idnits 2.17.1 draft-ietf-ccamp-general-constraint-encode-20.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (February 23, 2015) is 3342 days in the past. Is this intentional? -- Found something which looks like a code comment -- if you have code sections in the document, please surround them with '' and '' lines. Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) -- Possible downref: Non-RFC (?) normative reference: ref. 'G.694.1' Summary: 0 errors (**), 0 flaws (~~), 1 warning (==), 3 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 1 Network Working Group G. Bernstein 2 Internet Draft Grotto Networking 3 Intended status: Standards Track Y. Lee 4 Expires: June 2015 D. Li 5 Huawei 6 W. Imajuku 7 NTT 9 February 23, 2015 11 General Network Element Constraint Encoding for GMPLS Controlled 12 Networks 14 draft-ietf-ccamp-general-constraint-encode-20.txt 16 Abstract 18 Generalized Multiprotocol Label Switching can be used to control a 19 wide variety of technologies. In some of these technologies, network 20 elements and links may impose additional routing constraints such as 21 asymmetric switch connectivity, non-local label assignment, and 22 label range limitations on links. 24 This document provides efficient, protocol-agnostic encodings for 25 general information elements representing connectivity and label 26 constraints as well as label availability. It is intended that 27 protocol-specific documents will reference this memo to describe how 28 information is carried for specific uses. 30 Status of this Memo 32 This Internet-Draft is submitted to IETF in full conformance with 33 the provisions of BCP 78 and BCP 79. 35 Internet-Drafts are working documents of the Internet Engineering 36 Task Force (IETF), its areas, and its working groups. Note that 37 other groups may also distribute working documents as Internet- 38 Drafts. 40 Internet-Drafts are draft documents valid for a maximum of six 41 months and may be updated, replaced, or obsoleted by other documents 42 at any time. It is inappropriate to use Internet-Drafts as 43 reference material or to cite them other than as "work in progress." 45 Internet-Draft General Network Element Constraint Encoding February 46 2015 48 The list of current Internet-Drafts can be accessed at 49 http://www.ietf.org/ietf/1id-abstracts.txt 51 The list of Internet-Draft Shadow Directories can be accessed at 52 http://www.ietf.org/shadow.html 54 This Internet-Draft will expire on June 23, 2015. 56 Copyright Notice 58 Copyright (c) 2015 IETF Trust and the persons identified as the 59 document authors. All rights reserved. 61 This document is subject to BCP 78 and the IETF Trust's Legal 62 Provisions Relating to IETF Documents 63 (http://trustee.ietf.org/license-info) in effect on the date of 64 publication of this document. Please review these documents 65 carefully, as they describe your rights and restrictions with 66 respect to this document. Code Components extracted from this 67 document must include Simplified BSD License text as described in 68 Section 4.e of the Trust Legal Provisions and are provided without 69 warranty as described in the Simplified BSD License. 71 Conventions used in this document 73 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 74 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 75 document are to be interpreted as described in RFC-2119 [RFC2119]. 77 Table of Contents 79 1. Introduction...................................................3 80 1.1. Node Switching Asymmetry Constraints......................4 81 1.2. Non-Local Label Assignment Constraints....................4 82 2. Encoding.......................................................5 83 2.1. Connectivity Matrix Field.................................5 84 2.2. Port Label Restriction Field..............................7 85 2.2.1. SIMPLE_LABEL.........................................8 86 2.2.2. CHANNEL_COUNT........................................9 87 2.2.3. LABEL_RANGE..........................................9 89 Internet-Draft General Network Element Constraint Encoding February 90 2015 92 2.2.4. SIMPLE_LABEL & CHANNEL_COUNT........................10 93 2.2.5. Link Label Exclusivity..............................10 94 2.3. Link Set Field...........................................11 95 2.4. Available Labels Field...................................13 96 2.5. Shared Backup Labels Field...............................14 97 2.6. Label Set Field..........................................14 98 2.6.1. Inclusive/Exclusive Label Lists.....................15 99 2.6.2. Inclusive/Exclusive Label Ranges....................16 100 2.6.3. Bitmap Label Set....................................17 101 3. Security Considerations.......................................17 102 4. IANA Considerations...........................................18 103 5. Acknowledgments...............................................18 104 APPENDIX A: Encoding Examples....................................19 105 A.1. Link Set Field...........................................19 106 A.2. Label Set Field..........................................19 107 A.3. Connectivity Matrix......................................20 108 A.4. Connectivity Matrix with Bi-directional Symmetry.........23 109 A.5. Priority Flags in Available/Shared Backup Labels.........25 110 6. References....................................................27 111 6.1. Normative References.....................................27 112 6.2. Informative References...................................28 113 7. Contributors..................................................29 114 Authors' Addresses...............................................30 116 1. Introduction 118 Some data plane technologies that wish to make use of a GMPLS 119 control plane contain additional constraints on switching capability 120 and label assignment. In addition, some of these technologies must 121 perform non-local label assignment based on the nature of the 122 technology, e.g., wavelength continuity constraint in Wavelength 123 Switched Optical Networks (WSON) [RFC6163]. Such constraints can 124 lead to the requirement for link by link label availability in path 125 computation and label assignment. 127 This document provides efficient encodings of information needed by 128 the routing and label assignment process in technologies such as 129 WSON and are potentially applicable to a wider range of 130 technologies. Such encodings can be used to extend GMPLS signaling 131 and routing protocols. In addition these encodings could be used by 132 other mechanisms to convey this same information to a path 133 computation element (PCE). 135 Internet-Draft General Network Element Constraint Encoding February 136 2015 138 1.1. Node Switching Asymmetry Constraints 140 For some network elements, the ability of a signal or packet on a 141 particular input port to reach a particular output port may be 142 limited. In addition, in some network elements the connectivity 143 between some input ports and output ports may be fixed, e.g., a 144 simple multiplexer. To take into account such constraints during 145 path computation, we model this aspect of a network element via a 146 connectivity matrix. 148 The connectivity matrix (ConnectivityMatrix) represents either the 149 potential connectivity matrix for asymmetric switches or fixed 150 connectivity for an asymmetric device such as a multiplexer. Note 151 that this matrix does not represent any particular internal blocking 152 behavior but indicates which input ports and labels (e.g., 153 wavelengths) could possibly be connected to a particular output port 154 and label pair. Representing internal state dependent blocking for a 155 node is beyond the scope of this document and, due to its highly 156 implementation-dependent nature, would most likely not be subject to 157 standardization in the future. The connectivity matrix is a 158 conceptual M*m by N*n matrix where M represents the number of input 159 ports each with m labels and N the number of output ports each with 160 n labels. 162 1.2. Non-Local Label Assignment Constraints 164 If the nature of the equipment involved in a network results in a 165 requirement for non-local label assignment, we can have constraints 166 based on limits imposed by the ports themselves and those that are 167 implied by the current label usage. Note that constraints such as 168 these only become important when label assignment has a non-local 169 character. For example, in MPLS an LSR may have a limited range of 170 labels available for use on an output port, and a set of labels 171 already in use on that port, and hence unavailable for use. This 172 information, however, does not need to be shared unless there is 173 some limitation on the LSR's label swapping ability. For example, if 174 a TDM node lacks the ability to perform time-slot interchange, or a 175 WSON lacks the ability to perform wavelength conversion, then the 176 label assignment process is not local to a single node. In this 177 case, it may be advantageous to share the label assignment 178 constraint information for use in path computation. 180 Port label restrictions (PortLabelRestriction) model the label 181 restrictions that the network element (node) and link may impose on 182 a port. These restrictions tell us what labels may or may not be 184 Internet-Draft General Network Element Constraint Encoding February 185 2015 187 used on a link and are intended to be relatively static. More 188 dynamic information is contained in the information on available 189 labels. Port label restrictions are specified relative to the port 190 in general or to a specific connectivity matrix for increased 191 modeling flexibility. Reference [Switch] gives an example where both 192 switch and fixed connectivity matrices are used and both types of 193 constraints occur on the same port. 195 2. Encoding 197 This section provides encodings for the information elements defined 198 in [RWA-Info] that have applicability to WSON. The encodings are 199 designed to be suitable for use in the GMPLS routing protocols OSPF 200 [RFC4203] and IS-IS [RFC5307] and in the PCE protocol (PCEP) 201 [RFC5440]. Note that the information distributed in [RFC4203] and 202 [RFC5307] is arranged via the nesting of sub-TLVs within TLVs and 203 this document defines elements to be used within such constructs. 204 Specific constructs of sub-TLVs and the nesting of sub-TLVs of the 205 information element defined by this document will be defined in the 206 respective protocol enhancement documents. 208 2.1. Connectivity Matrix Field 210 The Connectivity Matrix Field represents how input ports are 211 connected to output ports for network elements. The switch and fixed 212 connectivity matrices can be compactly represented in terms of a 213 minimal list of input and output port set pairs that have mutual 214 connectivity. As described in [Switch], such a minimal list 215 representation leads naturally to a graph representation for path 216 computation purposes that involves the fewest additional nodes and 217 links. 219 The Connectivity Matrix is uniquely identified only by the 220 advertising node. There may be more than one Field associated with a 221 node as a node can partition the switch matrix into several sub- 222 matrices. This partitioning is primarily to limit the size of any 223 individual information element used to represent the matrix and to 224 enable incremental updates. When the matrix is partitioned into sub- 225 matrices, each sub-matrix will be mutually exclusive to one another 226 in representing which ports/labels are associated with each sub- 227 matrix. This implies that two matrices will not have the same {src 228 port, src label, dst port, dst label}. 230 Internet-Draft General Network Element Constraint Encoding February 231 2015 233 Each sub-matrix is identified via a different Matrix ID which MUST 234 represent a unique combination of {src port, src label, dst port, 235 dst label}. 237 A TLV encoding of this list of link set pairs is: 239 0 1 2 3 240 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 241 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 242 | Conn | MatrixID | Reserved | 243 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 244 | Link Set A #1 | 245 : : : 246 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 247 | Link Set B #1 : 248 : : : 249 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 250 | Additional Link set pairs as needed | 251 : to specify connectivity : 252 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 254 Where 256 Connectivity (Conn) (4 bit) is the device type. 258 0 -- the device is fixed 260 1 -- the device is switched (e.g., ROADM/OXC) 262 MatrixID represents the ID of the connectivity matrix and is an 8 263 bit integer. The value of 0xFF is reserved for use with port label 264 constraints and should not be used to identify a connectivity matrix. 266 Link Set A #1 and Link Set B #1 together represent a pair of link 267 sets. See Section 2.3. for a detail description of the link set 268 field. There are two permitted combinations for the link set field 269 parameter "dir" for Link Set A and B pairs: 271 o Link Set A dir=input, Link Set B dir=output 273 In this case, the meaning of the pair of link sets A and B in this 274 case is that any signal that inputs a link in set A can be 275 potentially switched out of an output link in set B. 277 Internet-Draft General Network Element Constraint Encoding February 278 2015 280 o Link Set A dir=bidirectional, Link Set B dir=bidirectional 282 The meaning of the pair of link sets A and B in this case is that 283 any signal that inputs on the links in set A can potentially 284 output on a link in set B, and any input signal on the links in 285 set B can potentially output on a link in set A. If link set A is 286 an input and link set B is an output for a signal, then it 287 implies that link set A is an output and link set B is an input 288 for that signal. 290 See Appendix A for both types of encodings as applied to a ROADM 291 example. 293 2.2. Port Label Restriction Field 295 Port Label Restriction Field tells us what labels may or may not be 296 used on a link. 298 The port label restriction can be encoded as follows: More than one 299 of these fields may be needed to fully specify a complex port 300 constraint. When more than one of these fields are present, the 301 resulting restriction is the union of the restrictions expressed in 302 each field. The use of the reserved value of 0xFF for the MatrixID 303 indicates that a restriction applies to the port, and not to a 304 specific connectivity matrix. 306 0 1 2 3 307 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 308 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 309 | MatrixID | RstType | SwitchingCap | Encoding | 310 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 311 | Additional Restriction Parameters per Restriction Type | 312 : : 313 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 315 Where: 317 MatrixID: either is the value in the corresponding Connectivity 318 Matrix field or takes the value 0xFF to indicate the restriction 319 applies to the port regardless of any Connectivity Matrix. 321 RstType (Restriction Type) can take the following values and 322 meanings: 324 Internet-Draft General Network Element Constraint Encoding February 325 2015 327 0: SIMPLE_LABEL (Simple label selective restriction; See 328 Section 2.2.1 for details) 330 1: CHANNEL_COUNT (Channel count restriction; See Section 2.2.2 331 for details) 333 2: LABEL_RANGE (Label range device with a movable center label 334 and width; See Section 2.2.3 for details) 336 3: SIMPLE_LABEL & CHANNEL_COUNT (Combination of SIMPLE_LABEL 337 and CHANNEL_COUNT restriction. The accompanying label set and 338 channel count indicate labels permitted on the port and the 339 maximum number of channels that can be simultaneously used on 340 the port; See Section 2.2.4 for details) 342 4: LINK_LABEL_EXCLUSIVITY (A label may be used at most once 343 amongst a set of specified ports; See Section 2.2.5 for 344 details) 346 SwitchingCap (Switching Capability) is defined in [RFC4203] and 347 Encoding in [RFC3471]. The combination of these fields defines the 348 type of labels used in specifying the port label restrictions as 349 well as the interface type to which these restrictions apply. 351 Additional Restriction Parameters per RestrictionType field is an 352 optional field that describes additional restriction parameters for 353 each RestrictionType pertaining to specific protocols. 355 2.2.1. SIMPLE_LABEL 357 In the case of the SIMPLE_LABEL, The format is given by: 359 0 1 2 3 360 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 361 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 362 | MatrixID | RstType = 0 | SwitchingCap | Encoding | 363 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 364 | Label Set Field | 365 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 367 In this case the accompanying label set indicates the labels 368 permitted on the port/matrix. 370 See Section 2.6 for the definition of label set. 372 Internet-Draft General Network Element Constraint Encoding February 373 2015 375 2.2.2. CHANNEL_COUNT 377 In the case of the CHANNEL_COUNT, the format is given by: 379 0 1 2 3 380 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 381 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 382 | MatrixID | RstType = 1 | SwitchingCap | Encoding | 383 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 384 | MaxNumChannels | 385 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 387 In this case the accompanying MaxNumChannels indicates the maximum 388 number of channels (labels) that can be simultaneously used on the 389 port/matrix. 391 MaxNumChannels is a 32-bit integer. 393 2.2.3. LABEL_RANGE 395 In the case of the LABEL_RANGE, the format is given by: 397 0 1 2 3 398 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 399 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 400 | MatrixID | RstType = 2 | Switching Cap | Encoding | 401 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 402 | MaxLabelRange | 403 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 404 | Label Set Field | 405 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 407 This is a generalization of the waveband device. The MaxLabelRange 408 indicates the maximum width of the waveband in terms of the channels 409 spacing given in the Label Set Field. The corresponding label set is 410 used to indicate the overall tuning range. 412 MaxLabelRange is a 32-bit integer. 414 See Section 2.6.2 for the explanation of label range. 416 Internet-Draft General Network Element Constraint Encoding February 417 2015 419 2.2.4. SIMPLE_LABEL & CHANNEL_COUNT 421 In the case of the SIMPLE_LABEL & CHANNEL_COUNT the format is given 422 by: 424 0 1 2 3 425 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 426 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 427 | MatrixID | RstType = 3 | SwitchingCap | Encoding | 428 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 429 | MaxNumChannels | 430 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 431 | Label Set Field | 432 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 434 In this case the accompanying label set and MaxNumChannels indicate 435 labels permitted on the port and the maximum number of labels that 436 can be simultaneously used on the port. 438 See Section 2.6 for the definition of label set. 440 2.2.5. Link Label Exclusivity 442 In the case of the Link Label Exclusivity the format is given by: 444 0 1 2 3 445 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 446 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 447 | MatrixID | RstType = 4 | SwitchingCap | Encoding | 448 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 449 | Link Set Field | 450 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 452 In this case the accompanying link set indicates that a label may be 453 used at most once among the ports in the link set field. See Section 454 2.3 for the definition of link set. 456 Internet-Draft General Network Element Constraint Encoding February 457 2015 459 2.3. Link Set Field 461 We will frequently need to describe properties of groups of links. 462 To do so efficiently we can make use of a link set concept similar 463 to the label set concept of [RFC3471]. This Link Set Field is used 464 in the , which is defined in Section 2.1. The 465 information carried in a Link Set is defined by: 467 0 1 2 3 468 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 469 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 470 | Action |Dir| Format | Length | 471 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 472 | Link Identifier 1 | 473 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 474 : : : 475 : : : 476 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 477 | Link Identifier N | 478 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 480 Action: 8 bits 482 0 - Inclusive List 484 Indicates that one or more link identifiers are included in the Link 485 Set. Each identifies a separate link that is part of the set. 487 1 - Inclusive Range 489 Indicates that the Link Set defines a range of links. It contains 490 two link identifiers. The first identifier indicates the start of 491 the range. The second identifier indicates the end of the range. All 492 links with numeric values between the bounds are considered to be 493 part of the set. A value of zero in either position indicates that 494 there is no bound on the corresponding portion of the range. Note 495 that the Action field can be set to 0x01 (Inclusive Range) only when 496 identifier for unnumbered link is used. 498 Dir: Directionality of the Link Set (2 bits) 500 0 -- bidirectional 502 1 -- input 504 Internet-Draft General Network Element Constraint Encoding February 505 2015 507 2 -- output 509 For example, in optical networks we think in terms of unidirectional 510 as well as bidirectional links. For example, label restrictions or 511 connectivity may be different for an input port, than for its 512 "companion" output port if one exists. Note that "interfaces" such 513 as those discussed in the Interfaces MIB [RFC2863] are assumed to be 514 bidirectional. This also applies to the links advertised in various 515 link state routing protocols. 517 Format: The format of the link identifier (6 bits) 519 0 -- Link Local Identifier 521 Indicates that the links in the Link Set are identified by link 522 local identifiers. All link local identifiers are supplied in the 523 context of the advertising node. 525 1 -- Local Interface IPv4 Address 527 2 -- Local Interface IPv6 Address 529 Indicates that the links in the Link Set are identified by Local 530 Interface IP Address. 532 Others -- Reserved for future use. 534 Note that all link identifiers in the same list must be of the same 535 type. 537 Length: 16 bits 539 This field indicates the total length in bytes of the Link Set field. 541 Link Identifier: length is dependent on the link format 543 The link identifier represents the port which is being described 544 either for connectivity or label restrictions. This can be the link 545 local identifier of [RFC4202], GMPLS routing, [RFC4203] GMPLS OSPF 546 routing, and [RFC5307] IS-IS GMPLS routing. The use of the link 547 local identifier format can result in more compact encodings when 548 the assignments are done in a reasonable fashion. 550 Internet-Draft General Network Element Constraint Encoding February 551 2015 553 2.4. Available Labels Field 555 The Available Labels Field consists of priority flags, and a single 556 variable length label set field as follows: 558 0 1 2 3 559 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 560 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 561 | PRI | Reserved | 562 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 563 | Label Set Field | 564 : : 565 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 567 Where 569 PRI (Priority Flags, 8 bits): A bitmap used to indicate which 570 priorities are being advertised. The bitmap is in ascending order, 571 with the leftmost bit representing priority level 0 (i.e., the 572 highest) and the rightmost bit representing priority level 7 (i.e., 573 the lowest). A bit MUST be set (1) corresponding to each priority 574 represented in the sub-TLV, and MUST NOT be set (0) when the 575 corresponding priority is not represented. If a label is available 576 at priority M it MUST be advertised available at each priority N < 577 M. At least one priority level MUST be advertised. 579 The PRI field indicates the availability of the labels for use in 580 LSP set up and pre-emption as described in [RFC3209]. 582 When a label is advertised as available for priorities 0, 1, ... M 583 it may be used by any LSP of priority N <= M. When a label is in use 584 by an LSP of priority M it may be used by an LSP of priority N < M 585 if LSP preemption is supported. 587 When a label was initially advertised as available for priorities, 588 0, 1, ... M and once a label is used for an LSP at a priority, say N 589 (N<=M), then this label is advertised as available for 0, ... N-1. 591 Note that Label Set Field is defined in Section 2.6. See Appendix 592 A.5. for illustrative examples. 594 Internet-Draft General Network Element Constraint Encoding February 595 2015 597 2.5. Shared Backup Labels Field 599 The Shared Backup Labels Field consists of priority flags, and 600 single variable length label set field as follows: 602 0 1 2 3 603 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 604 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 605 | PRI | Reserved | 606 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 607 | Label Set Field | 608 : : 609 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 611 Where 613 PRI (Priority Flags, 8 bits): A bitmap used to indicate which 614 priorities are being advertised. The bitmap is in ascending order, 615 with the leftmost bit representing priority level 0 (i.e., the 616 highest) and the rightmost bit representing priority level 7 (i.e., 617 the lowest). A bit MUST be set (1) corresponding to each priority 618 represented in the sub-TLV, and MUST NOT be set (0) when the 619 corresponding priority is not represented. If a label is available 620 at priority M it MUST be advertised available at each priority N < 621 M. At least one priority level MUST be advertised. 623 The same LSP set up and pre-emption rules specified in Section 2.4 624 apply here. 626 Note that Label Set Field is defined in Section 2.6. See Appendix 627 A.5. for illustrative examples. 629 2.6. Label Set Field 631 Label Set Field is used within the or the 632 , which is defined in Sections 2.4. and 2.5., 633 respectively. It is also used within the , 634 , or , which is defined 635 in Sections 2.1.1. - 2.1.4., respectively. 637 The general format for a label set is given below. This format uses 638 the Action concept from [RFC3471] with an additional Action to 639 define a "bit map" type of label set. Labels are variable in length. 640 Action specific fields are defined below. 642 Internet-Draft General Network Element Constraint Encoding February 643 2015 645 0 1 2 3 647 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 648 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 649 | Action| Num Labels = N | Length | 650 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 651 | Base Label | 652 | . . . | 653 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 654 | (Action specific fields) | 655 | . . . . | 656 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 658 Action: 660 0 - Inclusive List 662 1 - Exclusive List 664 2 - Inclusive Range 666 3 - Exclusive Range 668 4 - Bitmap Set 670 Num Labels is generally the number of labels. It has a specific 671 meaning depending on the action value. See Sections 2.6.1 - 2.6.3 672 for details. Num Labels is a 12 bit integer. 674 Length is the length in bytes of the entire label set field. 676 2.6.1. Inclusive/Exclusive Label Lists 678 In the case of the inclusive/exclusive lists the wavelength set 679 format is given by: 681 Internet-Draft General Network Element Constraint Encoding February 682 2015 684 0 1 2 3 685 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 686 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 687 |0 or 1 | Num Labels = 2 | Length | 688 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 689 | Label #1 | 690 | . . . | 691 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 692 : : 693 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 694 | Label #N | 695 | . . . | 696 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 698 Where: 700 Label #1 is the first Label to be included/excluded and Label #N is 701 the last Label to be included/excluded. Num Labels MUST match with 702 N. 704 2.6.2. Inclusive/Exclusive Label Ranges 706 In the case of inclusive/exclusive ranges the label set format is 707 given by: 709 0 1 2 3 710 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 711 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 712 |2 or 3 | Num Labels | Length | 713 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 714 | Start Label | 715 | . . . | 716 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 717 | End Label | 718 | . . . | 719 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 721 Note that Start Label is the first Label in the range to be 722 included/excluded and End Label is the last label in the same range. 723 Num Labels MUST be two. 725 Internet-Draft General Network Element Constraint Encoding February 726 2015 728 2.6.3. Bitmap Label Set 730 In the case of Action = 4, the bitmap the label set format is given 731 by: 733 0 1 2 3 734 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 735 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 736 | 4 | Num Labels | Length | 737 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 738 | Base Label | 739 | . . . | 740 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 741 | Bit Map Word #1 (Lowest numerical labels) | 742 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 743 : : 744 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 745 | Bit Map Word #N (Highest numerical labels) | 746 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 748 Where Num Labels in this case tells us the number of labels 749 represented by the bit map. Each bit in the bit map represents a 750 particular label with a value of 1/0 indicating whether the label is 751 in the set or not. Bit position zero represents the lowest label and 752 corresponds to the base label, while each succeeding bit position 753 represents the next label logically above the previous. 755 The size of the bit map is Num Labels bits, but the bit map is 756 padded out to a full multiple of 32 bits so that the field is a 757 multiple of four bytes. Bits that do not represent labels (i.e., 758 those in positions (Num Labels) and beyond) SHOULD be set to zero 759 and MUST be ignored. 761 3. Security Considerations 763 This document defines protocol-independent encodings for WSON 764 information and does not introduce any security issues. 766 However, other documents that make use of these encodings within 767 protocol extensions need to consider the issues and risks associated 769 Internet-Draft General Network Element Constraint Encoding February 770 2015 772 with inspection, interception, modification, or spoofing of any of 773 this information. It is expected that any such documents will 774 describe the necessary security measures to provide adequate 775 protection. A general discussion on security in GMPLS networks can 776 be found in [RFC5920]. 778 4. IANA Considerations 780 This document provides general protocol independent information 781 encodings. There is no IANA allocation request for the information 782 elements defined in this document. IANA allocation requests will be 783 addressed in protocol specific documents based on the encodings 784 defined here. 786 5. Acknowledgments 788 This document was prepared using 2-Word-v2.0.template.dot. 790 Internet-Draft General Network Element Constraint Encoding February 791 2015 793 APPENDIX A: Encoding Examples 795 Here we give examples of the general encoding extensions applied to 796 some simple ROADM network elements and links. 798 A.1. Link Set Field 800 Suppose that we wish to describe a set of input ports that are have 801 link local identifiers number 3 through 42. In the link set field we 802 set the Action = 1 to denote an inclusive range; the Dir = 1 to 803 denote input links; and, the Format = 0 to denote link local 804 identifiers. In particular we have: 806 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 807 | Action=1 |0 1|0 0 0 0 0 0| Length = 12 | 808 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 809 | Link Local Identifier = #3 | 810 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 811 | Link Local Identifier = #42 | 812 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 814 A.2. Label Set Field 816 Example: 818 A 40 channel C-Band DWDM system with 100GHz spacing with lowest 819 frequency 192.0THz (1561.4nm) and highest frequency 195.9THz 820 (1530.3nm). These frequencies correspond to n = -11, and n = 28 821 respectively. Now suppose the following channels are available: 823 Frequency (THz) n Value bit map position 824 -------------------------------------------------- 825 192.0 -11 0 826 192.5 -6 5 827 193.1 0 11 828 193.9 8 19 829 194.0 9 20 830 195.2 21 32 831 195.8 27 38 833 Using the label format defined in [RFC6205], with the Grid value set 834 to indicate an ITU-T A/2 [G.694.1] DWDM grid, C.S. set to indicate 835 100GHz this lambda bit map set would then be encoded as follows: 837 Internet-Draft General Network Element Constraint Encoding February 838 2015 840 0 1 2 3 841 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 842 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 843 | 4 | Num Labels = 40 | Length = 16 bytes | 844 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 845 |Grid | C.S. | Reserved | n for lowest frequency = -11 | 846 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 847 |1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0| 848 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 849 |1 0 0 0 0 0 1 0| Not used in 40 Channel system (all zeros) | 850 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 852 To encode this same set as an inclusive list we would have: 854 0 1 2 3 855 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 856 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 857 | 0 | Num Labels = 7 | Length = 32 bytes | 858 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 859 |Grid | C.S. | Reserved | n for lowest frequency = -11 | 860 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 861 |Grid | C.S. | Reserved | n for lowest frequency = -6 | 862 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 863 |Grid | C.S. | Reserved | n for lowest frequency = -0 | 864 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 865 |Grid | C.S. | Reserved | n for lowest frequency = 8 | 866 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 867 |Grid | C.S. | Reserved | n for lowest frequency = 9 | 868 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 869 |Grid | C.S. | Reserved | n for lowest frequency = 21 | 870 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 871 |Grid | C.S. | Reserved | n for lowest frequency = 27 | 872 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 874 A.3. Connectivity Matrix 876 Example: 878 Suppose we have a typical 2-degree 40 channel ROADM. In addition to 879 its two line side ports it has 80 add and 80 drop ports. The picture 881 Internet-Draft General Network Element Constraint Encoding February 882 2015 884 below illustrates how a typical 2-degree ROADM system that works 885 with bi-directional fiber pairs is a highly asymmetrical system 886 composed of two unidirectional ROADM subsystems. 888 (Tributary) Ports #3-#42 889 Input added to Output dropped from 890 West Line Output East Line Input 891 vvvvv ^^^^^ 892 | |||.| | |||.| 893 +-----| |||.|--------| |||.|------+ 894 | +----------------------+ | 895 | | | | 896 Output | | Unidirectional ROADM | | Input 897 -----------------+ | | +-------------- 898 <=====================| |===================< 899 -----------------+ +----------------------+ +-------------- 900 | | 901 Port #1 | | Port #2 902 (West Line Side) | |(East Line Side) 903 -----------------+ +----------------------+ +-------------- 904 >=====================| |===================> 905 -----------------+ | Unidirectional ROADM | +-------------- 906 Input | | | | Output 907 | | _ | | 908 | +----------------------+ | 909 +-----| |||.|--------| |||.|------+ 910 | |||.| | |||.| 911 vvvvv ^^^^^ 912 (Tributary) Ports #43-#82 913 Output dropped from Input added to 914 West Line Input East Line Output 916 Referring to the figure we see that the Input direction of ports #3- 917 #42 (add ports) can only connect to the output on port #1. While the 918 Input side of port #2 (line side) can only connect to the output on 919 ports #3-#42 (drop) and to the output on port #1 (pass through). 920 Similarly, the input direction of ports #43-#82 can only connect to 921 the output on port #2 (line). While the input direction of port #1 922 can only connect to the output on ports #43-#82 (drop) or port #2 923 (pass through). We can now represent this potential connectivity 924 matrix as follows. This representation uses only 29 32-bit words. 926 Internet-Draft General Network Element Constraint Encoding February 927 2015 929 0 1 2 3 930 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 931 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 932 | Conn = 1 | MatrixID | Reserved | 933 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 934 Note: adds to line 935 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 936 | Action=1 |0 1|0 0 0 0 0 0| Length = 12 | 937 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 938 | Link Local Identifier = #3 | 939 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 940 | Link Local Identifier = #42 | 941 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 942 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 | 943 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 944 | Link Local Identifier = #1 | 945 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 946 Note: line to drops 947 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 948 | Action=0 |0 1|0 0 0 0 0 0| Length = 8 | 949 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 950 | Link Local Identifier = #2 | 951 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 952 | Action=1 |1 0|0 0 0 0 0 0| Length = 12 | 953 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 954 | Link Local Identifier = #3 | 955 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 956 | Link Local Identifier = #42 | 957 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 958 Note: line to line 959 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 960 | Action=0 |0 1|0 0 0 0 0 0| Length = 8 | 961 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 962 | Link Local Identifier = #2 | 963 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 964 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 | 965 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 966 | Link Local Identifier = #1 | 967 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 968 Note: adds to line 969 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 970 | Action=1 |0 1|0 0 0 0 0 0| Length = 12 | 971 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 972 | Link Local Identifier = #43 | 974 Internet-Draft General Network Element Constraint Encoding February 975 2015 977 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 978 | Link Local Identifier = #82 | 979 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 980 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 | 981 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 982 | Link Local Identifier = #2 | 983 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 984 Note: line to drops 985 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 986 | Action=0 |0 1|0 0 0 0 0 0|| Length = 8 | 987 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 988 | Link Local Identifier = #1 | 989 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 990 | Action=1 |1 0|0 0 0 0 0 0| Length = 12 | 991 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 992 | Link Local Identifier = #43 | 993 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 994 | Link Local Identifier = #82 | 995 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 996 Note: line to line 997 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 998 | Action=0 |0 1|0 0 0 0 0 0| Length = 8 | 999 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1000 | Link Local Identifier = #1 | 1001 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1002 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 | 1003 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1004 | Link Local Identifier = #2 | 1005 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1007 A.4. Connectivity Matrix with Bi-directional Symmetry 1009 If one has the ability to renumber the ports of the previous example 1010 as shown in the next figure then we can take advantage of the bi- 1011 directional symmetry and use bi-directional encoding of the 1012 connectivity matrix. Note that we set dir=bidirectional in the link 1013 set fields. 1015 Internet-Draft General Network Element Constraint Encoding February 1016 2015 1018 (Tributary) 1019 Ports #3-42 Ports #43-82 1020 West Line Output East Line Input 1021 vvvvv ^^^^^ 1022 | |||.| | |||.| 1023 +-----| |||.|--------| |||.|------+ 1024 | +----------------------+ | 1025 | | | | 1026 Output | | Unidirectional ROADM | | Input 1027 -----------------+ | | +-------------- 1028 <=====================| |===================< 1029 -----------------+ +----------------------+ +-------------- 1030 | | 1031 Port #1 | | Port #2 1032 (West Line Side) | |(East Line Side) 1033 -----------------+ +----------------------+ +-------------- 1034 >=====================| |===================> 1035 -----------------+ | Unidirectional ROADM | +-------------- 1036 Input | | | | Output 1037 | | _ | | 1038 | +----------------------+ | 1039 +-----| |||.|--------| |||.|------+ 1040 | |||.| | |||.| 1041 vvvvv ^^^^^ 1042 Ports #3-#42 Ports #43-82 1043 Output dropped from Input added to 1044 West Line Input East Line Output 1046 Internet-Draft General Network Element Constraint Encoding February 1047 2015 1049 0 1 2 3 1050 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1051 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1052 | Conn = 1 | MatrixID | Reserved | 1053 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1054 Add/Drops #3-42 to Line side #1 1055 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1056 | Action=1 |0 0|0 0 0 0 0 0| Length = 12 | 1057 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1058 | Link Local Identifier = #3 | 1059 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1060 | Link Local Identifier = #42 | 1061 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1062 | Action=0 |0 0|0 0 0 0 0 0| Length = 8 | 1063 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1064 | Link Local Identifier = #1 | 1065 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1066 Note: line #2 to add/drops #43-82 1067 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1068 | Action=0 |0 0|0 0 0 0 0 0| Length = 8 | 1069 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1070 | Link Local Identifier = #2 | 1071 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1072 | Action=1 |0 0|0 0 0 0 0 0| Length = 12 | 1073 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1074 | Link Local Identifier = #43 | 1075 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1076 | Link Local Identifier = #82 | 1077 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1078 Note: line to line 1079 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1080 | Action=0 |0 0|0 0 0 0 0 0| Length = 8 | 1081 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1082 | Link Local Identifier = #1 | 1083 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1084 | Action=0 |0 0|0 0 0 0 0 0| Length = 8 | 1085 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1086 | Link Local Identifier = #2 | 1087 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1089 A.5. Priority Flags in Available/Shared Backup Labels 1091 If one wants to make a set of labels (indicated by Label Set Field 1092 #1) available only for the highest priority level (Priority Level 0) 1094 Internet-Draft General Network Element Constraint Encoding February 1095 2015 1097 while allowing a set of labels (indicated by Label Set Field #2) 1098 available to all priority levels, the following encoding will 1099 express such need. 1101 0 1 2 3 1102 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1103 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1104 |1 0 0 0 0 0 0 0| Reserved | 1105 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1106 | Label Set Field #1 | 1107 : : 1108 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1109 |1 1 1 1 1 1 1 1| Reserved | 1110 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1111 | Label Set Field #2 | 1112 : : 1113 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1115 Internet-Draft General Network Element Constraint Encoding February 1116 2015 1118 6. References 1120 6.1. Normative References 1122 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 1123 Requirement Levels", BCP 14, RFC 2119, March 1997. 1125 [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group 1126 MIB", RFC 2863, June 2000. 1128 [RFC3209] Awduche, D., et al. "RSVP-TE: Extensions to RSVP for LSP 1129 Tunnels", RFC 3209, December 2001. 1131 [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching 1132 (GMPLS) Signaling Functional Description", RFC 3471, 1133 January 2003. 1135 [G.694.1] ITU-T Recommendation G.694.1, "Spectral grids for WDM 1136 applications: DWDM frequency grid", June, 2002. 1138 [RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing 1139 Extensions in Support of Generalized Multi-Protocol Label 1140 Switching (GMPLS)", RFC 4202, October 2005 1142 [RFC4203] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions 1143 in Support of Generalized Multi-Protocol Label Switching 1144 (GMPLS)", RFC 4203, October 2005. 1146 [RFC5307] Kompella, K., Ed., and Y. Rekhter, Ed., "IS-IS Extensions 1147 in Support of Generalized Multi-Protocol Label Switching 1148 (GMPLS)", RFC 5307, October 2008. 1150 [RFC6205] T. Otani, Ed. and D. Li, Ed., "Generalized Labels for 1151 Lambda-Switch-Capable (LSC) Label Switching Routers", RFC 1152 6205, March 2011. 1154 Internet-Draft General Network Element Constraint Encoding February 1155 2015 1157 6.2. Informative References 1159 [RFC5440] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation 1160 Element (PCE) communication Protocol (PCEP) - Version 1", 1161 RFC5440. 1163 [RFC5920] L. Fang, Ed., "Security Framework for MPLS and GMPLS 1164 Networks", RFC 5920, July 2010. 1166 [RFC6163] Y. Lee, G. Bernstein, W. Imajuku, "Framework for GMPLS and 1167 Path Computation Element (PCE) Control of Wavelength 1168 Switched Optical Networks (WSONs)", RFC 6163, April 2011. 1170 [Switch] G. Bernstein, Y. Lee, A. Gavler, J. Martensson, "Modeling 1171 WDM Wavelength Switching Systems for Use in GMPLS and 1172 Automated Path Computation", Journal of Optical 1173 Communications and Networking, vol. 1, June, 2009, pp. 1174 187-195. 1176 [RWA-Info] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and 1177 Wavelength Assignment Information Model for Wavelength 1178 Switched Optical Networks", work in progress: draft-ietf- 1179 ccamp-rwa-info. 1181 Internet-Draft General Network Element Constraint Encoding February 1182 2015 1184 7. Contributors 1186 Diego Caviglia 1187 Ericsson 1188 Via A. Negrone 1/A 16153 1189 Genoa Italy 1191 Phone: +39 010 600 3736 1192 Email: diego.caviglia@ericsson.com 1194 Anders Gavler 1195 Acreo AB 1196 Electrum 236 1197 SE - 164 40 Kista Sweden 1199 Email: Anders.Gavler@acreo.se 1201 Jonas Martensson 1202 Acreo AB 1203 Electrum 236 1204 SE - 164 40 Kista, Sweden 1206 Email: Jonas.Martensson@acreo.se 1208 Itaru Nishioka 1209 NEC Corp. 1210 1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666 1211 Japan 1213 Phone: +81 44 396 3287 1214 Email: i-nishioka@cb.jp.nec.com 1216 Rao Rajan 1217 Infinera 1219 Email: rrao@infinera.com 1221 Giovanni Martinelli 1222 CISCO 1224 Email: giomarti@cisco.com 1226 Remi Theillaud 1228 Internet-Draft General Network Element Constraint Encoding February 1229 2015 1231 Marben 1232 remi.theillaud@marben-products.com 1234 Authors' Addresses 1236 Greg M. Bernstein (ed.) 1237 Grotto Networking 1238 Fremont California, USA 1240 Phone: (510) 573-2237 1241 Email: gregb@grotto-networking.com 1243 Young Lee (ed.) 1244 Huawei Technologies 1245 1700 Alma Drive, Suite 100 1246 Plano, TX 75075 1247 USA 1249 Phone: (972) 509-5599 (x2240) 1250 Email: ylee@huawei.com 1252 Dan Li 1253 Huawei Technologies Co., Ltd. 1254 F3-5-B R&D Center, Huawei Base, 1255 Bantian, Longgang District 1256 Shenzhen 518129 P.R.China 1258 Phone: +86-755-28973237 1259 Email: danli@huawei.com 1261 Wataru Imajuku 1262 NTT Network Innovation Labs 1263 1-1 Hikari-no-oka, Yokosuka, Kanagawa 1264 Japan 1266 Phone: +81-(46) 859-4315 1267 Email: imajuku.wataru@lab.ntt.co.jp 1269 Internet-Draft General Network Element Constraint Encoding February 1270 2015 1272 Jianrui Han 1273 Huawei Technologies Co., Ltd. 1274 F3-5-B R&D Center, Huawei Base, 1275 Bantian, Longgang District 1276 Shenzhen 518129 P.R.China 1278 Phone: +86-755-28972916 1279 Email: hanjianrui@huawei.com