idnits 2.17.1 draft-ietf-ccamp-gmpls-ospf-g709v3-08.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- -- The draft header indicates that this document updates RFC4203, but the abstract doesn't seem to directly say this. It does mention RFC4203 though, so this could be OK. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year (Using the creation date from RFC4203, updated by this document, for RFC5378 checks: 2001-09-05) -- The document seems to lack a disclaimer for pre-RFC5378 work, but may have content which was first submitted before 10 November 2008. If you have contacted all the original authors and they are all willing to grant the BCP78 rights to the IETF Trust, then this is fine, and you can ignore this comment. If not, you may need to add the pre-RFC5378 disclaimer. (See the Legal Provisions document at https://trustee.ietf.org/license-info for more information.) -- The document date (July 4, 2013) is 3948 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Missing Reference: 'G.805' is mentioned on line 302, but not defined == Missing Reference: 'G.798-a2' is mentioned on line 405, but not defined -- Possible downref: Non-RFC (?) normative reference: ref. 'G.709-2012' == Outdated reference: A later version (-15) exists of draft-ietf-ccamp-gmpls-g709-framework-13 == Outdated reference: A later version (-13) exists of draft-ietf-ccamp-otn-g709-info-model-09 == Outdated reference: A later version (-12) exists of draft-ietf-ccamp-gmpls-signaling-g709v3-11 -- Obsolete informational reference (is this intentional?): RFC 5226 (Obsoleted by RFC 8126) Summary: 0 errors (**), 0 flaws (~~), 6 warnings (==), 5 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 CCAMP Working Group D. Ceccarelli, Ed. 3 Internet-Draft D. Caviglia 4 Updates: 4203 (if approved) Ericsson 5 Intended status: Standards Track F. Zhang 6 Expires: January 5, 2014 D. Li 7 Huawei Technologies 8 S. Belotti 9 P. Grandi 10 Alcatel-Lucent 11 R. Rao 12 K. Pithewan 13 Infinera Corporation 14 J. Drake 15 Juniper 16 July 4, 2013 18 Traffic Engineering Extensions to OSPF for Generalized MPLS (GMPLS) 19 Control of Evolving G.709 OTN Networks 20 draft-ietf-ccamp-gmpls-ospf-g709v3-08 22 Abstract 24 This document describes Open Shortest Path First - Traffic 25 Engineering (OSPF-TE) routing protocol extensions to support 26 Generalized MPLS (GMPLS) control of Optical Transport Networks (OTN) 27 specified in ITU-T Recommendation G.709 as published in 2012. It 28 extends mechanisms defined in RFC4203. 30 Status of this Memo 32 This Internet-Draft is submitted in full conformance with the 33 provisions of BCP 78 and BCP 79. 35 Internet-Drafts are working documents of the Internet Engineering 36 Task Force (IETF). Note that other groups may also distribute 37 working documents as Internet-Drafts. The list of current Internet- 38 Drafts is at http://datatracker.ietf.org/drafts/current/. 40 Internet-Drafts are draft documents valid for a maximum of six months 41 and may be updated, replaced, or obsoleted by other documents at any 42 time. It is inappropriate to use Internet-Drafts as reference 43 material or to cite them other than as "work in progress." 45 This Internet-Draft will expire on January 5, 2014. 47 Copyright Notice 48 Copyright (c) 2013 IETF Trust and the persons identified as the 49 document authors. All rights reserved. 51 This document is subject to BCP 78 and the IETF Trust's Legal 52 Provisions Relating to IETF Documents 53 (http://trustee.ietf.org/license-info) in effect on the date of 54 publication of this document. Please review these documents 55 carefully, as they describe your rights and restrictions with respect 56 to this document. Code Components extracted from this document must 57 include Simplified BSD License text as described in Section 4.e of 58 the Trust Legal Provisions and are provided without warranty as 59 described in the Simplified BSD License. 61 Table of Contents 63 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3 64 1.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 3 65 2. OSPF-TE Extensions . . . . . . . . . . . . . . . . . . . . . . 3 66 3. TE-Link Representation . . . . . . . . . . . . . . . . . . . . 5 67 4. ISCD format extensions . . . . . . . . . . . . . . . . . . . . 5 68 4.1. Switching Capability Specific Information . . . . . . . . 7 69 4.1.1. Switching Capability Specific Information for 70 fixed containers . . . . . . . . . . . . . . . . . . . 7 71 4.1.2. Switching Capability Specific Information for 72 variable containers . . . . . . . . . . . . . . . . . 8 73 4.1.3. Switching Capability Specific Information - Field 74 values and explanation . . . . . . . . . . . . . . . . 9 75 5. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 76 5.1. MAX LSP Bandwidth fields in the ISCD . . . . . . . . . . . 12 77 5.2. Example of T,S and TS granularity utilization . . . . . . 14 78 5.2.1. Example of different TS Granularities . . . . . . . . 15 79 5.3. Example of ODUflex advertisement . . . . . . . . . . . . . 17 80 5.4. Example of single stage muxing . . . . . . . . . . . . . . 20 81 5.5. Example of multi stage muxing - Unbundled link . . . . . . 22 82 5.6. Example of multi stage muxing - Bundled links . . . . . . 24 83 5.7. Example of component links with non homogeneous 84 hierarchies . . . . . . . . . . . . . . . . . . . . . . . 25 85 6. Compatibility . . . . . . . . . . . . . . . . . . . . . . . . 27 86 7. Security Considerations . . . . . . . . . . . . . . . . . . . 28 87 8. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 28 88 9. Contributors . . . . . . . . . . . . . . . . . . . . . . . . . 29 89 10. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . 31 90 11. References . . . . . . . . . . . . . . . . . . . . . . . . . . 31 91 11.1. Normative References . . . . . . . . . . . . . . . . . . . 31 92 11.2. Informative References . . . . . . . . . . . . . . . . . . 31 93 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 32 95 1. Introduction 97 G.709 Optical Transport Network (OTN) [G.709-2012] includes new fixed 98 and flexible ODU (Optical channel Data Unit) containers, two types of 99 Tributary Slots (i.e. 1.25Gbps and 2.5Gbps), and supports various 100 multiplexing relationships (e.g., ODUj multiplexed into ODUk (jODUk format 151 is used to indicate the ODUj into ODUk multiplexing capability. 153 This notation can be repeated as needed depending on the number of 154 multiplexing levels. In the following the term "multiplexing tree" 155 is used to identify a multiplexing hierarchy where the root is always 156 a server ODUk/OTUk and any other supported multiplexed container is 157 represented with increasing granularity until reaching the leaf of 158 the tree. The tree can be structured with more than one branch if 159 the server ODUk/OTUk supports more than one hierarchy. 161 If for example a multiplexing hierarchy like the following one is 162 considered: 164 ODU2 ODU0 ODUflex ODU0 165 \ / \ / 166 | | 167 ODU3 ODU2 168 \ / 169 \ / 170 \ / 171 \ / 172 ODU4 174 The ODU4 is the root of the muxing tree, ODU3 and ODU2 are containers 175 directly multiplexed into the server and then ODU2, ODU0 are the 176 leaves of the ODU3 branch, while ODUflex and ODU0 are the leaves of 177 the ODU2 one. This means that it is possible to have the following 178 multiplexing capabilities: 180 ODU2->ODU3->ODU4 181 ODU0->ODU3->ODU4 182 ODUflex->ODU2->ODU4 183 ODU0->ODU2->ODU4 185 3. TE-Link Representation 187 G.709 ODUk/OTUk Links are represented as TE-Links in GMPLS Traffic 188 Engineering Topology for supporting ODUj layer switching. These TE- 189 Links can be modeled in multiple ways. 191 OTUk physical Link(s) can be modeled as a TE-Link(s). Figure 1 below 192 provides an illustration of one hop OTUk TE-links. 194 +-------+ +-------+ +-------+ 195 | OTN | | OTN | | OTN | 196 |Switch |<- OTUk Link ->|Switch |<- OTUk Link ->|Switch | 197 | A | | B | | C | 198 +-------+ +-------+ +-------+ 200 |<-- TE-Link -->| |<-- TE-Link -->| 202 Figure 1: OTUk TE-Links 204 It is possible to create TE-Links that span more than one hop by 205 creating FAs between non-adjacent nodes (see Figure 2). As in the 206 one hop case multiple hop TE-links advertise ODU switching capacity. 208 +-------+ +-------+ +-------+ 209 | OTN | | OTN | | OTN | 210 |Switch |<- OTUk Link ->|Switch |<- OTUk Link ->|Switch | 211 | A | | B | | C | 212 +-------+ +-------+ +-------+ 213 ODUk Switched 215 |<------------- ODUk Link ------------->| 216 |<-------------- TE-Link--------------->| 218 Figure 2: Multiple hop TE-Link 220 4. ISCD format extensions 222 The ISCD describes the switching capability of an interface and is 223 defined in [RFC4203]. This document defines a new Switching 224 Capability value for OTN [G.709-2012] as follows: 226 Value Type 227 ----- ---- 228 110 (TBA by IANA) OTN-TDM capable (OTN-TDM) 230 When supporting the extensions defined in this document, the 231 Switching Capability and Encoding values MUST be used as follows: 233 - Switching Capability = OTN-TDM 234 - Encoding Type = G.709 ODUk (Digital Path) [as defined in RFC4328] 236 Both for fixed and flexible ODUs the same switching type and encoding 237 values MUST be used. When Switching Capability and Encoding fields 238 are set to values as stated above, the Interface Switching Capability 239 Descriptor MUST be interpreted as defined in [RFC4203]. 241 Maximum LSP Bandwidth 243 The MAX LSP Bandwidth field is used according to [RFC4203]: i.e. 0 <= 244 MAX LSP Bandwidth <= ODUk/OTUk and intermediate values are those on 245 the branch of OTN switching hierarchy supported by the interface. 246 E.g. in the OTU4 link it could be possible to have ODU4 as MAX LSP 247 Bandwidth for some priorities, ODU3 for others, ODU2 for some others 248 etc. The bandwidth unit is in bytes per second and the encoding MUST 249 be in Institute of Electrical and Electronic Engineers (IEEE) 250 floating point format. The discrete values for various ODUs is shown 251 in the table below. 253 +---------------------+------------------------------+-----------------+ 254 | ODU Type | ODU nominal bit rate |Value in Byte/Sec| 255 +---------------------+------------------------------+-----------------+ 256 | ODU0 | 1 244 160 kbits/s | 0x4D1450C0 | 257 | ODU1 | 239/238 x 2 488 320 kbit/s | 0x4D94F048 | 258 | ODU2 | 239/237 x 9 953 280 kbit/s | 0x4E959129 | 259 | ODU3 | 239/236 x 39 813 120 kbit/s | 0X4F963367 | 260 | ODU4 | 239/227 x 99 532 800 kbit/s | 0x504331E3 | 261 | ODU2e | 239/237 x 10 312 500 kbit/s | 0x4E9AF70A | 262 | | | | 263 | ODUflex for CBR | | MAX LSP | 264 | Client signals | 239/238 x client signal | BANDWIDTH | 265 | | bit rate | | 266 | ODUflex for GFP-F | | MAX LSP | 267 |Mapped client signal | Configured bit rate | BANDWIDTH | 268 | | | | 269 | | | | 270 |ODU flex resizable | Configured bit rate | MAX LSP | 271 | | | BANDWIDTH | 272 +---------------------+------------------------------+-----------------+ 274 A single ISCD MAY be used for the advertisement of unbundled or 275 bundled links supporting homogeneous multiplexing hierarchies and the 276 same TS (Tributary Slot) granularity. A different ISCD MUST be used 277 for each different muxing hierarchy (muxing tree in the following 278 examples) and different TS granularity supported within the TE Link. 280 4.1. Switching Capability Specific Information 282 The technology specific part of the OTN-TDM ISCD may include a 283 variable number of sub-TLVs called Bandwidth sub-TLVs. Each sub-TLV 284 is encoded with the TLV header as defined in [RFC3630] section 2.3.2. 285 The muxing hierarchy tree MUST be encoded as an order independent 286 list. Two types of Bandwidth TLV are defined (TBA by IANA). Note 287 that type values are defined in this document and not in [RFC3630]. 289 - Type 1 - Unreserved Bandwidth for fixed containers 291 - Type 2 - Unreserved/MAX LSP Bandwidth for flexible containers 293 The Switching Capability-specific information (SCSI) MUST include one 294 Type 1 sub-TLV for each fixed container and one Type 2 sub-TLV for 295 each variable container. Each container type is identified by a 296 Signal Type. Signal Type values are defined in [OTN-SIG]. 298 With respect to ODUflex, three different signal types are allowed: 20 299 - ODUflex Constant Bit Rate (CBR), 21 - ODUflex Generic Framing 300 Procedure-Frame mapped (GFP-F) resizable and 22 - ODUflex (GFP-F) non 301 resizable. Each MUST always be advertised in separate Type 2 TLVs as 302 each uses different adaptation functions [G.805]. In the case that 303 both GFP-F resizable and non resizable (i.e. 21 and 22) are 304 supported, only Signal Type 21 SHALL be advertised as this type also 305 implies support for type 22 adaptation. 307 4.1.1. Switching Capability Specific Information for fixed containers 309 The format of the Bandwidth TLV for fixed containers is depicted in 310 the following figure: 312 0 1 2 3 313 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 314 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 315 | Type = 1 (Unres-fix) | Length | 316 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 317 | Signal type | Num of stages |T|S| TSG | Res | Priority | 318 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 319 | Stage#1 | ... | Stage#N | Padding | 320 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 321 | Unreserved ODUj at Prio 0 | ..... | 322 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 323 | Unreserved ODUj at Prio 7 | Unreserved Padding | 324 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 326 Figure 3: Bandwidth TLV - Type 1 - 328 The values of the fields shown in figure 4 are explained in section 329 4.1.3. 331 4.1.2. Switching Capability Specific Information for variable 332 containers 334 The format of the Bandwidth TLV for variable containers is depicted 335 in the following figure: 337 0 1 2 3 338 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 339 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 340 | Type = 2 (Unres/MAX-var) | Length | 341 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 342 | Signal type | Num of stages |T|S| TSG | Res | Priority | 343 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 344 | Stage#1 | ... | Stage#N | Padding | 345 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 346 | Unreserved Bandwidth at priority 0 | 347 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 348 | ... | 349 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 350 | Unreserved Bandwidth at priority 7 | 351 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 352 | MAX LSP Bandwidth at priority 0 | 353 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 354 | ... | 355 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 356 | MAX LSP Bandwidth at priority 7 | 357 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 359 Figure 4: Bandwidth TLV - Type 2 - 361 The values of the fields shown in figure 4 are explained in section 362 4.1.3. 364 4.1.3. Switching Capability Specific Information - Field values and 365 explanation 367 The fields in the Bandwidth TLV MUST be filled as follows: 369 - Signal Type (8 bits): Indicates the ODU type being advertised. 370 Values are defined in [OTN-SIG]. 372 - Number of stages (8 bits): This field indicates the number of 373 multiplexing stages used to transport the indicated signal type. 374 It MUST be set to the number of stages represented in the TLV. 376 - Flags (8 bits): 378 - T Flag (bit 17): Indicates whether the advertised bandwidth 379 can be terminated. When the signal type can be terminated T 380 MUST be set, while when the signal type cannot be terminated T 381 MUST be cleared. 383 - S Flag (bit 18): Indicates whether the advertised bandwidth 384 can be switched. When the signal type can be switched S MUST 385 be set, while when the signal type cannot be switched S MUST be 386 cleared. 388 The value 0 in both T and S bits MUST NOT be used. 390 - TS Granularity: Tributary Slot Granularity (3 bits): Used for 391 the advertisement of the supported Tributary Slot granularity. 392 The following values MUST be used: 394 - 0 - Ignored 396 - 1 - 1.25Gbps/2.5Gbps 398 - 2 - 2.5Gbps only 400 - 3 - 1.25Gbps only 402 - 4-7 - Reserved 404 A value of 1 MUST be used on interfaces which are configured to 405 support the fall back procedures defined in [G.798-a2]. A value 406 of 2 MUST be used on interfaces that only support 2.5Gbps time 407 slots, such as [RFC4328] interfaces. A value of 3 MUST be used on 408 interfaces that are configured to only support 1.25Gbps time 409 slots. A value of 0 MUST be used for non multiplexed signal types 410 (i.e. a non OTN client). 412 - Res (3 bits): reserved bits. MUST be set to 0 and ignored on 413 receipt. 415 - Priority (8 bits): a bitmap used to indicate which priorities 416 are being advertised. The bitmap is in ascending order, with the 417 leftmost bit representing priority level 0 (i.e. the highest) and 418 the rightmost bit representing priority level 7 (i.e. the lowest). 419 A bit MUST be set (1) corresponding to each priority represented 420 in the TLV, and MUST NOT be set (0) when the corresponding 421 priority is not represented. At least one priority level MUST be 422 advertised that, unless overridden by local policy, SHALL be at 423 priority level 0. 425 - Stage (8 bits): Each Stage field indicates a signal type in the 426 multiplexing hierarchy used to transport the signal indicated in 427 the Signal Type field. The number of Stage fields included in a 428 TLV MUST equal the value of the Number of Stages field. The Stage 429 fields MUST be ordered to match the data plane in ascending order 430 (from the lowest order ODU to the highest order ODU). The values 431 of the Stage field are the same as those defined for the Signal 432 Type field. When the Number of stage field carries a 0, then the 433 Stage and Padding fields MUST be omitted. 435 - Padding (variable): The Padding field is used to ensure the 32 436 bit alignment of stage fields. The length of the Padding field is 437 always a multiple of 8 bits (1 byte). Its length can be 438 calculated, in bytes, as: 4 - ( "value of Number of Stages field" 439 % 4). The Padding field MUST be set to a zero (0) value on 440 transmission and MUST be ignored on receipt. 442 - Unreserved ODUj (16 bits): This field indicates the Unreserved 443 Bandwidth at a particular priority level. This field MUST be set 444 to the number of ODUs at the indicated the Signal Type for a 445 particular priority level. One field MUST be present for each bit 446 set in the Priority field, and is ordered to match the Priority 447 field. Fields MUST NOT be present for priority levels that are 448 not indicated in the Priority field. 450 - Unreserved Padding (16 bits): The Padding field is used to 451 ensure the 32 bit alignment of Unreserved ODUj fields. When 452 present the Unreserved Padding field is 16 bits (2 byte) long. 453 When the number of priorities is odd, the Unreserved Padding field 454 MUST be included. When the number of priorities is even, the 455 Unreserved Padding MUST be omitted. 457 - Unreserved Bandwidth (32 bits): This field indicates the 458 Unreserved Bandwidth at a particular priority level. This field 459 MUST be set to the bandwidth, in bits/s in IEEE floating point 460 format, available at the indicated Signal Type for a particular 461 priority level. One field MUST be present for each bit set in the 462 Priority field, and is ordered to match the Priority field. 463 Fields MUST NOT be present for priority levels that are not 464 indicated in the Priority field. 466 - Maximum LSP Bandwidth (32 bit): This field indicates the maximum 467 bandwidth that can be allocated for a single LSP at a particular 468 priority level. This field MUST be set to the maximum bandwidth, 469 in bits/s in IEEE floating point format, available to a single LSP 470 at the indicated Signal Type for a particular priority level. One 471 field MUST be present for each bit set in the Priority field, and 472 is ordered to match the Priority field. Fields MUST NOT be 473 present for priority levels that are not indicated in the Priority 474 field. The advertisement of the MAX LSP Bandwidth MUST take into 475 account HO OPUk bit rate tolerance and be calculated according to 476 the following formula: 478 Max LSP BW = (# available TSs) * (ODTUk.ts nominal bit rate) * 479 (1-HO OPUk bit rate tolerance) 481 5. Examples 483 The examples in the following pages are not normative and are not 484 intended to imply or mandate any specific implementation. 486 5.1. MAX LSP Bandwidth fields in the ISCD 488 This example shows how the MAX LSP Bandwidth fields of the ISCD are 489 filled accordingly to the evolving of the TE-link bandwidth 490 occupancy. In the example an OTU4 link is considered, with supported 491 priorities 0,2,4,7 and muxing hierarchy ODU1->ODU2->ODU3->ODU4. 493 At time T0, with the link completely free, the advertisement would 494 be: 496 0 1 2 3 497 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 498 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 499 | SwCap=OTN_TDM | Encoding = 12 | Reserved (all zeros) | 500 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 501 | MAX LSP Bandwidth at priority 0 = 100Gbps | 502 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 503 | MAX LSP Bandwidth at priority 1 = 0 | 504 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 505 | MAX LSP Bandwidth at priority 2 = 100Gbps | 506 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 507 | MAX LSP Bandwidth at priority 3 = 0 | 508 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 509 | MAX LSP Bandwidth at priority 4 = 100Gbps | 510 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 511 | MAX LSP Bandwidth at priority 5 = 0 | 512 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 513 | MAX LSP Bandwidth at priority 6 = 0 | 514 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 515 | MAX LSP Bandwidth at priority 7 = 100Gbps | 516 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 517 | Switching Capability Specific Information | 518 | (variable length) | 519 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 521 Figure 5: Example 1 - MAX LSP Bandwidth fields in the ISCD @T0 523 At time T1 an ODU3 at priority 2 is set-up, so for priority 0 the MAX 524 LSP Bandwidth is still equal to the ODU4 bandwidth, while for 525 priorities from 2 to 7 (excluding the non supported ones) the MAX LSP 526 Bandwidth is equal to ODU3, as no more ODU4s are available and the 527 next supported ODUj in the hierarchy is ODU3.The advertisement is 528 updated as follows: 530 0 1 2 3 531 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 532 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 533 | SwCap=OTN_TDM | Encoding = 12 | Reserved (all zeros) | 534 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 535 | MAX LSP Bandwidth at priority 0 = 100Gbps | 536 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 537 | MAX LSP Bandwidth at priority 1 = 0 | 538 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 539 | MAX LSP Bandwidth at priority 2 = 40Gbps | 540 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 541 | MAX LSP Bandwidth at priority 3 = 0 | 542 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 543 | MAX LSP Bandwidth at priority 4 = 40Gbps | 544 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 545 | MAX LSP Bandwidth at priority 5 = 0 | 546 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 547 | MAX LSP Bandwidth at priority 6 = 0 | 548 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 549 | MAX LSP Bandwidth at priority 7 = 40Gbps | 550 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 551 | Switching Capability Specific Information | 552 | (variable length) | 553 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 555 Figure 6: Example 1 - MAX LSP Bandwidth fields in the ISCD @T1 557 At time T2 an ODU2 at priority 4 is set-up. The first ODU3 is no 558 longer available since T1 as it was kept by the ODU3 LSP, while the 559 second is no more available and just 3 ODU2 are left in it. ODU2 is 560 now the MAX LSP Bandwidth for priorities higher than 4. The 561 advertisement is updated as follows: 563 0 1 2 3 564 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 565 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 566 | SwCap=OTN_TDM | Encoding = 12 | Reserved (all zeros) | 567 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 568 | MAX LSP Bandwidth at priority 0 = 100Gbps | 569 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 570 | MAX LSP Bandwidth at priority 1 = 0 | 571 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 572 | MAX LSP Bandwidth at priority 2 = 40Gbps | 573 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 574 | MAX LSP Bandwidth at priority 3 = 0 | 575 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 576 | MAX LSP Bandwidth at priority 4 = 10Gbps | 577 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 578 | MAX LSP Bandwidth at priority 5 = 0 | 579 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 580 | MAX LSP Bandwidth at priority 6 = 0 | 581 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 582 | MAX LSP Bandwidth at priority 7 = 10Gbps | 583 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 584 | Switching Capability Specific Information | 585 | (variable length) | 586 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 588 Figure 7: Example 1 - MAX LSP Bandwidth fields in the ISCD @T2 590 5.2. Example of T,S and TS granularity utilization 592 In this example an interface with Tributary Slot Type 1.25Gbps and 593 fallback procedure enabled is considered (TS granularity=1). It 594 supports the simple ODU1->ODU2->ODU3 hierarchy and priorities 0 and 595 3. Suppose that in this interface the ODU3 signal type can be both 596 switched or terminated, the ODU2 can only be terminated and the ODU1 597 switched only. Please note that since the ODU1 is not being 598 advertised to support ODU0 the value of is "ignored" (TS 599 granularity=0). For the advertisement of the capabilities of such 600 interface a single ISCD is used and its format is as follows: 602 0 1 2 3 603 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 604 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 605 | Type = 1 (Unres-fix) | Length = 12 | 606 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 607 |Sig type=ODU1 | #stages= 2 |T0|S1| 0 |0 0 0|1|0|0|1|0|0|0|0| 608 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 609 | Stage#1=ODU2 | Stage#2=ODU3 | Padding (all zeros) | 610 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 611 | Unres ODU1 at Prio 0 | Unres ODU1 at Prio 3 | 612 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 613 | Type = 1 (Unres-fix) | Length = 12 | 614 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 615 |Sig type=ODU2 | #stages= 1 |T1|S0| 1 |0 0 0|1|0|0|1|0|0|0|0| 616 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 617 | Stage#1=ODU3 | Padding (all zeros) | 618 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 619 | Unres ODU2 at Prio 0 | Unres ODU2 at Prio 3 | 620 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 621 | Type = 1 (Unres-fix) | Length = 8 | 622 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 623 |Sig type=ODU3 | #stages= 0 |T1|S1| 1 |0 0 0|1|0|0|1|0|0|0|0| 624 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 625 | Unres ODU3 at Prio 0 | Unres ODU3 at Prio 3 | 626 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 628 Figure 8: Example 2 - TS granularity, T and S utilization 630 5.2.1. Example of different TS Granularities 632 In this example two interfaces with homogeneous hierarchies but 633 different Tributary Slot Types are considered. The first one 634 supports a [RFC4328] interface (TS granularity=2) while the second 635 one a G.709-2012 interface with fallback procedure disabled (TS 636 granularity=3). Both of them support ODU1->ODU2->ODU3 hierarchy and 637 priorities 0 and 3. T and S bits values are not relevant to this 638 example. For the advertisement of the capabilities of such 639 interfaces two different ISCDs are used and the format of their SCSIs 640 is as follows: 642 SCSI of ISCD 1 - TS granularity=2 643 0 1 2 3 644 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 645 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 646 | Type = 1 (Unres-fix) | Length = 12 | 647 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 648 |Sig type=ODU1 | #stages= 2 |T0|S1| 0 |0 0 0|1|0|0|1|0|0|0|0| 649 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 650 | Stage#1=ODU2 | Stage#2=ODU3 | Padding (all zeros) | 651 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 652 | Unres ODU1 at Prio 0 | Unres ODU1 at Prio 3 | 653 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 654 | Type = 1 (Unres-fix) | Length = 12 | 655 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 656 |Sig type=ODU2 | #stages= 1 |T1|S0| 1 |0 0 0|1|0|0|1|0|0|0|0| 657 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 658 | Stage#1=ODU3 | Padding (all zeros) | 659 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 660 | Unres ODU2 at Prio 0 | Unres ODU2 at Prio 3 | 661 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 662 | Type = 1 (Unres-fix) | Length = 8 | 663 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 664 |Sig type=ODU3 | #stages= 0 |T1|S1| 2 |0 0 0|1|0|0|1|0|0|0|0| 665 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 666 | Unres ODU3 at Prio 0 | Unres ODU3 at Prio 3 | 667 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 669 SCSI of ISCD 2 - TS granularity=3 670 0 1 2 3 671 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 672 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 673 | Type = 1 (Unres-fix) | Length = 12 | 674 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 675 |Sig type=ODU1 | #stages= 2 |T0|S1| 0 |0 0 0|1|0|0|1|0|0|0|0| 676 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 677 | Stage#1=ODU2 | Stage#2=ODU3 | Padding (all zeros) | 678 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 679 | Unres ODU1 at Prio 0 | Unres ODU1 at Prio 3 | 680 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 681 | Type = 1 (Unres-fix) | Length = 12 | 682 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 683 |Sig type=ODU2 | #stages= 1 |T1|S0| 1 |0 0 0|1|0|0|1|0|0|0|0| 684 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 685 | Stage#1=ODU3 | Padding (all zeros) | 686 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 687 | Unres ODU2 at Prio 0 | Unres ODU2 at Prio 3 | 688 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 689 | Type = 1 (Unres-fix) | Length = 8 | 690 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 691 |Sig type=ODU3 | #stages= 0 |T1|S1| 3 |0 0 0|1|0|0|1|0|0|0|0| 692 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 693 | Unres ODU3 at Prio 0 | Unres ODU3 at Prio 3 | 694 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 695 Figure 9: Example 2.1 - Different TS Granularities utilization 697 A particular case in which hierarchies with the same muxing tree but 698 with different exported TS granularity MUST be considered as non 699 homogenous hierarchies is the case in which an H-LPS and the client 700 LSP are terminated on the same egress node. What can happen is that 701 a loose Explicit Route Object (ERO) is used at the hop where the 702 signaled LSP is nested into the Hierarchical-LSP (H-LSP) (penultimate 703 hop of the LSP). 705 In the following figure, node C receives from A a loose ERO towards 706 node E and must choose between the ODU2 H-LSP on if1 or the one on 707 if2. In case the H-LSP on if1 exports a TS=1.25Gbps and if2 a 708 TS=2.5Gbps and the service LSP being signaled needs a 1.25Gbps 709 tributary slot, only the H-LSP on if1 can be used to reach node E. 710 For further details please see section 4.1 of the [OTN-INFO]. 712 ODU0-LSP 713 ..........................................................+ 714 | | 715 | ODU2-H-LSP | 716 | +-------------------------------+ 717 | | | 718 +--+--+ +-----+ +-----+ if1 +-----+ +-----+ 719 | | OTU3 | | OTU3 | |---------| |---------| | 720 | A +------+ B +------+ C | if2 | D | | E | 721 | | | | | |---------| |---------| | 722 +-----+ +-----+ +-----+ +-----+ +-----+ 724 ... Service LSP 725 --- H-LSP 727 Figure 10: Example - Service LSP and H-LSP terminating on the same 728 node 730 5.3. Example of ODUflex advertisement 732 In this example the advertisement of an ODUflex->ODU3 hierarchy is 733 shown. In case of ODUflex advertisement the MAX LSP Bandwidth needs 734 to be advertised and in some cases also information about the 735 Unreserved bandwidth could be useful. The amount of Unreserved 736 bandwidth does not give a clear indication of how many ODUflex LSP 737 can be set up either at the MAX LSP Bandwidth or at different rates, 738 as it gives no information about the spatial allocation of the free 739 TSs. 741 An indication of the amount of Unreserved bandwidth could be useful 742 during the path computation process, as shown in the following 743 example. Supposing there are two TE-links (A and B) with MAX LSP 744 Bandwidth equal to 10 Gbps each. In case 50Gbps of Unreserved 745 Bandwidth are available on Link A, 10Gbps on Link B and 3 ODUflex 746 LSPs of 10 GBps each, have to be restored, for sure only one can be 747 restored along Link B and it is probable (but not sure) that two of 748 them can be restored along Link A. T, S and TS granularity fields are 749 not relevant to this example. 751 In the case of ODUflex advertisement the Type 2 Bandwidth TLV is 752 used. 754 0 1 2 3 755 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 756 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 757 | Type = 2 (Unres/MAX-var) | Length = 72 | 758 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 759 |S. type=ODUflex| #stages= 1 |T|S| TSG |0 0 0| Priority(8) | 760 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 761 | Stage#1=ODU3 | Padding (all zeros) | 762 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 763 | Unreserved Bandwidth at priority 0 | 764 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 765 | Unreserved Bandwidth at priority 1 | 766 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 767 | Unreserved Bandwidth at priority 2 | 768 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 769 | Unreserved Bandwidth at priority 3 | 770 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 771 | Unreserved Bandwidth at priority 4 | 772 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 773 | Unreserved Bandwidth at priority 5 | 774 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 775 | Unreserved Bandwidth at priority 6 | 776 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 777 | Unreserved Bandwidth at priority 7 | 778 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 779 | MAX LSP Bandwidth at priority 0 | 780 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 781 | MAX LSP Bandwidth at priority 1 | 782 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 783 | MAX LSP Bandwidth at priority 2 | 784 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 785 | MAX LSP Bandwidth at priority 3 | 786 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 787 | MAX LSP Bandwidth at priority 4 | 788 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 789 | MAX LSP Bandwidth at priority 5 | 790 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 791 | MAX LSP Bandwidth at priority 6 | 792 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 793 | MAX LSP Bandwidth at priority 7 | 794 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 796 Figure 11: Example 3 - ODUflex advertisement 798 5.4. Example of single stage muxing 800 Supposing there is 1 OTU4 component link supporting single stage 801 muxing of ODU1, ODU2, ODU3 and ODUflex, the supported hierarchy can 802 be summarized in a tree as in the following figure. For sake of 803 simplicity we assume that also in this case only priorities 0 and 3 804 are supported. T, S and TS granularity fields are not relevant to 805 this example. 807 ODU1 ODU2 ODU3 ODUflex 808 \ \ / / 809 \ \ / / 810 \ \/ / 811 ODU4 813 and the related SCSIs as follows: 815 0 1 2 3 816 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 817 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 818 | Type = 1 (Unres-fix) | Length = 8 | 819 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 820 |Sig type=ODU4 | #stages= 0 |T|S| TSG |0 0 0|1|0|0|1|0|0|0|0| 821 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 822 | Unres ODU4 at Prio 0 =1 | Unres ODU4 at Prio 3 =1 | 823 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 824 | Type = 1 (Unres-fix) | Length = 12 | 825 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 826 |Sig type=ODU1 | #stages= 1 |T|S| TSG |0 0 0|1|0|0|1|0|0|0|0| 827 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 828 | Stage#1=ODU4 | Padding (all zeros) | 829 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 830 | Unres ODU1 at Prio 0 =40 | Unres ODU1 at Prio 3 =40 | 831 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 832 | Type = 1 (Unres-fix) | Length = 12 | 833 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 834 |Sig type=ODU2 | #stages= 1 |T|S| TSG |0 0 0|1|0|0|1|0|0|0|0| 835 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 836 | Stage#1=ODU4 | Padding (all zeros) | 837 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 838 | Unres ODU2 at Prio 0 =10 | Unres ODU2 at Prio 3 =10 | 839 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 840 | Type = 1 (Unres-fix) | Length = 12 | 841 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 842 |Sig type=ODU3 | #stages= 1 |T|S| TSG |0 0 0|1|0|0|1|0|0|0|0| 843 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 844 | Stage#1=ODU4 | Padding (all zeros) | 845 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 846 | Unres ODU3 at Prio 0 =2 | Unres ODU3 at Prio 3 =2 | 847 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 848 | Type = 2 (Unres/MAX-var) | Length = 24 | 849 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 850 |S. type=ODUflex| #stages= 1 |T|S| TSG |0 0 0|1|0|0|1|0|0|0|0| 851 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 852 | Stage#1=ODU4 | Padding (all zeros) | 853 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 854 | Unreserved Bandwidth at priority 0 =100Gbps | 855 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 856 | Unreserved Bandwidth at priority 3 =100Gbps | 857 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 858 | MAX LSP Bandwidth at priority 0 =100Gbps | 859 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 860 | MAX LSP Bandwidth at priority 3 =100Gbps | 861 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 862 Figure 12: Example 4 - Single stage muxing 864 5.5. Example of multi stage muxing - Unbundled link 866 Supposing there is 1 OTU4 component link with muxing capabilities as 867 shown in the following figure: 869 ODU2 ODU0 ODUflex ODU0 870 \ / \ / 871 | | 872 ODU3 ODU2 873 \ / 874 \ / 875 \ / 876 \ / 877 ODU4 879 and supported priorities 0 and 3, the advertisement is composed by 880 the following Bandwidth TLVs (T and S fields are not relevant to this 881 example): 883 0 1 2 3 884 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 885 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 886 | Type = 1 (Unres-fix) | Length = 8 | 887 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 888 |Sig type=ODU4 | #stages= 0 |T|S| 1 |0 0 0|1|0|0|1|0|0|0|0| 889 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 890 | Unres ODU4 at Prio 0 =1 | Unres ODU4 at Prio 3 =1 | 891 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 892 | Type = 1 (Unres-fix) | Length = 12 | 893 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 894 |Sig type=ODU3 | #stages= 1 |T|S| 1 |0 0 0|1|0|0|1|0|0|0|0| 895 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 896 | Stage#1=ODU4 | Padding (all zeros) | 897 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 898 | Unres ODU3 at Prio 0 =2 | Unres ODU3 at Prio 3 =2 | 899 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 900 | Type = 1 (Unres-fix) | Length = 12 | 901 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 902 |Sig type=ODU2 | #stages= 1 |T|S| 1 |0 0 0|1|0|0|1|0|0|0|0| 903 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 904 | Stage#1=ODU4 | Padding (all zeros) | 905 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 906 | Unres ODU2 at Prio 0 =10 | Unres ODU2 at Prio 3 =10 | 907 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 908 | Type = 1 (Unres-fix) | Length = 12 | 909 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 910 |Sig type=ODU2 | #stages= 2 |T|S| 0 |0 0 0|1|0|0|1|0|0|0|0| 911 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 912 | Stage#1=ODU3 | Stage#2=ODU4 | Padding (all zeros) | 913 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 914 | Unres ODU2 at Prio 0 =8 | Unres ODU2 at Prio 3 =8 | 915 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 916 | Type = 1 (Unres-fix) | Length = 12 | 917 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 918 |Sig type=ODU0 | #stages= 2 |T|S| 0 |0 0 0|1|0|0|1|0|0|0|0| 919 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 920 | Stage#1=ODU3 | Stage#2=ODU4 | Padding (all zeros) | 921 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 922 | Unres ODU0 at Prio 0 =64 | Unres ODU0 at Prio 3 =64 | 923 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 924 | Type = 1 (Unres-fix) | Length = 12 | 925 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 926 |Sig type=ODU0 | #stages= 2 |T|S| 0 |0 0 0|1|0|0|1|0|0|0|0| 927 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 928 | Stage#1=ODU2 | Stage#2=ODU4 | Padding (all zeros) | 929 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 930 | Unres ODU0 at Prio 0 =80 | Unres ODU0 at Prio 3 =80 | 931 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 932 | Type = 2 (Unres/MAX-var) | Length = 24 | 933 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 934 |S.type=ODUflex | #stages= 2 |T|S| 0 |0 0 0|1|0|0|1|0|0|0|0| 935 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 936 | Stage#1=ODU2 | Stage#2=ODU4 | Padding (all zeros) | 937 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 938 | Unreserved Bandwidth at priority 0 =100Gbps | 939 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 940 | Unreserved Bandwidth at priority 3 =100Gbps | 941 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 942 | MAX LSP Bandwidth at priority 0 =10Gbps | 943 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 944 | MAX LSP Bandwidth at priority 3 =10Gbps | 945 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 947 Figure 13: Example 5 - Multi stage muxing - Unbundled link 949 5.6. Example of multi stage muxing - Bundled links 951 In this example 2 OTU4 component links with the same supported TS 952 granularity and homogeneous muxing hierarchies are considered. The 953 following muxing capabilities trees are supported: 955 Component Link#1 Component Link#2 956 ODU2 ODU0 ODU2 ODU0 957 \ / \ / 958 | | 959 ODU3 ODU3 960 | | 961 ODU4 ODU4 963 Considering only supported priorities 0 and 3, the advertisement is 964 as follows (T, S and TS granularity fields are not relevant to this 965 example): 967 0 1 2 3 968 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 969 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 970 | Type = 1 (Unres-fix) | Length = 8 | 971 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 972 |Sig type=ODU4 | #stages= 0 |T|S| TSG |0 0 0|1|0|0|1|0|0|0|0| 973 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 974 | Unres ODU4 at Prio 0 =2 | Unres ODU4 at Prio 3 =2 | 975 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 976 | Type = 1 (Unres-fix) | Length = 12 | 977 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 978 |Sig type=ODU3 | #stages= 1 |T|S| TSG |0 0 0|1|0|0|1|0|0|0|0| 979 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 980 | Stage#1=ODU4 | Padding (all zeros) | 981 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 982 | Unres ODU3 at Prio 0 =4 | Unres ODU3 at Prio 3 =4 | 983 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 984 | Type = 1 (Unres-fix) | Length = 12 | 985 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 986 |Sig type=ODU2 | #stages= 2 |T|S| TSG |0 0 0|1|0|0|1|0|0|0|0| 987 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 988 | Stage#1=ODU3 | Stage#2=ODU4 | Padding (all zeros) | 989 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 990 | Unres ODU2 at Prio 0 =16 | Unres ODU2 at Prio 3 =16 | 991 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 992 | Type = 1 (Unres-fix) | Length = 12 | 993 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 994 |Sig type=ODU0 | #stages= 2 |T|S| TSG |0 0 0|1|0|0|1|0|0|0|0| 995 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 996 | Stage#1=ODU3 | Stage#2=ODU4 | Padding (all zeros) | 997 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 998 | Unres ODU0 at Prio 0 =128 | Unres ODU0 at Prio 3 =128 | 999 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1001 Figure 14: Example 6 - Multi stage muxing - Bundled links 1003 5.7. Example of component links with non homogeneous hierarchies 1005 In this example 2 OTU4 component links with the same supported TS 1006 granularity and non homogeneous muxing hierarchies are considered. 1007 The following muxing capabilities trees are supported: 1009 Component Link#1 Component Link#2 1010 ODU2 ODU0 ODU1 ODU0 1011 \ / \ / 1012 | | 1013 ODU3 ODU2 1014 | | 1015 ODU4 ODU4 1017 Considering only supported priorities 0 and 3, the advertisement uses 1018 two different ISCDs, one for each hierarchy (T, S and TS granularity 1019 fields are not relevant to this example). In the following figure, 1020 the SCSI of each ISCD is shown: 1022 SCSI of ISCD 1 - Component Link#1 1024 0 1 2 3 1025 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1026 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1027 | Type = 1 (Unres-fix) | Length = 8 | 1028 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1029 |Sig type=ODU4 | #stages= 0 |T|S| TSG |0 0 0|1|0|0|1|0|0|0|0| 1030 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1031 | Unres ODU4 at Prio 0 =1 | Unres ODU4 at Prio 3 =1 | 1032 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1033 | Type = 1 (Unres-fix) | Length = 12 | 1034 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1035 |Sig type=ODU3 | #stages= 1 |T|S| TSG |0 0 0|1|0|0|1|0|0|0|0| 1036 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1037 | Stage#1=ODU4 | Padding (all zeros) | 1038 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1039 | Unres ODU3 at Prio 0 =2 | Unres ODU3 at Prio 3 =2 | 1040 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1041 | Type = 1 (Unres-fix) | Length = 12 | 1042 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1043 |Sig type=ODU2 | #stages= 2 |T|S| TSG |0 0 0|1|0|0|1|0|0|0|0| 1044 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1045 | Stage#1=ODU3 | Stage#2=ODU4 | Padding (all zeros) | 1046 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1047 | Unres ODU2 at Prio 0 =8 | Unres ODU2 at Prio 3 =8 | 1048 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1049 | Type = 1 (Unres-fix) | Length = 12 | 1050 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1051 |Sig type=ODU0 | #stages= 2 |T|S| TSG |0 0 0|1|0|0|1|0|0|0|0| 1052 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1053 | Stage#1=ODU3 | Stage#2=ODU4 | Padding (all zeros) | 1054 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1055 | Unres ODU0 at Prio 0 =64 | Unres ODU0 at Prio 3 =64 | 1056 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1058 SCSI of ISCD 2 - Component Link#2 1060 0 1 2 3 1061 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1062 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1063 | Type = 1 (Unres-fix) | Length = 8 | 1064 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1065 |Sig type=ODU4 | #stages= 0 |T|S| TSG |0 0 0|1|0|0|1|0|0|0|0| 1066 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1067 | Unres ODU4 at Prio 0 =1 | Unres ODU4 at Prio 3 =1 | 1068 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1069 | Type = 1 (Unres-fix) | Length = 12 | 1070 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1071 |Sig type=ODU2 | #stages= 1 |T|S| TSG |0 0 0 |1|0|0|1|0|0|0|0| 1072 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1073 | Stage#1=ODU4 | Padding (all zeros) | 1074 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1075 | Unres ODU2 at Prio 0 =10 | Unres ODU2 at Prio 3 =10 | 1076 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1077 | Type = 1 (Unres-fix) | Length = 12 | 1078 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1079 |Sig type=ODU1 | #stages= 2 |T|S| TSG |0 0 0|1|0|0|1|0|0|0|0| 1080 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1081 | Stage#1=ODU2 | Stage#2=ODU4 | Padding (all zeros) | 1082 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1083 | Unres ODU1 at Prio 0 =40 | Unres ODU1 at Prio 3 =40 | 1084 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1085 | Type = 1 (Unres-fix) | Length = 12 | 1086 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1087 |Sig type=ODU0 | #stages= 2 |T|S| TSG |0 0 0|1|0|0|1|0|0|0|0| 1088 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1089 | Stage#1=ODU2 | Stage#2=ODU4 | Padding (all zeros) | 1090 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1091 | Unres ODU0 at Prio 0 =80 | Unres ODU0 at Prio 3 =80 | 1092 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1094 Figure 15: Example 7 - Multi stage muxing - Non homogeneous 1095 hierarchies 1097 6. Compatibility 1099 All implementations of this document MAY support also advertisement 1100 as defined in [RFC4328]. When nodes support both advertisement 1101 methods, implementations MUST support the configuration of which 1102 advertisement method is followed. The choice of which is used is 1103 based on policy and is out of scope of the document. This enables 1104 nodes following each method to identify similar supporting nodes and 1105 compute paths using only the appropriate nodes. 1107 7. Security Considerations 1109 This document extends [RFC4203]. As with[RFC4203], it specifies the 1110 contents of Opaque LSAs in OSPFv2. As Opaque LSAs are not used for 1111 SPF computation or normal routing, the extensions specified here have 1112 no direct effect on IP routing. Tampering with GMPLS TE LSAs may 1113 have an effect on the underlying transport (optical and/or SONET-SDH) 1114 network. [RFC3630] suggests mechanisms such as [RFC2154] to protect 1115 the transmission of this information, and those or other mechanisms 1116 should be used to secure and/or authenticate the information carried 1117 in the Opaque LSAs. 1119 For security threats, defensive techniques, monitoring/detection/ 1120 reporting of security attacks and requirements please refer to 1121 [RFC5920] . 1123 8. IANA Considerations 1125 Upon approval of this document, IANA will make the assignment in the 1126 "Switching Types" section of the "GMPLS Signaling Parameters" 1127 registry located at 1128 http://www.iana.org/assignments/gmpls-sig-parameters: 1130 Value Name Reference 1131 --------- -------------------------- ---------- 1132 110 (*) OTN-TDM capable (OTN-TDM) [This.I-D] 1134 (*) Suggested value 1136 This document defines 2 new TLVs that are carried in Interface 1137 Switching Capability Descriptors [RFC4203] with Signal Type OTN-TDM. 1138 Each TLV includes a 16-bit type identifier (the T-field). The same 1139 T-field values are applicable to the new sub-TLV. 1141 Upon approval of this document, IANA will create and maintain a new 1142 registry, the "Types for sub-TLVs of OTN-TDM SCSI (Switch Capability 1143 Specific Information)" registry under the "Open Shortest Path First 1144 (OSPF) Traffic Engineering TLVs" registry, see http://www.iana.org/ 1145 assignments/ospf-traffic-eng-tlvs/ospf-traffic-eng-tlvs.xml, with the 1146 TLV types as follows: 1148 This document defines new TLV types as follows: 1150 Value Sub-TLV Reference 1151 --------- -------------------------- ---------- 1152 0 Reserved [This.I-D] 1153 1 Unreserved Bandwidth for [This.I-D] 1154 fixed containers 1155 2 Unreserved/MAX Bandwidth for [This.I-D] 1156 flexible containers 1158 Types are to be assigned via Standards Action as defined in 1159 [RFC5226]. 1161 9. Contributors 1163 Xiaobing Zi, Huawei Technologies 1165 Email: zixiaobing@huawei.com 1167 Francesco Fondelli, Ericsson 1169 Email: francesco.fondelli@ericsson.com 1171 Marco Corsi 1173 EMail: corsi.marco@gmail.com 1175 Eve Varma, Alcatel-Lucent 1177 EMail: eve.varma@alcatel-lucent.com 1179 Jonathan Sadler, Tellabs 1181 EMail: jonathan.sadler@tellabs.com 1182 Lyndon Ong, Ciena 1184 EMail: lyong@ciena.com 1186 Ashok Kunjidhapatham 1188 akunjidhapatham@infinera.com 1190 Snigdho Bardalai 1192 sbardalai@infinera.com 1194 Steve Balls 1196 Steve.Balls@metaswitch.com 1198 Jonathan Hardwick 1200 Jonathan.Hardwick@metaswitch.com 1202 Xihua Fu 1204 fu.xihua@zte.com.cn 1206 Cyril Margaria 1208 cyril.margaria@nsn.com 1210 Malcolm Betts 1212 Malcolm.betts@zte.com.cn 1214 10. Acknowledgements 1216 The authors would like to thank Fred Gruman and Lou Berger for the 1217 precious comments and suggestions. 1219 11. References 1221 11.1. Normative References 1223 [G.709-2012] 1224 ITU-T, "Draft revised G.709, version 4", consented 1225 by ITU-T in 2012. 1227 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 1228 Requirement Levels", BCP 14, RFC 2119, March 1997. 1230 [RFC3630] Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering 1231 (TE) Extensions to OSPF Version 2", RFC 3630, 1232 September 2003. 1234 [RFC4203] Kompella, K. and Y. Rekhter, "OSPF Extensions in Support 1235 of Generalized Multi-Protocol Label Switching (GMPLS)", 1236 RFC 4203, October 2005. 1238 [RFC4328] Papadimitriou, D., "Generalized Multi-Protocol Label 1239 Switching (GMPLS) Signaling Extensions for G.709 Optical 1240 Transport Networks Control", RFC 4328, January 2006. 1242 11.2. Informative References 1244 [OTN-FWK] F.Zhang, D.Li, H.Li, S.Belotti, D.Ceccarelli, "Framework 1245 for GMPLS and PCE Control of G.709 Optical Transport 1246 networks, work in progress 1247 draft-ietf-ccamp-gmpls-g709-framework-13", June 2013. 1249 [OTN-INFO] 1250 S.Belotti, P.Grandi, D.Ceccarelli, D.Caviglia, F.Zhang, 1251 D.Li, "Information model for G.709 Optical Transport 1252 Networks (OTN), work in progress 1253 draft-ietf-ccamp-otn-g709-info-model-09", June 2013. 1255 [OTN-SIG] F.Zhang, G.Zhang, S.Belotti, D.Ceccarelli, K.Pithewan, 1256 "Generalized Multi-Protocol Label Switching (GMPLS) 1257 Signaling Extensions for the evolving G.709 Optical 1258 Transport Networks Control, work in progress 1259 draft-ietf-ccamp-gmpls-signaling-g709v3-11", June 2013. 1261 [RFC2154] Murphy, S., Badger, M., and B. Wellington, "OSPF with 1262 Digital Signatures", RFC 2154, June 1997. 1264 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an 1265 IANA Considerations Section in RFCs", BCP 26, RFC 5226, 1266 May 2008. 1268 [RFC5920] Fang, L., "Security Framework for MPLS and GMPLS 1269 Networks", RFC 5920, July 2010. 1271 [RFC6163] Lee, Y., Bernstein, G., and W. Imajuku, "Framework for 1272 GMPLS and Path Computation Element (PCE) Control of 1273 Wavelength Switched Optical Networks (WSONs)", RFC 6163, 1274 April 2011. 1276 [RFC6566] Lee, Y., Bernstein, G., Li, D., and G. Martinelli, "A 1277 Framework for the Control of Wavelength Switched Optical 1278 Networks (WSONs) with Impairments", RFC 6566, March 2012. 1280 Authors' Addresses 1282 Daniele Ceccarelli (editor) 1283 Ericsson 1284 Via E.Melen 77 1285 Genova - Erzelli 1286 Italy 1288 Email: daniele.ceccarelli@ericsson.com 1290 Diego Caviglia 1291 Ericsson 1292 Via E.Melen 77 1293 Genova - Erzelli 1294 Italy 1296 Email: diego.caviglia@ericsson.com 1298 Fatai Zhang 1299 Huawei Technologies 1300 F3-5-B R&D Center, Huawei Base 1301 Shenzhen 518129 P.R.China Bantian, Longgang District 1302 Phone: +86-755-28972912 1304 Email: zhangfatai@huawei.com 1305 Dan Li 1306 Huawei Technologies 1307 F3-5-B R&D Center, Huawei Base 1308 Shenzhen 518129 P.R.China Bantian, Longgang District 1309 Phone: +86-755-28973237 1311 Email: danli@huawei.com 1313 Sergio Belotti 1314 Alcatel-Lucent 1315 Via Trento, 30 1316 Vimercate 1317 Italy 1319 Email: sergio.belotti@alcatel-lucent.com 1321 Pietro Vittorio Grandi 1322 Alcatel-Lucent 1323 Via Trento, 30 1324 Vimercate 1325 Italy 1327 Email: pietro_vittorio.grandi@alcatel-lucent.com 1329 Rajan Rao 1330 Infinera Corporation 1331 169, Java Drive 1332 Sunnyvale, CA-94089 1333 USA 1335 Email: rrao@infinera.com 1337 Khuzema Pithewan 1338 Infinera Corporation 1339 169, Java Drive 1340 Sunnyvale, CA-94089 1341 USA 1343 Email: kpithewan@infinera.com 1344 John E Drake 1345 Juniper 1347 Email: jdrake@juniper.net