 990 Phone: +81 44 396 3287 991 Email: i-nishioka@cb.jp.nec.com 993 Authors' Addresses 995 Greg M. Bernstein (ed.) 996 Grotto Networking 997 Fremont California, USA 999 Phone: (510) 573-2237 1000 Email: gregb@grotto-networking.com 1002 Young Lee (ed.) 1003 Huawei Technologies 1004 1700 Alma Drive, Suite 100 1005 Plano, TX 75075 1006 USA 1008 Phone: (972) 509-5599 (x2240) 1009 Email: ylee@huawei.com 1011 Dan Li 1012 Huawei Technologies Co., Ltd. 1013 F3-5-B R&D Center, Huawei Base, 1014 Bantian, Longgang District 1015 Shenzhen 518129 P.R.China 1017 Phone: +86-755-28973237 1018 Email: danli@huawei.com 1020 Wataru Imajuku 1021 NTT Network Innovation Labs 1022 1-1 Hikari-no-oka, Yokosuka, Kanagawa 1023 Japan 1025 Phone: +81-(46) 859-4315 1026 Email: imajuku.wataru@lab.ntt.co.jp 1027 Jianrui Han 1028 Huawei Technologies Co., Ltd. 1029 F3-5-B R&D Center, Huawei Base, 1030 Bantian, Longgang District 1031 Shenzhen 518129 P.R.China 1033 Phone: +86-755-28972916 1034 Email: hanjianrui@huawei.com 1036 Intellectual Property Statement 1038 The IETF Trust takes no position regarding the validity or scope of 1039 any Intellectual Property Rights or other rights that might be 1040 claimed to pertain to the implementation or use of the technology 1041 described in any IETF Document or the extent to which any license 1042 under such rights might or might not be available; nor does it 1043 represent that it has made any independent effort to identify any 1044 such rights. 1046 Copies of Intellectual Property disclosures made to the IETF 1047 Secretariat and any assurances of licenses to be made available, or 1048 the result of an attempt made to obtain a general license or 1049 permission for the use of such proprietary rights by implementers or 1050 users of this specification can be obtained from the IETF on-line IPR 1051 repository at http://www.ietf.org/ipr 1053 The IETF invites any interested party to bring to its attention any 1054 copyrights, patents or patent applications, or other proprietary 1055 rights that may cover technology that may be required to implement 1056 any standard or specification contained in an IETF Document. Please 1057 address the information to the IETF at ietf-ipr@ietf.org. 1059 Disclaimer of Validity 1061 All IETF Documents and the information contained therein are provided 1062 on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE 1063 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE 1064 IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL 1065 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 1066 WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE 1067 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS 1068 FOR A PARTICULAR PURPOSE. 1070 Acknowledgment 1072 Funding for the RFC Editor function is currently provided by the 1073 Internet Society.