idnits 2.17.1 draft-ietf-ccamp-general-constraint-encode-13.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (November 13, 2013) is 3810 days in the past. Is this intentional? -- Found something which looks like a code comment -- if you have code sections in the document, please surround them with '' and '' lines. Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Missing Reference: 'RWA-INFO' is mentioned on line 198, but not defined == Missing Reference: 'RFC 6205' is mentioned on line 779, but not defined == Unused Reference: 'G.694.1' is defined on line 1091, but no explicit reference was found in the text == Unused Reference: 'G.694.2' is defined on line 1094, but no explicit reference was found in the text -- Possible downref: Non-RFC (?) normative reference: ref. 'G.694.1' Summary: 0 errors (**), 0 flaws (~~), 5 warnings (==), 3 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 1 Network Working Group G. Bernstein 2 Internet Draft Grotto Networking 3 Intended status: Standards Track Y. Lee 4 Expires: May 2014 D. Li 5 Huawei 6 W. Imajuku 7 NTT 9 November 13, 2013 11 General Network Element Constraint Encoding for GMPLS Controlled 12 Networks 14 draft-ietf-ccamp-general-constraint-encode-13.txt 16 Status of this Memo 18 This Internet-Draft is submitted to IETF in full conformance with 19 the provisions of BCP 78 and BCP 79. 21 Internet-Drafts are working documents of the Internet Engineering 22 Task Force (IETF), its areas, and its working groups. Note that 23 other groups may also distribute working documents as Internet- 24 Drafts. 26 Internet-Drafts are draft documents valid for a maximum of six 27 months and may be updated, replaced, or obsoleted by other documents 28 at any time. It is inappropriate to use Internet-Drafts as 29 reference material or to cite them other than as "work in progress." 31 The list of current Internet-Drafts can be accessed at 32 http://www.ietf.org/ietf/1id-abstracts.txt 34 The list of Internet-Draft Shadow Directories can be accessed at 35 http://www.ietf.org/shadow.html 37 This Internet-Draft will expire on May 13, 2012. 39 Copyright Notice 41 Copyright (c) 2013 IETF Trust and the persons identified as the 42 document authors. All rights reserved. 44 Internet-Draft General Network Element Constraint Encoding November 45 2013 47 This document is subject to BCP 78 and the IETF Trust's Legal 48 Provisions Relating to IETF Documents 49 (http://trustee.ietf.org/license-info) in effect on the date of 50 publication of this document. Please review these documents 51 carefully, as they describe your rights and restrictions with 52 respect to this document. Code Components extracted from this 53 document must include Simplified BSD License text as described in 54 Section 4.e of the Trust Legal Provisions and are provided without 55 warranty as described in the Simplified BSD License. 57 Abstract 59 Generalized Multiprotocol Label Switching can be used to control a 60 wide variety of technologies. In some of these technologies network 61 elements and links may impose additional routing constraints such as 62 asymmetric switch connectivity, non-local label assignment, and 63 label range limitations on links. 65 This document provides efficient, protocol-agnostic encodings for 66 general information elements representing connectivity and label 67 constraints as well as label availability. It is intended that 68 protocol-specific documents will reference this memo to describe how 69 information is carried for specific uses. 71 Conventions used in this document 73 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 74 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 75 document are to be interpreted as described in RFC-2119 [RFC2119]. 77 Table of Contents 79 1. Introduction...................................................3 80 1.1. Node Switching Asymmetry Constraints......................4 81 1.2. Non-Local Label Assignment Constraints....................4 82 2. Encoding.......................................................5 83 2.1. Connectivity Matrix Field.................................5 84 2.2. Port Label Restriction Field..............................7 85 2.2.1. SIMPLE_LABEL.........................................8 86 2.2.2. CHANNEL_COUNT........................................8 87 2.2.3. LABEL_RANGE1.........................................9 88 2.2.4. SIMPLE_LABEL & CHANNEL_COUNT.........................9 90 Internet-Draft General Network Element Constraint Encoding November 91 2013 93 2.2.5. Link Label Exclusivity..............................10 94 2.3. Link Set Field...........................................10 95 2.4. Available Labels Field...................................12 96 2.5. Shared Backup Labels Field...............................13 97 2.6. Label Set Field..........................................14 98 2.6.1. Inclusive/Exclusive Label Lists.....................15 99 2.6.2. Inclusive/Exclusive Label Ranges....................15 100 2.6.3. Bitmap Label Set....................................16 101 3. Security Considerations.......................................17 102 4. IANA Considerations...........................................17 103 5. Acknowledgments...............................................17 104 APPENDIX A: Encoding Examples....................................18 105 A.1. Link Set Field...........................................18 106 A.2. Label Set Field..........................................18 107 A.3. Connectivity Matrix......................................19 108 A.4. Connectivity Matrix with Bi-directional Symmetry.........22 109 A.5. Priority Flags in Available/Shared Backup Labels.........24 110 6. References....................................................26 111 6.1. Normative References.....................................26 112 6.2. Informative References...................................26 113 7. Contributors..................................................28 114 Authors' Addresses...............................................29 115 Intellectual Property Statement..................................30 116 Disclaimer of Validity...........................................30 118 1. Introduction 120 Some data plane technologies that wish to make use of a GMPLS 121 control plane contain additional constraints on switching capability 122 and label assignment. In addition, some of these technologies must 123 perform non-local label assignment based on the nature of the 124 technology, e.g., wavelength continuity constraint in WSON [WSON- 125 Frame]. Such constraints can lead to the requirement for link by 126 link label availability in path computation and label assignment. 128 This document provides efficient encodings of information needed by 129 the routing and label assignment process in technologies such as 130 WSON and are potentially applicable to a wider range of 131 technologies. Such encodings can be used to extend GMPLS signaling 132 and routing protocols. In addition these encodings could be used by 133 other mechanisms to convey this same information to a path 134 computation element (PCE). 136 Internet-Draft General Network Element Constraint Encoding November 137 2013 139 1.1. Node Switching Asymmetry Constraints 141 For some network elements the ability of a signal or packet on a 142 particular input port to reach a particular output port may be 143 limited. In addition, in some network elements the connectivity 144 between some input ports and output ports may be fixed, e.g., a 145 simple multiplexer. To take into account such constraints during 146 path computation we model this aspect of a network element via a 147 connectivity matrix. 149 The connectivity matrix (ConnectivityMatrix) represents either the 150 potential connectivity matrix for asymmetric switches or fixed 151 connectivity for an asymmetric device such as a multiplexer. Note 152 that this matrix does not represent any particular internal blocking 153 behavior but indicates which input ports and labels (e.g., 154 wavelengths) could possibly be connected to a particular output 155 port. Representing internal state dependent blocking for a node is 156 beyond the scope of this document and due to it's highly 157 implementation dependent nature would most likely not be subject to 158 standardization in the future. The connectivity matrix is a 159 conceptual M by N matrix representing the potential switched or 160 fixed connectivity, where M represents the number of input ports and 161 N the number of output ports. 163 1.2. Non-Local Label Assignment Constraints 165 If the nature of the equipment involved in a network results in a 166 requirement for non-local label assignment we can have constraints 167 based on limits imposed by the ports themselves and those that are 168 implied by the current label usage. Note that constraints such as 169 these only become important when label assignment has a non-local 170 character. For example in MPLS an LSR may have a limited range of 171 labels available for use on an output port and a set of labels 172 already in use on that port and hence unavailable for use. This 173 information, however, does not need to be shared unless there is 174 some limitation on the LSR's label swapping ability. For example if 175 a TDM node lacks the ability to perform time-slot interchange or a 176 WSON lacks the ability to perform wavelength conversion then the 177 label assignment process is not local to a single node and it may be 178 advantageous to share the label assignment constraint information 179 for use in path computation. 181 Internet-Draft General Network Element Constraint Encoding November 182 2013 184 Port label restrictions (PortLabelRestriction) model the label 185 restrictions that the network element (node) and link may impose on 186 a port. These restrictions tell us what labels may or may not be 187 used on a link and are intended to be relatively static. More 188 dynamic information is contained in the information on available 189 labels. Port label restrictions are specified relative to the port 190 in general or to a specific connectivity matrix for increased 191 modeling flexibility. Reference [Switch] gives an example where both 192 switch and fixed connectivity matrices are used and both types of 193 constraints occur on the same port. 195 2. Encoding 197 This section provides encodings for the information elements defined 198 in [RWA-INFO] that have applicability to WSON. The encodings are 199 designed to be suitable for use in the GMPLS routing protocols OSPF 200 [RFC4203] and IS-IS [RFC5307] and in the PCE protocol (PCEP) 201 [RFC5440]. Note that the information distributed in [RFC4203] and 202 [RFC5307] is arranged via the nesting of sub-TLVs within TLVs and 203 this document defines elements to be used within such constructs. 204 Specific constructs of sub-TLVs and the nesting of sub-TLVs of the 205 information element defined by this document will be defined in the 206 respective protocol enhancement documents. 208 2.1. Connectivity Matrix Field 210 The Connectivity Matrix Field represents how input ports are 211 connected to output ports for network elements. The switch and fixed 212 connectivity matrices can be compactly represented in terms of a 213 minimal list of input and output port set pairs that have mutual 214 connectivity. As described in [Switch] such a minimal list 215 representation leads naturally to a graph representation for path 216 computation purposes that involves the fewest additional nodes and 217 links. 219 A TLV encoding of this list of link set pairs is: 221 Internet-Draft General Network Element Constraint Encoding November 222 2013 224 0 1 2 3 225 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 226 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 227 | Connectivity | MatrixID | Reserved | 228 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 229 | Link Set A #1 | 230 : : : 231 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 232 | Link Set B #1 : 233 : : : 234 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 235 | Additional Link set pairs as needed | 236 : to specify connectivity : 237 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 239 Where 241 Connectivity is the device type. 243 0 -- the device is fixed 245 1 -- the device is switched(e.g., ROADM/OXC) 247 MatrixID represents the ID of the connectivity matrix and is an 8 248 bit integer. The value of 0xFF is reserved for use with port 249 wavelength constraints and should not be used to identify a 250 connectivity matrix. 252 Link Set A #1 and Link Set B #1 together represent a pair of link 253 sets. See Section 2.3. for a detail description of the link set 254 field. There are two permitted combinations for the link set field 255 parameter "dir" for Link Set A and B pairs: 257 o Link Set A dir=input, Link Set B dir=output 259 The meaning of the pair of link sets A and B in this case is that 260 any signal that inputs a link in set A can be potentially switched 261 out of an output link in set B. 263 o Link Set A dir=bidirectional, Link Set B dir=bidirectional 265 Internet-Draft General Network Element Constraint Encoding November 266 2013 268 The meaning of the pair of link sets A and B in this case is that 269 any signal that inputs on the links in set A can potentially 270 output on a link in set B, and any input signal on the links in 271 set B can potentially output on a link in set A. 273 See Appendix A for both types of encodings as applied to a ROADM 274 example. 276 2.2. Port Label Restriction Field 278 Port Label Restriction Field tells us what labels may or may not be 279 used on a link. 281 The port label restriction can be encoded as follows: More than one 282 of these fields may be needed to fully specify a complex port 283 constraint. When more than one of these fields are present the 284 resulting restriction is the intersection of the restrictions 285 expressed in each field. To indicate that a restriction applies to 286 the port in general and not to a specific connectivity matrix use 287 the reserved value of 0xFF for the MatrixID. 289 0 1 2 3 290 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 291 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 292 | MatrixID |RestrictionType| Switching Cap | Encoding | 293 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 294 | Additional Restriction Parameters per RestrictionType | 295 : : 296 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 298 Where: 300 MatrixID: either is the value in the corresponding Connectivity 301 Matrix field or takes the value OxFF to indicate the restriction 302 applies to the port regardless of any Connectivity Matrix. 304 RestrictionType can take the following values and meanings: 306 0: SIMPLE_LABEL (Simple label selective restriction) 308 1: CHANNEL_COUNT (Channel count restriction) 310 Internet-Draft General Network Element Constraint Encoding November 311 2013 313 2: LABEL_RANGE1 (Label range device with a movable center 314 label and width) 316 3: SIMPLE_LABEL & CHANNEL_COUNT (Combination of SIMPLE_LABEL 317 and CHANNEL_COUNT restriction. The accompanying label set and 318 channel count indicate labels permitted on the port and the 319 maximum number of channels that can be simultaneously used on 320 the port) 322 4: LINK_LABEL_EXCLUSIVITY (A label may be used at most once 323 amongst a set of specified ports) 325 Switching Capability is defined in [RFC4203] and Encoding in 326 [RFC3471]. The combination of these fields defines the type of 327 labels used in specifying the port label restrictions as well as the 328 interface type to which these restrictions apply. 330 2.2.1. SIMPLE_LABEL 332 In the case of the SIMPLE_LABEL the GeneralPortRestrictions (or 333 MatrixSpecificRestrictions) format is given by: 335 0 1 2 3 336 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 337 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 338 | MatrixID | RstType = 0 | Switching Cap | Encoding | 339 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 340 | Label Set Field | 341 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 343 In this case the accompanying label set indicates the labels 344 permitted on the port. 346 2.2.2. CHANNEL_COUNT 348 In the case of the CHANNEL_COUNT the format is given by: 350 Internet-Draft General Network Element Constraint Encoding November 351 2013 353 0 1 2 3 354 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 355 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 356 | MatrixID | RstType = 1 | Switching Cap | Encoding | 357 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 358 | MaxNumChannels | 359 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 361 In this case the accompanying MaxNumChannels indicates the maximum 362 number of channels (labels) that can be simultaneously used on the 363 port/matrix. 365 2.2.3. LABEL_RANGE1 367 In the case of the LABEL_RANGE1 the GeneralPortRestrictions (or 368 MatrixSpecificRestrictions) format is given by: 370 0 1 2 3 371 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 372 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 373 | MatrixID | RstType = 2 |Switching Cap | Encoding | 374 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 375 | MaxLabelRange | 376 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 377 | Label Set Field | 378 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 380 In this case the accompanying MaxLabelRange indicates the maximum 381 range of the labels. The corresponding label set is used to indicate 382 the overall label range. Specific center label information can be 383 obtained from dynamic label in use information. It is assumed that 384 both center label and range tuning can be done without causing 385 faults to existing signals. 387 2.2.4. SIMPLE_LABEL & CHANNEL_COUNT 389 In the case of the SIMPLE_LABEL & CHANNEL_COUNT the format is given 390 by: 392 Internet-Draft General Network Element Constraint Encoding November 393 2013 395 0 1 2 3 396 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 397 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 398 | MatrixID | RstType = 3 | Switching Cap | Encoding | 399 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 400 | MaxNumChannels | 401 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 402 | Label Set Field | 403 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 405 In this case the accompanying label set and MaxNumChannels indicate 406 labels permitted on the port and the maximum number of labels that 407 can be simultaneously used on the port. 409 2.2.5. Link Label Exclusivity 411 In the case of the Link Label Exclusivity the format is given by: 413 0 1 2 3 414 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 415 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 416 | MatrixID | RstType = 4 | Switching Cap | Encoding | 417 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 418 | Link Set Field | 419 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 421 In this case the accompanying port set indicate that a label may be 422 used at most once among the ports in the link set field. 424 2.3. Link Set Field 426 We will frequently need to describe properties of groups of links. 427 To do so efficiently we can make use of a link set concept similar 428 to the label set concept of [RFC3471]. This Link Set Field is used 429 in the , which is defined in Section 2.1. The 430 information carried in a Link Set is defined by: 432 Internet-Draft General Network Element Constraint Encoding November 433 2013 435 0 1 2 3 436 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 437 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 438 | Action |Dir| Format | Length | 439 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 440 | Link Identifier 1 | 441 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 442 : : : 443 : : : 444 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 445 | Link Identifier N | 446 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 448 Action: 8 bits 450 0 - Inclusive List 452 Indicates that one or more link identifiers are included in the Link 453 Set. Each identifies a separate link that is part of the set. 455 1 - Inclusive Range 457 Indicates that the Link Set defines a range of links. It contains 458 two link identifiers. The first identifier indicates the start of 459 the range (inclusive). The second identifier indicates the end of 460 the range (inclusive). All links with numeric values between the 461 bounds are considered to be part of the set. A value of zero in 462 either position indicates that there is no bound on the 463 corresponding portion of the range. Note that the Action field can 464 be set to 0x01(Inclusive Range) only when unnumbered link identifier 465 is used. 467 Dir: Directionality of the Link Set (2 bits) 469 0 -- bidirectional 471 1 -- input 473 2 -- output 475 For example in optical networks we think in terms of unidirectional 476 as well as bidirectional links. For example, label restrictions or 477 connectivity may be different for an input port, than for its 478 "companion" output port if one exists. Note that "interfaces" such 480 Internet-Draft General Network Element Constraint Encoding November 481 2013 483 as those discussed in the Interfaces MIB [RFC2863] are assumed to be 484 bidirectional. This also applies to the links advertised in various 485 link state routing protocols. 487 Format: The format of the link identifier (6 bits) 489 0 -- Link Local Identifier 491 Indicates that the links in the Link Set are identified by link 492 local identifiers. All link local identifiers are supplied in the 493 context of the advertising node. 495 1 -- Local Interface IPv4 Address 497 2 -- Local Interface IPv6 Address 499 Indicates that the links in the Link Set are identified by Local 500 Interface IP Address. All Local Interface IP Address are supplied in 501 the context of the advertising node. 503 Others TBD. 505 Note that all link identifiers in the same list must be of the same 506 type. 508 Length: 16 bits 510 This field indicates the total length in bytes of the Link Set field. 512 Link Identifier: length is dependent on the link format 514 The link identifier represents the port which is being described 515 either for connectivity or label restrictions. This can be the link 516 local identifier of [RFC4202], GMPLS routing, [RFC4203] GMPLS OSPF 517 routing, and [RFC5307] IS-IS GMPLS routing. The use of the link 518 local identifier format can result in more compact encodings when 519 the assignments are done in a reasonable fashion. 521 2.4. Available Labels Field 523 The Available Labels Field consists of priority flags, and a single 524 variable length label set field as follows: 526 Internet-Draft General Network Element Constraint Encoding November 527 2013 529 0 1 2 3 530 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 531 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 532 | PRI | Reserved | 533 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 534 | Label Set Field | 535 : : 536 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 538 Where 540 PRI (Priority Flags, 8 bits): A bitmap used to indicate which 541 priorities are being advertised. The bitmap is in ascending order, 542 with the leftmost bit representing priority level 0 (i.e., the 543 highest) and the rightmost bit representing priority level 7 (i.e., 544 the lowest). A bit MUST be set (1) corresponding to each priority 545 represented in the sub-TLV, and MUST NOT be set (0) when the 546 corresponding priority is not represented. At least one priority 547 level MUST be advertised that, unless overridden by local policy, 548 SHALL be at priority level 0. 550 Note that Label Set Field is defined in Section 2.6. See Appendix 551 A.5. for illustrative examples. 553 2.5. Shared Backup Labels Field 555 The Shared Backup Labels Field consists of priority flags, and 556 single variable length label set field as follows: 558 0 1 2 3 559 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 560 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 561 | PRI | Reserved | 562 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 563 | Label Set Field | 564 : : 565 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 567 Where 569 PRI (Priority Flags, 8 bits): A bitmap used to indicate which 570 priorities are being advertised. The bitmap is in ascending order, 571 with the leftmost bit representing priority level 0 (i.e., the 573 Internet-Draft General Network Element Constraint Encoding November 574 2013 576 highest) and the rightmost bit representing priority level 7 (i.e., 577 the lowest). A bit MUST be set (1) corresponding to each priority 578 represented in the sub-TLV, and MUST NOT be set (0) when the 579 corresponding priority is not represented. At least one priority 580 level MUST be advertised that, unless overridden by local policy, 581 SHALL be at priority level 0. 583 Note that Label Set Field is defined in Section 2.6. See Appendix 584 A.5. for illustrative examples. 586 2.6. Label Set Field 588 Label Set Field is used within the or the 589 , which is defined in Section 2.4. and 2.5., 590 respectively. 592 The general format for a label set is given below. This format uses 593 the Action concept from [RFC3471] with an additional Action to 594 define a "bit map" type of label set. Labels are variable in length. 595 The second 32 bit field is a part of the base label used as a 596 starting point in many of the specific formats. 598 0 1 2 3 599 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 600 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 601 | Action| Num Labels | Length | 602 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 603 | Base Label | 604 | . . . | 605 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 606 | Additional fields as necessary per action | 607 | | 609 Action: 611 0 - Inclusive List 613 1 - Exclusive List 615 2 - Inclusive Range 617 3 - Exclusive Range 619 Internet-Draft General Network Element Constraint Encoding November 620 2013 622 4 - Bitmap Set 624 Length is the length in bytes of the entire field. 626 2.6.1. Inclusive/Exclusive Label Lists 628 In the case of the inclusive/exclusive lists the wavelength set 629 format is given by: 631 0 1 2 3 632 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 633 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 634 |0 or 1 | Num Labels | Length | 635 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 636 | Label #1 | 637 | . . . | 638 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 639 : : 640 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 641 | Label #N | 642 | . . . | 643 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 645 Where: 647 Label #1 is the first Label to be included/excluded and Label #N is 648 the last Label to be included/excluded. Num Labels MUST match with 649 N. 651 2.6.2. Inclusive/Exclusive Label Ranges 653 In the case of inclusive/exclusive ranges the label set format is 654 given by: 656 Internet-Draft General Network Element Constraint Encoding November 657 2013 659 0 1 2 3 660 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 661 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 662 |2 or 3 | Num Labels | Length | 663 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 664 | Start Label | 665 | . . . | 666 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 667 | End Label | 668 | . . . | 669 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 671 Note that that Start Label is the first Label in the range to be 672 included/excluded and End Label is the last label in the same range. 673 Num Labels MUST be two. 675 2.6.3. Bitmap Label Set 677 In the case of Action = 4, the bitmap the label set format is given 678 by: 680 0 1 2 3 681 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 682 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 683 | 4 | Num Labels | Length | 684 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 685 | Base Label | 686 | . . . | 687 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 688 | Bit Map Word #1 (Lowest numerical labels) | 689 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 690 : : 691 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 692 | Bit Map Word #N (Highest numerical labels) | 693 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 695 Where Num Labels in this case tells us the number of labels 696 represented by the bit map. Each bit in the bit map represents a 697 particular label with a value of 1/0 indicating whether the label is 698 in the set or not. Bit position zero represents the lowest label and 699 corresponds to the base label, while each succeeding bit position 700 represents the next label logically above the previous. 702 Internet-Draft General Network Element Constraint Encoding November 703 2013 705 The size of the bit map is Num Label bits, but the bit map is padded 706 out to a full multiple of 32 bits so that the field is a multiple of 707 four bytes. Bits that do not represent labels (i.e., those in 708 positions (Num Labels) and beyond SHOULD be set to zero and MUST be 709 ignored. 711 3. Security Considerations 713 This document defines protocol-independent encodings for WSON 714 information and does not introduce any security issues. 716 However, other documents that make use of these encodings within 717 protocol extensions need to consider the issues and risks associated 718 with, inspection, interception, modification, or spoofing of any of 719 this information. It is expected that any such documents will 720 describe the necessary security measures to provide adequate 721 protection. A general discussion on security in GMPLS networks can 722 be found in [RFC5920]. 724 4. IANA Considerations 726 This document provides general protocol independent information 727 encodings. There is no IANA allocation request for the information 728 elements defined in this document. IANA allocation requests will be 729 addressed in protocol specific documents based on the encodings 730 defined here. 732 5. Acknowledgments 734 This document was prepared using 2-Word-v2.0.template.dot. 736 Internet-Draft General Network Element Constraint Encoding November 737 2013 739 APPENDIX A: Encoding Examples 741 Here we give examples of the general encoding extensions applied to 742 some simple ROADM network elements and links. 744 A.1. Link Set Field 746 Suppose that we wish to describe a set of input ports that are have 747 link local identifiers number 3 through 42. In the link set field we 748 set the Action = 1 to denote an inclusive range; the Dir = 1 to 749 denote input links; and, the Format = 0 to denote link local 750 identifiers. In particular we have: 752 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 753 | Action=1 |0 1|0 0 0 0 0 0| Length = 12 | 754 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 755 | Link Local Identifier = #3 | 756 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 757 | Link Local Identifier = #42 | 758 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 760 A.2. Label Set Field 762 Example: 764 A 40 channel C-Band DWDM system with 100GHz spacing with lowest 765 frequency 192.0THz (1561.4nm) and highest frequency 195.9THz 766 (1530.3nm). These frequencies correspond to n = -11, and n = 28 767 respectively. Now suppose the following channels are available: 769 Frequency (THz) n Value bit map position 770 -------------------------------------------------- 771 192.0 -11 0 772 192.5 -6 5 773 193.1 0 11 774 193.9 8 19 775 194.0 9 20 776 195.2 21 32 777 195.8 27 38 779 Using the label format defined in [RFC 6205], with the Grid value 780 set to indicate an ITU-T G.694.1 DWDM grid, C.S. set to indicate 781 100GHz this lambda bit map set would then be encoded as follows: 783 Internet-Draft General Network Element Constraint Encoding November 784 2013 786 0 1 2 3 787 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 788 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 789 | 4 | Num Labels = 40 | Length = 16 bytes | 790 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 791 |Grid | C.S. | Reserved | n for lowest frequency = -11 | 792 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 793 |1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0| 794 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 795 |1 0 0 0 0 0 1 0| Not used in 40 Channel system (all zeros) | 796 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 798 To encode this same set as an inclusive list we would have: 800 0 1 2 3 801 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 802 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 803 | 0 | Num Labels = 7 | Length = 20 bytes | 804 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 805 |Grid | C.S. | Reserved | n for lowest frequency = -11 | 806 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 807 |Grid | C.S. | Reserved | n for lowest frequency = -6 | 808 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 809 |Grid | C.S. | Reserved | n for lowest frequency = -0 | 810 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 811 |Grid | C.S. | Reserved | n for lowest frequency = 8 | 812 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 813 |Grid | C.S. | Reserved | n for lowest frequency = 9 | 814 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 815 |Grid | C.S. | Reserved | n for lowest frequency = 21 | 816 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 817 |Grid | C.S. | Reserved | n for lowest frequency = 27 | 818 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 820 A.3. Connectivity Matrix 822 Example: 824 Suppose we have a typical 2-degree 40 channel ROADM. In addition to 825 its two line side ports it has 80 add and 80 drop ports. The picture 827 Internet-Draft General Network Element Constraint Encoding November 828 2013 830 below illustrates how a typical 2-degree ROADM system that works 831 with bi-directional fiber pairs is a highly asymmetrical system 832 composed of two unidirectional ROADM subsystems. 834 (Tributary) Ports #3-#42 835 Input added to Output dropped from 836 West Line Output East Line Input 837 vvvvv ^^^^^ 838 | |||.| | |||.| 839 +-----| |||.|--------| |||.|------+ 840 | +----------------------+ | 841 | | | | 842 Output | | Unidirectional ROADM | | Input 843 -----------------+ | | +-------------- 844 <=====================| |===================< 845 -----------------+ +----------------------+ +-------------- 846 | | 847 Port #1 | | Port #2 848 (West Line Side) | |(East Line Side) 849 -----------------+ +----------------------+ +-------------- 850 >=====================| |===================> 851 -----------------+ | Unidirectional ROADM | +-------------- 852 Input | | | | Output 853 | | _ | | 854 | +----------------------+ | 855 +-----| |||.|--------| |||.|------+ 856 | |||.| | |||.| 857 vvvvv ^^^^^ 858 (Tributary) Ports #43-#82 859 Output dropped from Input added to 860 West Line Input East Line Output 862 Referring to the figure we see that the Input direction of ports #3- 863 #42 (add ports) can only connect to the output on port #1. While the 864 Input side of port #2 (line side) can only connect to the output on 865 ports #3-#42 (drop) and to the output on port #1 (pass through). 866 Similarly, the input direction of ports #43-#82 can only connect to 867 the output on port #2 (line). While the input direction of port #1 868 can only connect to the output on ports #43-#82 (drop) or port #2 869 (pass through). We can now represent this potential connectivity 870 matrix as follows. This representation uses only 30 32-bit words. 872 Internet-Draft General Network Element Constraint Encoding November 873 2013 875 0 1 2 3 876 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 877 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 878 | Conn = 1 | MatrixID | Reserved | 879 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 880 Note: adds to line 881 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 882 | Action=1 |0 1|0 0 0 0 0 0| Length = 12 | 883 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 884 | Link Local Identifier = #3 | 885 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 886 | Link Local Identifier = #42 | 887 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 888 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 | 889 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 890 | Link Local Identifier = #1 | 891 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 892 Note: line to drops 893 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 894 | Action=0 |0 1|0 0 0 0 0 0| Length = 8 | 895 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 896 | Link Local Identifier = #2 | 897 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 898 | Action=1 |1 0|0 0 0 0 0 0| Length = 12 | 899 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 900 | Link Local Identifier = #3 | 901 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 902 | Link Local Identifier = #42 | 903 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 904 Note: line to line 905 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 906 | Action=0 |0 1|0 0 0 0 0 0| Length = 8 | 907 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 908 | Link Local Identifier = #2 | 909 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 910 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 | 911 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 912 | Link Local Identifier = #1 | 913 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 914 Note: adds to line 915 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 916 | Action=1 |0 1|0 0 0 0 0 0| Length = 12 | 917 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 918 | Link Local Identifier = #43 | 920 Internet-Draft General Network Element Constraint Encoding November 921 2013 923 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 924 | Link Local Identifier = #82 | 925 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 926 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 | 927 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 928 | Link Local Identifier = #2 | 929 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 930 Note: line to drops 931 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 932 | Action=0 |0 1|0 0 0 0 0 0|| Length = 8 | 933 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 934 | Link Local Identifier = #1 | 935 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 936 | Action=1 |1 0|0 0 0 0 0 0| Length = 12 | 937 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 938 | Link Local Identifier = #43 | 939 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 940 | Link Local Identifier = #82 | 941 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 942 Note: line to line 943 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 944 | Action=0 |0 1|0 0 0 0 0 0| Length = 8 | 945 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 946 | Link Local Identifier = #1 | 947 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 948 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 | 949 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 950 | Link Local Identifier = #2 | 951 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 953 A.4. Connectivity Matrix with Bi-directional Symmetry 955 If one has the ability to renumber the ports of the previous example 956 as shown in the next figure then we can take advantage of the bi- 957 directional symmetry and use bi-directional encoding of the 958 connectivity matrix. Note that we set dir=bidirectional in the link 959 set fields. 961 Internet-Draft General Network Element Constraint Encoding November 962 2013 964 (Tributary) 965 Ports #3-42 Ports #43-82 966 West Line Output East Line Input 967 vvvvv ^^^^^ 968 | |||.| | |||.| 969 +-----| |||.|--------| |||.|------+ 970 | +----------------------+ | 971 | | | | 972 Output | | Unidirectional ROADM | | Input 973 -----------------+ | | +-------------- 974 <=====================| |===================< 975 -----------------+ +----------------------+ +-------------- 976 | | 977 Port #1 | | Port #2 978 (West Line Side) | |(East Line Side) 979 -----------------+ +----------------------+ +-------------- 980 >=====================| |===================> 981 -----------------+ | Unidirectional ROADM | +-------------- 982 Input | | | | Output 983 | | _ | | 984 | +----------------------+ | 985 +-----| |||.|--------| |||.|------+ 986 | |||.| | |||.| 987 vvvvv ^^^^^ 988 Ports #3-#42 Ports #43-82 989 Output dropped from Input added to 990 West Line Input East Line Output 992 Internet-Draft General Network Element Constraint Encoding November 993 2013 995 0 1 2 3 996 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 997 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 998 | Conn = 1 | MatrixID | Reserved | 999 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1000 Add/Drops #3-42 to Line side #1 1001 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1002 | Action=1 |0 0|0 0 0 0 0 0| Length = 12 | 1003 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1004 | Link Local Identifier = #3 | 1005 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1006 | Link Local Identifier = #42 | 1007 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1008 | Action=0 |0 0|0 0 0 0 0 0| Length = 8 | 1009 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1010 | Link Local Identifier = #1 | 1011 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1012 Note: line #2 to add/drops #43-82 1013 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1014 | Action=0 |0 0|0 0 0 0 0 0| Length = 8 | 1015 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1016 | Link Local Identifier = #2 | 1017 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1018 | Action=1 |0 0|0 0 0 0 0 0| Length = 12 | 1019 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1020 | Link Local Identifier = #43 | 1021 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1022 | Link Local Identifier = #82 | 1023 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1024 Note: line to line 1025 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1026 | Action=0 |0 0|0 0 0 0 0 0| Length = 8 | 1027 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1028 | Link Local Identifier = #1 | 1029 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1030 | Action=0 |0 0|0 0 0 0 0 0| Length = 8 | 1031 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1032 | Link Local Identifier = #2 | 1033 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1035 A.5. Priority Flags in Available/Shared Backup Labels 1037 If one wants to make a set of labels (indicated by Label Set Field 1038 #1) available only for the highest priority level (Priority Level 0) 1040 Internet-Draft General Network Element Constraint Encoding November 1041 2013 1043 while allowing a set of labels (indicated by Label Set Field #2) 1044 available to all priority levels, the following encoding will 1045 express such need. 1047 0 1 2 3 1048 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1049 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1050 |0 0 0 1 0 0 0 0| Reserved | 1051 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1052 | Label Set Field #1 | 1053 : : 1054 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1055 |1 1 1 1 0 0 0 0| Reserved | 1056 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1057 | Label Set Field #2 | 1058 : : 1059 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1061 Internet-Draft General Network Element Constraint Encoding November 1062 2013 1064 6. References 1066 6.1. Normative References 1068 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 1069 Requirement Levels", BCP 14, RFC 2119, March 1997. 1071 [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group 1072 MIB", RFC 2863, June 2000. 1074 [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching 1075 (GMPLS) Signaling Functional Description", RFC 3471, 1076 January 2003. 1078 [G.694.1] ITU-T Recommendation G.694.1, "Spectral grids for WDM 1079 applications: DWDM frequency grid", June, 2002. 1081 [RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing 1082 Extensions in Support of Generalized Multi-Protocol Label 1083 Switching (GMPLS)", RFC 4202, October 2005 1085 [RFC4203] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions 1086 in Support of Generalized Multi-Protocol Label Switching 1087 (GMPLS)", RFC 4203, October 2005. 1089 6.2. Informative References 1091 [G.694.1] ITU-T Recommendation G.694.1, Spectral grids for WDM 1092 applications: DWDM frequency grid, June 2002. 1094 [G.694.2] ITU-T Recommendation G.694.2, Spectral grids for WDM 1095 applications: CWDM wavelength grid, December 2003. 1097 [RFC5307] Kompella, K., Ed., and Y. Rekhter, Ed., "IS-IS Extensions 1098 in Support of Generalized Multi-Protocol Label Switching 1099 (GMPLS)", RFC 5307, October 2008. 1101 [RFC5440] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path 1102 Computation Element (PCE) communication Protocol (PCEP) - 1103 Version 1", RFC5440. 1105 Internet-Draft General Network Element Constraint Encoding November 1106 2013 1108 [RFC5920] L. Fang, Ed., "Security Framework for MPLS and GMPLS 1109 Networks", RFC 5920, July 2010. 1111 [Switch] G. Bernstein, Y. Lee, A. Gavler, J. Martensson, " Modeling 1112 WDM Wavelength Switching Systems for Use in GMPLS and 1113 Automated Path Computation", Journal of Optical Communications 1114 and Networking, vol. 1, June, 2009, pp. 187-195. 1116 Internet-Draft General Network Element Constraint Encoding November 1117 2013 1119 7. Contributors 1121 Diego Caviglia 1122 Ericsson 1123 Via A. Negrone 1/A 16153 1124 Genoa Italy 1126 Phone: +39 010 600 3736 1127 Email: diego.caviglia@ericsson.com 1129 Anders Gavler 1130 Acreo AB 1131 Electrum 236 1132 SE - 164 40 Kista Sweden 1134 Email: Anders.Gavler@acreo.se 1136 Jonas Martensson 1137 Acreo AB 1138 Electrum 236 1139 SE - 164 40 Kista, Sweden 1141 Email: Jonas.Martensson@acreo.se 1143 Itaru Nishioka 1144 NEC Corp. 1145 1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666 1146 Japan 1148 Phone: +81 44 396 3287 1149 Email: i-nishioka@cb.jp.nec.com 1151 Rao Rajan 1152 Infinera 1154 Email: rrao@infinera.com 1156 Giovanni Martinelli 1157 CISCO 1159 Email: giomarti@cisco.com 1161 Remi Theillaud 1163 Internet-Draft General Network Element Constraint Encoding November 1164 2013 1166 Marben 1167 remi.theillaud@marben-products.com 1169 Authors' Addresses 1171 Greg M. Bernstein (ed.) 1172 Grotto Networking 1173 Fremont California, USA 1175 Phone: (510) 573-2237 1176 Email: gregb@grotto-networking.com 1178 Young Lee (ed.) 1179 Huawei Technologies 1180 1700 Alma Drive, Suite 100 1181 Plano, TX 75075 1182 USA 1184 Phone: (972) 509-5599 (x2240) 1185 Email: ylee@huawei.com 1187 Dan Li 1188 Huawei Technologies Co., Ltd. 1189 F3-5-B R&D Center, Huawei Base, 1190 Bantian, Longgang District 1191 Shenzhen 518129 P.R.China 1193 Phone: +86-755-28973237 1194 Email: danli@huawei.com 1196 Wataru Imajuku 1197 NTT Network Innovation Labs 1198 1-1 Hikari-no-oka, Yokosuka, Kanagawa 1199 Japan 1201 Phone: +81-(46) 859-4315 1202 Email: imajuku.wataru@lab.ntt.co.jp 1204 Internet-Draft General Network Element Constraint Encoding November 1205 2013 1207 Jianrui Han 1208 Huawei Technologies Co., Ltd. 1209 F3-5-B R&D Center, Huawei Base, 1210 Bantian, Longgang District 1211 Shenzhen 518129 P.R.China 1213 Phone: +86-755-28972916 1214 Email: hanjianrui@huawei.com 1216 Intellectual Property Statement 1218 The IETF Trust takes no position regarding the validity or scope of 1219 any Intellectual Property Rights or other rights that might be 1220 claimed to pertain to the implementation or use of the technology 1221 described in any IETF Document or the extent to which any license 1222 under such rights might or might not be available; nor does it 1223 represent that it has made any independent effort to identify any 1224 such rights. 1226 Copies of Intellectual Property disclosures made to the IETF 1227 Secretariat and any assurances of licenses to be made available, or 1228 the result of an attempt made to obtain a general license or 1229 permission for the use of such proprietary rights by implementers or 1230 users of this specification can be obtained from the IETF on-line 1231 IPR repository at http://www.ietf.org/ipr 1233 The IETF invites any interested party to bring to its attention any 1234 copyrights, patents or patent applications, or other proprietary 1235 rights that may cover technology that may be required to implement 1236 any standard or specification contained in an IETF Document. Please 1237 address the information to the IETF at ietf-ipr@ietf.org. 1239 Disclaimer of Validity 1241 All IETF Documents and the information contained therein are 1242 provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION 1243 HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, 1244 THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL 1245 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 1246 WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE 1247 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS 1248 FOR A PARTICULAR PURPOSE. 1250 Internet-Draft General Network Element Constraint Encoding November 1251 2013 1253 Acknowledgment 1255 Funding for the RFC Editor function is currently provided by the 1256 Internet Society.