idnits 2.17.1 draft-ietf-ccamp-general-constraint-encode-15.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (August 7, 2014) is 3549 days in the past. Is this intentional? -- Found something which looks like a code comment -- if you have code sections in the document, please surround them with '' and '' lines. Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Unused Reference: 'G.694.1' is defined on line 1096, but no explicit reference was found in the text == Unused Reference: 'G.694.2' is defined on line 1099, but no explicit reference was found in the text -- Possible downref: Non-RFC (?) normative reference: ref. 'G.694.1' Summary: 0 errors (**), 0 flaws (~~), 3 warnings (==), 3 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 1 Network Working Group G. Bernstein 2 Internet Draft Grotto Networking 3 Intended status: Standards Track Y. Lee 4 Expires: August 2014 D. Li 5 Huawei 6 W. Imajuku 7 NTT 9 August 7, 2014 11 General Network Element Constraint Encoding for GMPLS Controlled 12 Networks 14 draft-ietf-ccamp-general-constraint-encode-15.txt 16 Status of this Memo 18 This Internet-Draft is submitted to IETF in full conformance with 19 the provisions of BCP 78 and BCP 79. 21 Internet-Drafts are working documents of the Internet Engineering 22 Task Force (IETF), its areas, and its working groups. Note that 23 other groups may also distribute working documents as Internet- 24 Drafts. 26 Internet-Drafts are draft documents valid for a maximum of six 27 months and may be updated, replaced, or obsoleted by other documents 28 at any time. It is inappropriate to use Internet-Drafts as 29 reference material or to cite them other than as "work in progress." 31 The list of current Internet-Drafts can be accessed at 32 http://www.ietf.org/ietf/1id-abstracts.txt 34 The list of Internet-Draft Shadow Directories can be accessed at 35 http://www.ietf.org/shadow.html 37 This Internet-Draft will expire on February 7, 2015. 39 Copyright Notice 41 Copyright (c) 2014 IETF Trust and the persons identified as the 42 document authors. All rights reserved. 44 Internet-Draft General Network Element Constraint Encoding February 45 2014 47 This document is subject to BCP 78 and the IETF Trust's Legal 48 Provisions Relating to IETF Documents 49 (http://trustee.ietf.org/license-info) in effect on the date of 50 publication of this document. Please review these documents 51 carefully, as they describe your rights and restrictions with 52 respect to this document. Code Components extracted from this 53 document must include Simplified BSD License text as described in 54 Section 4.e of the Trust Legal Provisions and are provided without 55 warranty as described in the Simplified BSD License. 57 Abstract 59 Generalized Multiprotocol Label Switching can be used to control a 60 wide variety of technologies. In some of these technologies network 61 elements and links may impose additional routing constraints such as 62 asymmetric switch connectivity, non-local label assignment, and 63 label range limitations on links. 65 This document provides efficient, protocol-agnostic encodings for 66 general information elements representing connectivity and label 67 constraints as well as label availability. It is intended that 68 protocol-specific documents will reference this memo to describe how 69 information is carried for specific uses. 71 Conventions used in this document 73 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 74 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 75 document are to be interpreted as described in RFC-2119 [RFC2119]. 77 Table of Contents 79 1. Introduction...................................................3 80 1.1. Node Switching Asymmetry Constraints......................3 81 1.2. Non-Local Label Assignment Constraints....................4 82 2. Encoding.......................................................5 83 2.1. Connectivity Matrix Field.................................5 84 2.2. Port Label Restriction Field..............................7 85 2.2.1. SIMPLE_LAB...........................................8 86 2.2.2. CHANNEL_COUNT........................................8 87 2.2.3. LABEL_RANGE1.........................................9 88 2.2.4. SIMPLE_LABEL & CHANNEL_COUNT.........................9 90 Internet-Draft General Network Element Constraint Encoding February 91 2014 93 2.2.5. Link Label Exclusivity..............................10 94 2.3. Link Set Field...........................................10 95 2.4. Available Labels Field...................................12 96 2.5. Shared Backup Labels Field...............................13 97 2.6. Label Set Field..........................................13 98 2.6.1. Inclusive/Exclusive Label Lists.....................14 99 2.6.2. Inclusive/Exclusive Label Ranges....................15 100 2.6.3. Bitmap Label Set....................................16 101 3. Security Considerations.......................................16 102 4. IANA Considerations...........................................17 103 5. Acknowledgments...............................................17 104 APPENDIX A: Encoding Examples....................................18 105 A.1. Link Set Field...........................................18 106 A.2. Label Set Field..........................................18 107 A.3. Connectivity Matrix......................................19 108 A.4. Connectivity Matrix with Bi-directional Symmetry.........22 109 A.5. Priority Flags in Available/Shared Backup Labels.........24 110 6. References....................................................26 111 6.1. Normative References.....................................26 112 6.2. Informative References...................................26 113 7. Contributors..................................................28 114 Authors' Addresses...............................................29 115 Intellectual Property Statement..................................30 116 Disclaimer of Validity...........................................30 118 1. Introduction 120 Some data plane technologies that wish to make use of a GMPLS 121 control plane contain additional constraints on switching capability 122 and label assignment. In addition, some of these technologies must 123 perform non-local label assignment based on the nature of the 124 technology, e.g., wavelength continuity constraint in WSON [WSON- 125 Frame]. Such constraints can lead to the requirement for link by 126 link label availability in path computation and label assignment. 128 This document provides efficient encodings of information needed by 129 the routing and label assignment process in technologies such as 130 WSON and are potentially applicable to a wider range of 131 technologies. Such encodings can be used to extend GMPLS signaling 132 and routing protocols. In addition these encodings could be used by 133 other mechanisms to convey this same information to a path 134 computation element (PCE). 136 Internet-Draft General Network Element Constraint Encoding February 137 2014 139 1.1. Node Switching Asymmetry Constraints 141 For some network elements the ability of a signal or packet on a 142 particular input port to reach a particular output port may be 143 limited. In addition, in some network elements the connectivity 144 between some input ports and output ports may be fixed, e.g., a 145 simple multiplexer. To take into account such constraints during 146 path computation we model this aspect of a network element via a 147 connectivity matrix. 149 The connectivity matrix (ConnectivityMatrix) represents either the 150 potential connectivity matrix for asymmetric switches or fixed 151 connectivity for an asymmetric device such as a multiplexer. Note 152 that this matrix does not represent any particular internal blocking 153 behavior but indicates which input ports and labels (e.g., 154 wavelengths) could possibly be connected to a particular output 155 port. Representing internal state dependent blocking for a node is 156 beyond the scope of this document and due to it's highly 157 implementation dependent nature would most likely not be subject to 158 standardization in the future. The connectivity matrix is a 159 conceptual M by N matrix representing the potential switched or 160 fixed connectivity, where M represents the number of input ports and 161 N the number of output ports. 163 1.2. Non-Local Label Assignment Constraints 165 If the nature of the equipment involved in a network results in a 166 requirement for non-local label assignment we can have constraints 167 based on limits imposed by the ports themselves and those that are 168 implied by the current label usage. Note that constraints such as 169 these only become important when label assignment has a non-local 170 character. For example in MPLS an LSR may have a limited range of 171 labels available for use on an output port and a set of labels 172 already in use on that port and hence unavailable for use. This 173 information, however, does not need to be shared unless there is 174 some limitation on the LSR's label swapping ability. For example if 175 a TDM node lacks the ability to perform time-slot interchange or a 176 WSON lacks the ability to perform wavelength conversion then the 177 label assignment process is not local to a single node and it may be 178 advantageous to share the label assignment constraint information 179 for use in path computation. 181 Internet-Draft General Network Element Constraint Encoding February 182 2014 184 Port label restrictions (PortLabelRestriction) model the label 185 restrictions that the network element (node) and link may impose on 186 a port. These restrictions tell us what labels may or may not be 187 used on a link and are intended to be relatively static. More 188 dynamic information is contained in the information on available 189 labels. Port label restrictions are specified relative to the port 190 in general or to a specific connectivity matrix for increased 191 modeling flexibility. Reference [Switch] gives an example where both 192 switch and fixed connectivity matrices are used and both types of 193 constraints occur on the same port. 195 2. Encoding 197 This section provides encodings for the information elements defined 198 in [RWA-Info] that have applicability to WSON. The encodings are 199 designed to be suitable for use in the GMPLS routing protocols OSPF 200 [RFC4203] and IS-IS [RFC5307] and in the PCE protocol (PCEP) 201 [RFC5440]. Note that the information distributed in [RFC4203] and 202 [RFC5307] is arranged via the nesting of sub-TLVs within TLVs and 203 this document defines elements to be used within such constructs. 204 Specific constructs of sub-TLVs and the nesting of sub-TLVs of the 205 information element defined by this document will be defined in the 206 respective protocol enhancement documents. 208 2.1. Connectivity Matrix Field 210 The Connectivity Matrix Field represents how input ports are 211 connected to output ports for network elements. The switch and fixed 212 connectivity matrices can be compactly represented in terms of a 213 minimal list of input and output port set pairs that have mutual 214 connectivity. As described in [Switch] such a minimal list 215 representation leads naturally to a graph representation for path 216 computation purposes that involves the fewest additional nodes and 217 links. 219 A TLV encoding of this list of link set pairs is: 221 Internet-Draft General Network Element Constraint Encoding February 222 2014 224 0 1 2 3 225 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 226 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 227 | Connectivity | MatrixID | Reserved | 228 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 229 | Link Set A #1 | 230 : : : 231 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 232 | Link Set B #1 : 233 : : : 234 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 235 | Additional Link set pairs as needed | 236 : to specify connectivity : 237 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 239 Where 241 Connectivity is the device type. 243 0 -- the device is fixed 245 1 -- the device is switched(e.g., ROADM/OXC) 247 MatrixID represents the ID of the connectivity matrix and is an 8 248 bit integer. The value of 0xFF is reserved for use with port 249 wavelength constraints and should not be used to identify a 250 connectivity matrix. 252 Link Set A #1 and Link Set B #1 together represent a pair of link 253 sets. See Section 2.3. for a detail description of the link set 254 field. There are two permitted combinations for the link set field 255 parameter "dir" for Link Set A and B pairs: 257 o Link Set A dir=input, Link Set B dir=output 259 The meaning of the pair of link sets A and B in this case is that 260 any signal that inputs a link in set A can be potentially switched 261 out of an output link in set B. 263 o Link Set A dir=bidirectional, Link Set B dir=bidirectional 265 Internet-Draft General Network Element Constraint Encoding February 266 2014 268 The meaning of the pair of link sets A and B in this case is that 269 any signal that inputs on the links in set A can potentially 270 output on a link in set B, and any input signal on the links in 271 set B can potentially output on a link in set A. 273 See Appendix A for both types of encodings as applied to a ROADM 274 example. 276 2.2. Port Label Restriction Field 278 Port Label Restriction Field tells us what labels may or may not be 279 used on a link. 281 The port label restriction can be encoded as follows: More than one 282 of these fields may be needed to fully specify a complex port 283 constraint. When more than one of these fields are present the 284 resulting restriction is the intersection of the restrictions 285 expressed in each field. To indicate that a restriction applies to 286 the port in general and not to a specific connectivity matrix use 287 the reserved value of 0xFF for the MatrixID. 289 0 1 2 3 290 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 291 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 292 | MatrixID |RestrictionType| Switching Cap | Encoding | 293 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 294 | Additional Restriction Parameters per RestrictionType | 295 : : 296 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 298 Where: 300 MatrixID: either is the value in the corresponding Connectivity 301 Matrix field or takes the value OxFF to indicate the restriction 302 applies to the port regardless of any Connectivity Matrix. 304 RestrictionType can take the following values and meanings: 306 0: SIMPLE_LABEL (Simple label selective restriction) 308 1: CHANNEL_COUNT (Channel count restriction) 310 Internet-Draft General Network Element Constraint Encoding February 311 2014 313 2: LABEL_RANGE (Label range device with a movable center label 314 and width) 316 3: SIMPLE_LABEL & CHANNEL_COUNT (Combination of SIMPLE_LABEL 317 and CHANNEL_COUNT restriction. The accompanying label set and 318 channel count indicate labels permitted on the port and the 319 maximum number of channels that can be simultaneously used on 320 the port) 322 4: LINK_LABEL_EXCLUSIVITY (A label may be used at most once 323 amongst a set of specified ports) 325 Switching Capability is defined in [RFC4203] and Encoding in 326 [RFC3471]. The combination of these fields defines the type of 327 labels used in specifying the port label restrictions as well as the 328 interface type to which these restrictions apply. 330 2.2.1. SIMPLE_LABEL 332 In the case of the SIMPLE_LABEL the GeneralPortRestrictions (or 333 MatrixSpecificRestrictions) format is given by: 335 0 1 2 3 336 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 337 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 338 | MatrixID | RstType = 0 | Switching Cap | Encoding | 339 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 340 | Label Set Field | 341 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 343 In this case the accompanying label set indicates the labels 344 permitted on the port. 346 2.2.2. CHANNEL_COUNT 348 In the case of the CHANNEL_COUNT the format is given by: 350 Internet-Draft General Network Element Constraint Encoding February 351 2014 353 0 1 2 3 354 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 355 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 356 | MatrixID | RstType = 1 | Switching Cap | Encoding | 357 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 358 | MaxNumChannels | 359 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 361 In this case the accompanying MaxNumChannels indicates the maximum 362 number of channels (labels) that can be simultaneously used on the 363 port/matrix. 365 2.2.3. LABEL_RANGE 367 In the case of the LABEL_RANGE the GeneralPortRestrictions (or 368 MatrixSpecificRestrictions) format is given by: 370 0 1 2 3 371 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 372 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 373 | MatrixID | RstType = 2 |Switching Cap | Encoding | 374 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 375 | MaxLabelRange | 376 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 377 | Label Set Field | 378 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 380 In this case the accompanying MaxLabelRange indicates the maximum 381 range of the labels. The corresponding label set is used to indicate 382 the overall label range. Specific center label information can be 383 obtained from dynamic label in use information. It is assumed that 384 both center label and range tuning can be done without causing 385 faults to existing signals. 387 2.2.4. SIMPLE_LABEL & CHANNEL_COUNT 389 In the case of the SIMPLE_LABEL & CHANNEL_COUNT the format is given 390 by: 392 Internet-Draft General Network Element Constraint Encoding February 393 2014 395 0 1 2 3 396 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 397 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 398 | MatrixID | RstType = 3 | Switching Cap | Encoding | 399 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 400 | MaxNumChannels | 401 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 402 | Label Set Field | 403 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 405 In this case the accompanying label set and MaxNumChannels indicate 406 labels permitted on the port and the maximum number of labels that 407 can be simultaneously used on the port. 409 2.2.5. Link Label Exclusivity 411 In the case of the Link Label Exclusivity the format is given by: 413 0 1 2 3 414 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 415 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 416 | MatrixID | RstType = 4 | Switching Cap | Encoding | 417 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 418 | Link Set Field | 419 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 421 In this case the accompanying port set indicate that a label may be 422 used at most once among the ports in the link set field. 424 2.3. Link Set Field 426 We will frequently need to describe properties of groups of links. 427 To do so efficiently we can make use of a link set concept similar 428 to the label set concept of [RFC3471]. This Link Set Field is used 429 in the , which is defined in Section 2.1. The 430 information carried in a Link Set is defined by: 432 Internet-Draft General Network Element Constraint Encoding February 433 2014 435 0 1 2 3 436 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 437 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 438 | Action |Dir| Format | Length | 439 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 440 | Link Identifier 1 | 441 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 442 : : : 443 : : : 444 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 445 | Link Identifier N | 446 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 448 Action: 8 bits 450 0 - Inclusive List 452 Indicates that one or more link identifiers are included in the Link 453 Set. Each identifies a separate link that is part of the set. 455 1 - Inclusive Range 457 Indicates that the Link Set defines a range of links. It contains 458 two link identifiers. The first identifier indicates the start of 459 the range (inclusive). The second identifier indicates the end of 460 the range (inclusive). All links with numeric values between the 461 bounds are considered to be part of the set. A value of zero in 462 either position indicates that there is no bound on the 463 corresponding portion of the range. Note that the Action field can 464 be set to 0x01(Inclusive Range) only when unnumbered link identifier 465 is used. 467 Dir: Directionality of the Link Set (2 bits) 469 0 -- bidirectional 471 1 -- input 473 2 -- output 475 For example in optical networks we think in terms of unidirectional 476 as well as bidirectional links. For example, label restrictions or 477 connectivity may be different for an input port, than for its 478 "companion" output port if one exists. Note that "interfaces" such 480 Internet-Draft General Network Element Constraint Encoding February 481 2014 483 as those discussed in the Interfaces MIB [RFC2863] are assumed to be 484 bidirectional. This also applies to the links advertised in various 485 link state routing protocols. 487 Format: The format of the link identifier (6 bits) 489 0 -- Link Local Identifier 491 Indicates that the links in the Link Set are identified by link 492 local identifiers. All link local identifiers are supplied in the 493 context of the advertising node. 495 1 -- Local Interface IPv4 Address 497 2 -- Local Interface IPv6 Address 499 Indicates that the links in the Link Set are identified by Local 500 Interface IP Address. All Local Interface IP Address are supplied in 501 the context of the advertising node. 503 Others -- Reserved for future use. 505 Note that all link identifiers in the same list must be of the same 506 type. 508 Length: 16 bits 510 This field indicates the total length in bytes of the Link Set field. 512 Link Identifier: length is dependent on the link format 514 The link identifier represents the port which is being described 515 either for connectivity or label restrictions. This can be the link 516 local identifier of [RFC4202], GMPLS routing, [RFC4203] GMPLS OSPF 517 routing, and [RFC5307] IS-IS GMPLS routing. The use of the link 518 local identifier format can result in more compact encodings when 519 the assignments are done in a reasonable fashion. 521 2.4. Available Labels Field 523 The Available Labels Field consists of priority flags, and a single 524 variable length label set field as follows: 526 Internet-Draft General Network Element Constraint Encoding February 527 2014 529 0 1 2 3 530 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 531 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 532 | PRI | Reserved | 533 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 534 | Label Set Field | 535 : : 536 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 538 Where 540 PRI (Priority Flags, 8 bits): A bitmap used to indicate which 541 priorities are being advertised. The bitmap is in ascending order, 542 with the leftmost bit representing priority level 0 (i.e., the 543 highest) and the rightmost bit representing priority level 7 (i.e., 544 the lowest). A bit MUST be set (1) corresponding to each priority 545 represented in the sub-TLV, and MUST NOT be set (0) when the 546 corresponding priority is not represented. At least one priority 547 level MUST be advertised that, unless overridden by local policy, 548 SHALL be at priority level 0. 550 Note that Label Set Field is defined in Section 2.6. See Appendix 551 A.5. for illustrative examples. 553 2.5. Shared Backup Labels Field 555 The Shared Backup Labels Field consists of priority flags, and 556 single variable length label set field as follows: 558 0 1 2 3 559 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 560 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 561 | PRI | Reserved | 562 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 563 | Label Set Field | 564 : : 565 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 567 Where 569 PRI (Priority Flags, 8 bits): A bitmap used to indicate which 570 priorities are being advertised. The bitmap is in ascending order, 571 with the leftmost bit representing priority level 0 (i.e., the 573 Internet-Draft General Network Element Constraint Encoding February 574 2014 576 highest) and the rightmost bit representing priority level 7 (i.e., 577 the lowest). A bit MUST be set (1) corresponding to each priority 578 represented in the sub-TLV, and MUST NOT be set (0) when the 579 corresponding priority is not represented. At least one priority 580 level MUST be advertised that, unless overridden by local policy, 581 SHALL be at priority level 0. 583 Note that Label Set Field is defined in Section 2.6. See Appendix 584 A.5. for illustrative examples. 586 2.6. Label Set Field 588 Label Set Field is used within the or the 589 , which is defined in Section 2.4. and 2.5., 590 respectively. 592 The general format for a label set is given below. This format uses 593 the Action concept from [RFC3471] with an additional Action to 594 define a "bit map" type of label set. Labels are variable in length. 595 Action specific fields are defined below. 597 0 1 2 3 599 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 600 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 601 | Action| Num Labels | Length | 602 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 603 | Base Label | 604 | . . . | 605 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 606 | (Action specific fields) | 607 | . . . . | 608 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 610 Action: 612 Internet-Draft General Network Element Constraint Encoding February 613 2014 615 0 - Inclusive List 617 1 - Exclusive List 619 2 - Inclusive Range 621 3 - Exclusive Range 623 4 - Bitmap Set 625 Length is the length in bytes of the entire field. 627 2.6.1. Inclusive/Exclusive Label Lists 629 In the case of the inclusive/exclusive lists the wavelength set 630 format is given by: 632 0 1 2 3 633 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 634 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 635 |0 or 1 | Num Labels | Length | 636 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 637 | Label #1 | 638 | . . . | 639 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 640 : : 641 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 642 | Label #N | 643 | . . . | 644 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 646 Where: 648 Label #1 is the first Label to be included/excluded and Label #N is 649 the last Label to be included/excluded. Num Labels MUST match with 650 N. 652 2.6.2. Inclusive/Exclusive Label Ranges 654 In the case of inclusive/exclusive ranges the label set format is 655 given by: 657 Internet-Draft General Network Element Constraint Encoding February 658 2014 660 0 1 2 3 661 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 662 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 663 |2 or 3 | Num Labels | Length | 664 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 665 | Start Label | 666 | . . . | 667 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 668 | End Label | 669 | . . . | 670 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 672 Note that that Start Label is the first Label in the range to be 673 included/excluded and End Label is the last label in the same range. 674 Num Labels MUST be two. 676 2.6.3. Bitmap Label Set 678 In the case of Action = 4, the bitmap the label set format is given 679 by: 681 0 1 2 3 682 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 683 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 684 | 4 | Num Labels | Length | 685 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 686 | Base Label | 687 | . . . | 688 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 689 | Bit Map Word #1 (Lowest numerical labels) | 690 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 691 : : 692 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 693 | Bit Map Word #N (Highest numerical labels) | 694 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 696 Where Num Labels in this case tells us the number of labels 697 represented by the bit map. Each bit in the bit map represents a 698 particular label with a value of 1/0 indicating whether the label is 699 in the set or not. Bit position zero represents the lowest label and 700 corresponds to the base label, while each succeeding bit position 701 represents the next label logically above the previous. 703 Internet-Draft General Network Element Constraint Encoding February 704 2014 706 The size of the bit map is Num Label bits, but the bit map is padded 707 out to a full multiple of 32 bits so that the field is a multiple of 708 four bytes. Bits that do not represent labels (i.e., those in 709 positions (Num Labels) and beyond SHOULD be set to zero and MUST be 710 ignored. 712 3. Security Considerations 714 This document defines protocol-independent encodings for WSON 715 information and does not introduce any security issues. 717 However, other documents that make use of these encodings within 718 protocol extensions need to consider the issues and risks associated 719 with, inspection, interception, modification, or spoofing of any of 720 this information. It is expected that any such documents will 721 describe the necessary security measures to provide adequate 722 protection. A general discussion on security in GMPLS networks can 723 be found in [RFC5920]. 725 4. IANA Considerations 727 This document provides general protocol independent information 728 encodings. There is no IANA allocation request for the information 729 elements defined in this document. IANA allocation requests will be 730 addressed in protocol specific documents based on the encodings 731 defined here. 733 5. Acknowledgments 735 This document was prepared using 2-Word-v2.0.template.dot. 737 Internet-Draft General Network Element Constraint Encoding February 738 2014 740 APPENDIX A: Encoding Examples 742 Here we give examples of the general encoding extensions applied to 743 some simple ROADM network elements and links. 745 A.1. Link Set Field 747 Suppose that we wish to describe a set of input ports that are have 748 link local identifiers number 3 through 42. In the link set field we 749 set the Action = 1 to denote an inclusive range; the Dir = 1 to 750 denote input links; and, the Format = 0 to denote link local 751 identifiers. In particular we have: 753 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 754 | Action=1 |0 1|0 0 0 0 0 0| Length = 12 | 755 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 756 | Link Local Identifier = #3 | 757 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 758 | Link Local Identifier = #42 | 759 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 761 A.2. Label Set Field 763 Example: 765 A 40 channel C-Band DWDM system with 100GHz spacing with lowest 766 frequency 192.0THz (1561.4nm) and highest frequency 195.9THz 767 (1530.3nm). These frequencies correspond to n = -11, and n = 28 768 respectively. Now suppose the following channels are available: 770 Frequency (THz) n Value bit map position 771 -------------------------------------------------- 772 192.0 -11 0 773 192.5 -6 5 774 193.1 0 11 775 193.9 8 19 776 194.0 9 20 777 195.2 21 32 778 195.8 27 38 780 Using the label format defined in [RFC6205], with the Grid value set 781 to indicate an ITU-T G.694.1 DWDM grid, C.S. set to indicate 100GHz 782 this lambda bit map set would then be encoded as follows: 784 Internet-Draft General Network Element Constraint Encoding February 785 2014 787 0 1 2 3 788 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 789 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 790 | 4 | Num Labels = 40 | Length = 16 bytes | 791 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 792 |Grid | C.S. | Reserved | n for lowest frequency = -11 | 793 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 794 |1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0| 795 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 796 |1 0 0 0 0 0 1 0| Not used in 40 Channel system (all zeros) | 797 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 799 To encode this same set as an inclusive list we would have: 801 0 1 2 3 802 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 803 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 804 | 0 | Num Labels = 7 | Length = 20 bytes | 805 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 806 |Grid | C.S. | Reserved | n for lowest frequency = -11 | 807 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 808 |Grid | C.S. | Reserved | n for lowest frequency = -6 | 809 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 810 |Grid | C.S. | Reserved | n for lowest frequency = -0 | 811 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 812 |Grid | C.S. | Reserved | n for lowest frequency = 8 | 813 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 814 |Grid | C.S. | Reserved | n for lowest frequency = 9 | 815 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 816 |Grid | C.S. | Reserved | n for lowest frequency = 21 | 817 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 818 |Grid | C.S. | Reserved | n for lowest frequency = 27 | 819 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 821 A.3. Connectivity Matrix 823 Example: 825 Suppose we have a typical 2-degree 40 channel ROADM. In addition to 826 its two line side ports it has 80 add and 80 drop ports. The picture 828 Internet-Draft General Network Element Constraint Encoding February 829 2014 831 below illustrates how a typical 2-degree ROADM system that works 832 with bi-directional fiber pairs is a highly asymmetrical system 833 composed of two unidirectional ROADM subsystems. 835 (Tributary) Ports #3-#42 836 Input added to Output dropped from 837 West Line Output East Line Input 838 vvvvv ^^^^^ 839 | |||.| | |||.| 840 +-----| |||.|--------| |||.|------+ 841 | +----------------------+ | 842 | | | | 843 Output | | Unidirectional ROADM | | Input 844 -----------------+ | | +-------------- 845 <=====================| |===================< 846 -----------------+ +----------------------+ +-------------- 847 | | 848 Port #1 | | Port #2 849 (West Line Side) | |(East Line Side) 850 -----------------+ +----------------------+ +-------------- 851 >=====================| |===================> 852 -----------------+ | Unidirectional ROADM | +-------------- 853 Input | | | | Output 854 | | _ | | 855 | +----------------------+ | 856 +-----| |||.|--------| |||.|------+ 857 | |||.| | |||.| 858 vvvvv ^^^^^ 859 (Tributary) Ports #43-#82 860 Output dropped from Input added to 861 West Line Input East Line Output 863 Referring to the figure we see that the Input direction of ports #3- 864 #42 (add ports) can only connect to the output on port #1. While the 865 Input side of port #2 (line side) can only connect to the output on 866 ports #3-#42 (drop) and to the output on port #1 (pass through). 867 Similarly, the input direction of ports #43-#82 can only connect to 868 the output on port #2 (line). While the input direction of port #1 869 can only connect to the output on ports #43-#82 (drop) or port #2 870 (pass through). We can now represent this potential connectivity 871 matrix as follows. This representation uses only 30 32-bit words. 873 Internet-Draft General Network Element Constraint Encoding February 874 2014 876 0 1 2 3 877 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 878 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 879 | Conn = 1 | MatrixID | Reserved | 880 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 881 Note: adds to line 882 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 883 | Action=1 |0 1|0 0 0 0 0 0| Length = 12 | 884 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 885 | Link Local Identifier = #3 | 886 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 887 | Link Local Identifier = #42 | 888 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 889 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 | 890 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 891 | Link Local Identifier = #1 | 892 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 893 Note: line to drops 894 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 895 | Action=0 |0 1|0 0 0 0 0 0| Length = 8 | 896 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 897 | Link Local Identifier = #2 | 898 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 899 | Action=1 |1 0|0 0 0 0 0 0| Length = 12 | 900 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 901 | Link Local Identifier = #3 | 902 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 903 | Link Local Identifier = #42 | 904 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 905 Note: line to line 906 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 907 | Action=0 |0 1|0 0 0 0 0 0| Length = 8 | 908 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 909 | Link Local Identifier = #2 | 910 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 911 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 | 912 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 913 | Link Local Identifier = #1 | 914 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 915 Note: adds to line 916 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 917 | Action=1 |0 1|0 0 0 0 0 0| Length = 12 | 918 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 919 | Link Local Identifier = #43 | 921 Internet-Draft General Network Element Constraint Encoding February 922 2014 924 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 925 | Link Local Identifier = #82 | 926 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 927 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 | 928 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 929 | Link Local Identifier = #2 | 930 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 931 Note: line to drops 932 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 933 | Action=0 |0 1|0 0 0 0 0 0|| Length = 8 | 934 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 935 | Link Local Identifier = #1 | 936 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 937 | Action=1 |1 0|0 0 0 0 0 0| Length = 12 | 938 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 939 | Link Local Identifier = #43 | 940 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 941 | Link Local Identifier = #82 | 942 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 943 Note: line to line 944 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 945 | Action=0 |0 1|0 0 0 0 0 0| Length = 8 | 946 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 947 | Link Local Identifier = #1 | 948 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 949 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 | 950 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 951 | Link Local Identifier = #2 | 952 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 954 A.4. Connectivity Matrix with Bi-directional Symmetry 956 If one has the ability to renumber the ports of the previous example 957 as shown in the next figure then we can take advantage of the bi- 958 directional symmetry and use bi-directional encoding of the 959 connectivity matrix. Note that we set dir=bidirectional in the link 960 set fields. 962 Internet-Draft General Network Element Constraint Encoding February 963 2014 965 (Tributary) 966 Ports #3-42 Ports #43-82 967 West Line Output East Line Input 968 vvvvv ^^^^^ 969 | |||.| | |||.| 970 +-----| |||.|--------| |||.|------+ 971 | +----------------------+ | 972 | | | | 973 Output | | Unidirectional ROADM | | Input 974 -----------------+ | | +-------------- 975 <=====================| |===================< 976 -----------------+ +----------------------+ +-------------- 977 | | 978 Port #1 | | Port #2 979 (West Line Side) | |(East Line Side) 980 -----------------+ +----------------------+ +-------------- 981 >=====================| |===================> 982 -----------------+ | Unidirectional ROADM | +-------------- 983 Input | | | | Output 984 | | _ | | 985 | +----------------------+ | 986 +-----| |||.|--------| |||.|------+ 987 | |||.| | |||.| 988 vvvvv ^^^^^ 989 Ports #3-42 Ports #43-82 990 Output dropped from Input added to 991 West Line Input East Line Output 993 Internet-Draft General Network Element Constraint Encoding February 994 2014 996 0 1 2 3 997 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 998 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 999 | Conn = 1 | MatrixID | Reserved | 1000 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1001 Add/Drops #3-42 to Line side #1 1002 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1003 | Action=1 |0 0|0 0 0 0 0 0| Length = 12 | 1004 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1005 | Link Local Identifier = #3 | 1006 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1007 | Link Local Identifier = #42 | 1008 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1009 | Action=0 |0 0|0 0 0 0 0 0| Length = 8 | 1010 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1011 | Link Local Identifier = #1 | 1012 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1013 Note: line #2 to add/drops #43-82 1014 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1015 | Action=0 |0 0|0 0 0 0 0 0| Length = 8 | 1016 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1017 | Link Local Identifier = #2 | 1018 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1019 | Action=1 |0 0|0 0 0 0 0 0| Length = 12 | 1020 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1021 | Link Local Identifier = #43 | 1022 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1023 | Link Local Identifier = #82 | 1024 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1025 Note: line to line 1026 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1027 | Action=0 |0 0|0 0 0 0 0 0| Length = 8 | 1028 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1029 | Link Local Identifier = #1 | 1030 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1031 | Action=0 |0 0|0 0 0 0 0 0| Length = 8 | 1032 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1033 | Link Local Identifier = #2 | 1034 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1036 A.5. Priority Flags in Available/Shared Backup Labels 1038 If one wants to make a set of labels (indicated by Label Set Field 1039 #1) available only for the highest priority level (Priority Level 0) 1041 Internet-Draft General Network Element Constraint Encoding February 1042 2014 1044 while allowing a set of labels (indicated by Label Set Field #2) 1045 available to all priority levels, the following encoding will 1046 express such need. 1048 0 1 2 3 1049 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1050 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1051 |0 0 0 1 0 0 0 0| Reserved | 1052 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1053 | Label Set Field #1 | 1054 : : 1055 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1056 |1 1 1 1 0 0 0 0| Reserved | 1057 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1058 | Label Set Field #2 | 1059 : : 1060 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1062 Internet-Draft General Network Element Constraint Encoding February 1063 2014 1065 6. References 1067 6.1. Normative References 1069 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 1070 Requirement Levels", BCP 14, RFC 2119, March 1997. 1072 [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group 1073 MIB", RFC 2863, June 2000. 1075 [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching 1076 (GMPLS) Signaling Functional Description", RFC 3471, 1077 January 2003. 1079 [G.694.1] ITU-T Recommendation G.694.1, "Spectral grids for WDM 1080 applications: DWDM frequency grid", June, 2002. 1082 [RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing 1083 Extensions in Support of Generalized Multi-Protocol Label 1084 Switching (GMPLS)", RFC 4202, October 2005 1086 [RFC4203] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions 1087 in Support of Generalized Multi-Protocol Label Switching 1088 (GMPLS)", RFC 4203, October 2005. 1090 [RFC6205] T. Otani, Ed. and D. Li, Ed., "Generalized Labels for 1091 Lambda-Switch-Capable (LSC) Label Switching Routers", RFC 1092 6205, March 2011. 1094 6.2. Informative References 1096 [G.694.1] ITU-T Recommendation G.694.1, Spectral grids for WDM 1097 applications: DWDM frequency grid, June 2002. 1099 [G.694.2] ITU-T Recommendation G.694.2, Spectral grids for WDM 1100 applications: CWDM wavelength grid, December 2003. 1102 Internet-Draft General Network Element Constraint Encoding February 1103 2014 1105 [RFC5307] Kompella, K., Ed., and Y. Rekhter, Ed., "IS-IS Extensions 1106 in Support of Generalized Multi-Protocol Label Switching 1107 (GMPLS)", RFC 5307, October 2008. 1109 [RFC5440] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path 1110 Computation Element (PCE) communication Protocol (PCEP) - 1111 Version 1", RFC5440. 1113 [RFC5920] L. Fang, Ed., "Security Framework for MPLS and GMPLS 1114 Networks", RFC 5920, July 2010. 1116 [Switch] G. Bernstein, Y. Lee, A. Gavler, J. Martensson, " Modeling 1117 WDM Wavelength Switching Systems for Use in GMPLS and 1118 Automated Path Computation", Journal of Optical 1119 Communications and Networking, vol. 1, June, 2009, pp. 1120 187-195. 1122 [RWA-Info] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and 1123 Wavelength Assignment Information Model for Wavelength 1124 Switched Optical Networks", work in progress: draft-ietf- 1125 ccamp-rwa-info. 1127 Internet-Draft General Network Element Constraint Encoding February 1128 2014 1130 7. Contributors 1132 Diego Caviglia 1133 Ericsson 1134 Via A. Negrone 1/A 16153 1135 Genoa Italy 1137 Phone: +39 010 600 3736 1138 Email: diego.caviglia@ericsson.com 1140 Anders Gavler 1141 Acreo AB 1142 Electrum 236 1143 SE - 164 40 Kista Sweden 1145 Email: Anders.Gavler@acreo.se 1147 Jonas Martensson 1148 Acreo AB 1149 Electrum 236 1150 SE - 164 40 Kista, Sweden 1152 Email: Jonas.Martensson@acreo.se 1154 Itaru Nishioka 1155 NEC Corp. 1156 1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666 1157 Japan 1159 Phone: +81 44 396 3287 1160 Email: i-nishioka@cb.jp.nec.com 1162 Rao Rajan 1163 Infinera 1165 Email: rrao@infinera.com 1167 Giovanni Martinelli 1168 CISCO 1170 Email: giomarti@cisco.com 1172 Remi Theillaud 1174 Internet-Draft General Network Element Constraint Encoding February 1175 2014 1177 Marben 1178 remi.theillaud@marben-products.com 1180 Authors' Addresses 1182 Greg M. Bernstein (ed.) 1183 Grotto Networking 1184 Fremont California, USA 1186 Phone: (510) 573-2237 1187 Email: gregb@grotto-networking.com 1189 Young Lee (ed.) 1190 Huawei Technologies 1191 1700 Alma Drive, Suite 100 1192 Plano, TX 75075 1193 USA 1195 Phone: (972) 509-5599 (x2240) 1196 Email: ylee@huawei.com 1198 Dan Li 1199 Huawei Technologies Co., Ltd. 1200 F3-5-B R&D Center, Huawei Base, 1201 Bantian, Longgang District 1202 Shenzhen 518129 P.R.China 1204 Phone: +86-755-28973237 1205 Email: danli@huawei.com 1207 Wataru Imajuku 1208 NTT Network Innovation Labs 1209 1-1 Hikari-no-oka, Yokosuka, Kanagawa 1210 Japan 1212 Phone: +81-(46) 859-4315 1213 Email: imajuku.wataru@lab.ntt.co.jp 1215 Internet-Draft General Network Element Constraint Encoding February 1216 2014 1218 Jianrui Han 1219 Huawei Technologies Co., Ltd. 1220 F3-5-B R&D Center, Huawei Base, 1221 Bantian, Longgang District 1222 Shenzhen 518129 P.R.China 1224 Phone: +86-755-28972916 1225 Email: hanjianrui@huawei.com 1227 Intellectual Property Statement 1229 The IETF Trust takes no position regarding the validity or scope of 1230 any Intellectual Property Rights or other rights that might be 1231 claimed to pertain to the implementation or use of the technology 1232 described in any IETF Document or the extent to which any license 1233 under such rights might or might not be available; nor does it 1234 represent that it has made any independent effort to identify any 1235 such rights. 1237 Copies of Intellectual Property disclosures made to the IETF 1238 Secretariat and any assurances of licenses to be made available, or 1239 the result of an attempt made to obtain a general license or 1240 permission for the use of such proprietary rights by implementers or 1241 users of this specification can be obtained from the IETF on-line 1242 IPR repository at http://www.ietf.org/ipr 1244 The IETF invites any interested party to bring to its attention any 1245 copyrights, patents or patent applications, or other proprietary 1246 rights that may cover technology that may be required to implement 1247 any standard or specification contained in an IETF Document. Please 1248 address the information to the IETF at ietf-ipr@ietf.org. 1250 Disclaimer of Validity 1252 All IETF Documents and the information contained therein are 1253 provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION 1254 HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, 1255 THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL 1256 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 1257 WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE 1258 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS 1259 FOR A PARTICULAR PURPOSE. 1261 Internet-Draft General Network Element Constraint Encoding February 1262 2014 1264 Acknowledgment 1266 Funding for the RFC Editor function is currently provided by the 1267 Internet Society.