idnits 2.17.1 draft-ietf-ccamp-layer0-types-06.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (May 19, 2020) is 1438 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Missing Reference: 'RFCXXXX' is mentioned on line 112, but not defined == Unused Reference: 'ITU-Tg709' is defined on line 857, but no explicit reference was found in the text Summary: 0 errors (**), 0 flaws (~~), 3 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 CCAMP Working Group H. Zheng 3 Internet-Draft Huawei Technologies 4 Intended status: Standards Track Y. Lee 5 Expires: November 20, 2020 Samsung 6 A. Guo 7 Futurewei 8 V. Lopez 9 Telefonica 10 D. King 11 University of Lancaster 12 May 19, 2020 14 A YANG Data Model for Layer 0 Types 15 draft-ietf-ccamp-layer0-types-06 17 Abstract 19 This document defines a collection of common data types and groupings 20 in the YANG data modeling language. These derived common types and 21 groupings are intended to be imported by modules that model Layer 0 22 optical Traffic Engineering (TE) configuration and state capabilities 23 such as Wavelength Switched Optical Networks (WSONs) and Flexi-grid 24 Dense Wavelength Division Multiplexing (DWDM) Networks. 26 Status of This Memo 28 This Internet-Draft is submitted in full conformance with the 29 provisions of BCP 78 and BCP 79. 31 Internet-Drafts are working documents of the Internet Engineering 32 Task Force (IETF). Note that other groups may also distribute 33 working documents as Internet-Drafts. The list of current Internet- 34 Drafts is at https://datatracker.ietf.org/drafts/current/. 36 Internet-Drafts are draft documents valid for a maximum of six months 37 and may be updated, replaced, or obsoleted by other documents at any 38 time. It is inappropriate to use Internet-Drafts as reference 39 material or to cite them other than as "work in progress." 41 This Internet-Draft will expire on November 20, 2020. 43 Copyright Notice 45 Copyright (c) 2020 IETF Trust and the persons identified as the 46 document authors. All rights reserved. 48 This document is subject to BCP 78 and the IETF Trust's Legal 49 Provisions Relating to IETF Documents 50 (https://trustee.ietf.org/license-info) in effect on the date of 51 publication of this document. Please review these documents 52 carefully, as they describe your rights and restrictions with respect 53 to this document. Code Components extracted from this document must 54 include Simplified BSD License text as described in Section 4.e of 55 the Trust Legal Provisions and are provided without warranty as 56 described in the Simplified BSD License. 58 Table of Contents 60 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2 61 1.1. Terminology and Notations . . . . . . . . . . . . . . . . 3 62 1.2. Prefix in Data Node Names . . . . . . . . . . . . . . . . 3 63 2. Layer 0 Types Module Contents . . . . . . . . . . . . . . . . 3 64 3. YANG Code for Layer 0 Types . . . . . . . . . . . . . . . . . 5 65 4. Security Considerations . . . . . . . . . . . . . . . . . . . 16 66 5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 17 67 6. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 17 68 7. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 17 69 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 18 70 8.1. Normative References . . . . . . . . . . . . . . . . . . 18 71 8.2. Informative References . . . . . . . . . . . . . . . . . 18 72 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 20 74 1. Introduction 76 YANG [RFC7950] is a data modeling language used to model 77 configuration data, state data, Remote Procedure Calls, and 78 notifications for network management protocols such as NETCONF 79 [RFC6241]. The YANG language supports a small set of built-in data 80 types and provides mechanisms to derive other types from the built-in 81 types. 83 This document introduces a collection of common data types derived 84 from the built-in YANG data types. The derived types and groupings 85 are designed to be the common types applicable for modeling Traffic 86 Engineering (TE) features as well as non-TE features (e.g., physical 87 network configuration aspect) for Layer 0 optical networks in 88 model(s) defined outside of this document. The applicability of 89 Layer 0 types specified in this document include Wavelength Switched 90 Optical Networks (WSONs) [RFC6163] and [ITU-Tg6982], and Flexi-grid 91 Dense Wavelength Division Multiplexing (DWDM) Networks [RFC7698] and 92 [ITU-Tg6941] . 94 1.1. Terminology and Notations 96 Refer to [RFC7446] and [RFC7581] for the key terms used in this 97 document, and the terminology for describing YANG data models can be 98 found in [RFC7950]. 100 The YANG data model in this document conforms to the Network 101 Management Datastore Architecture defined in [RFC8342]. 103 1.2. Prefix in Data Node Names 105 In this document, names of data nodes and other data model objects 106 are prefixed using the standard prefix associated with the 107 corresponding YANG imported modules. 109 +-------------+---------------------------+----------------------+ 110 | Prefix | YANG module | Reference | 111 +-------------+---------------------------+----------------------+ 112 | l0-types | ietf-layer0-types | [RFCXXXX] | 113 +-------------+---------------------------+----------------------+ 115 Note: The RFC Editor will replace XXXX with the number assigned to 116 the RFC once this document becomes an RFC. 118 YANG module ietf-layer0-types (defined in Section 3) references 119 [RFC6163], [RFC7205], and [RFC7698]. 121 2. Layer 0 Types Module Contents 123 This document defines YANG module for common Layer 0 types, ietf- 124 layer0-types. This module is used for WSON and Flexi-grid DWDM 125 networks. The ietf-layer0-types module contains the following YANG 126 reusable types and groupings: 128 l0-grid-type: 130 A base YANG identity for the grid type as defined in [RFC6163] and 131 [RFC7698]. 133 dwdm-ch-spc-type: 135 A base YANG identity for the DWDM channel spacing type as defined in 136 [RFC6205]. 138 cwdm-ch-spc-type: 140 A base YANG identity for the CWDM channel spacing type as defined in 141 [RFC6205]. 143 wson-label-start-end: 145 A YANG grouping that defines the label-start and label-end for WSON 146 as defined in [RFC6205]. 148 wson-label-hop: 150 A YANG grouping that defines the label hop for WSON as defined in 151 [RFC6205]. 153 l0-label-range-info: 155 A YANG grouping that defines the layer 0 label range information 156 applicable for both WSON per priority level as defined in [RFC6205]. 157 This grouping is used in the flexi-grid DWDM by adding more flexi- 158 grid-specific parameters. 160 wson-label-step: 162 A YANG grouping that defines label steps for WSON as defined in 163 [I-D.ietf-teas-yang-te-types]. 165 flexi-grid-label-start-end: 167 A YANG grouping that defines the label-start and label-end for flexi- 168 grid as defined in [RFC7698]. 170 flexi-grid-label-hop: 172 A YANG grouping that defines the label hop for both single channel 173 and multiple carriers in flexi-grid DWDM, as defined in [RFC7698]. 175 flexi-grid-label-range-info: 177 A YANG grouping that defines flexi-grid label range information and 178 per priority level as defined in [RFC7698] and [RFC8363]. 180 flexi-grid-label-step: 182 A YANG grouping that defines flexi-grid label steps as defined in 183 [I-D.ietf-teas-yang-te-types]. 185 3. YANG Code for Layer 0 Types 187 file "ietf-layer0-types@2020-05-19.yang" 188 module ietf-layer0-types { 189 yang-version 1.1; 190 namespace "urn:ietf:params:xml:ns:yang:ietf-layer0-types"; 192 prefix "l0-types"; 194 organization 195 "IETF CCAMP Working Group"; 196 contact 197 "WG Web: 198 WG List: 200 Editor: Haomian Zheng 201 203 Editor: Young Lee 204 206 Editor: Aihua Guo 207 209 Editor: Victor Lopez 210 212 Editor: Daniel King 213 "; 215 description 216 "This module defines Optical Layer 0 types. This module 217 provides groupings that can be applicable to Layer 0 218 Fixed Optical Networks (e.g., CWDM (Coarse Wavelength 219 Division Multiplexing) and DWDM (Dense Wavelength Division 220 Multiplexing)) and Flexi-grid Optical Networks. 222 Copyright (c) 2020 IETF Trust and the persons identified 223 as authors of the code. All rights reserved. 225 Redistribution and use in source and binary forms, with 226 or without modification, is permitted pursuant to, and 227 subject to the license terms contained in, the Simplified 228 BSD License set forth in Section 4.c of the IETF Trust's 229 Legal Provisions Relating to IETF Documents 230 (http://trustee.ietf.org/license-info). 231 This version of this YANG module is part of RFC XXXX; see 232 the RFC itself for full legal notices."; 234 revision "2020-05-19" { 235 description 236 "Initial Version"; 237 reference 238 "RFC XXXX: A YANG Data Model for Layer 0 Types"; 239 } 241 typedef dwdm-n { 242 type int16; 243 description 244 "The given value 'N' is used to determine the nominal 245 central frequency. 247 The nominal central frequency, 'f' is defined by: 248 f = 193100.000 GHz + N x channel-spacing (measured in GHz) 249 where 193100.000 GHz (193.100000 THz) is the ITU-T 'anchor 250 frequency' for transmission over the C band; and 251 where 'channel-spacing' is defined by the dwdm-ch-spc-type."; 252 reference 253 "RFC6205: Generalized Labels for 254 Lambda-Switch-Capable (LSC) Label Switching Routers, 255 ITU-T G.694.1 (02/2012): Spectral grids for WDM applications: 256 DWDM frequency grid"; 257 } 259 typedef cwdm-n { 260 type int16; 261 description 262 "The given value 'N' is used to determine the nominal 263 central wavelength. 265 The nominal central wavelength is defined by: 266 Wavelength = 1471 nm + N x channel-spacing (measured in nm) 267 where 1471 nm is the ITU-T 'anchor wavelength' for 268 transmission over the C band; and 269 where 'channel-spacing' is defined by the cwdm-ch-spc-type."; 270 reference 271 "RFC6205: Generalized Labels for 272 Lambda-Switch-Capable (LSC) Label Switching Routers, 273 ITU-T G.694.2 (12/2003): Spectral grids for WDM applications: 274 CWDM wavelength grid"; 275 } 277 typedef flexi-n { 278 type int16; 279 description 280 "The given value 'N' is used to determine the nominal 281 central frequency. 283 The nominal central frequency, 'f' is defined by, 284 f = 193100.000 GHz + N x channel-spacing (measured in GHz), 285 where 193100.000 GHz (193.100000 THz) is the ITU-T 'anchor 286 frequency' for transmission over the C band; and 287 where 'channel-spacing' is defined by the flexi-ch-spc-type. 289 Note that the term 'channel-spacing' can be alternated by the 290 term 'nominal central frequency granularity' defined in 291 clause 7 of ITU-T G.694.1."; 292 reference 293 "RFC7698: Framework and Requirements for GMPLS-Based Control 294 of Flexi-Grid Dense Wavelength Division Multiplexing (DWDM) 295 Networks. 296 ITU-T G.694.1 (02/2012): Spectral grids for WDM applications: 297 DWDM frequency grid"; 298 } 300 typedef flexi-m { 301 type uint16; 302 description 303 "The given value 'M' is used to determine the slot width. 305 A slot width is defined by: 306 slot width = M x SWG (measured in GHz), 307 where SWG is defined by the flexi-slot-width-granularity."; 308 reference 309 "RFC7698: Framework and Requirements for GMPLS-Based Control 310 of Flexi-Grid Dense Wavelength Division Multiplexing (DWDM) 311 Networks. 312 ITU-T G.694.1 (02/2012): Spectral grids for WDM applications: 313 DWDM frequency grid"; 314 } 316 identity l0-grid-type { 317 description 318 "Layer 0 grid type"; 319 reference 320 "RFC6163:Framework for GMPLS and Path Computation Element 321 (PCE) Control of Wavelength Switched Optical Networks (WSONs), 322 ITU-T G.694.1 (02/2012): Spectral grids for WDM applications: 323 DWDM frequency grid, 324 ITU-T G.694.2 (12/2003): Spectral grids for WDM applications: 325 CWDM wavelength grid"; 326 } 327 identity flexi-grid-dwdm { 328 base l0-grid-type; 329 description 330 "Flexi-grid"; 331 reference 332 "RFC7698: Framework and Requirements for GMPLS-Based Control 333 of Flexi-Grid Dense Wavelength Division Multiplexing (DWDM) 334 Networks, 335 ITU-T G.694.1 (02/2012): Spectral grids for WDM applications: 336 DWDM frequency grid"; 337 } 339 identity wson-grid-dwdm { 340 base l0-grid-type; 341 description 342 "DWDM grid"; 343 reference 344 "RFC6163:Framework for GMPLS and Path Computation Element 345 (PCE) Control of Wavelength Switched Optical Networks (WSONs), 346 ITU-T G.694.1 (02/2012): Spectral grids for WDM applications: 347 DWDM frequency grid"; 348 } 350 identity wson-grid-cwdm { 351 base l0-grid-type; 352 description 353 "CWDM grid"; 354 reference 355 "RFC6205: Generalized Labels for 356 Lambda-Switch-Capable (LSC) Label Switching Routers, 357 ITU-T G.694.2 (12/2003): Spectral grids for WDM applications: 358 CWDM wavelength grid"; 359 } 361 identity dwdm-ch-spc-type { 362 description 363 "DWDM channel spacing type"; 364 reference 365 "RFC6205: Generalized Labels for 366 Lambda-Switch-Capable (LSC) Label Switching Routers, 367 ITU-T G.694.1 (02/2012): Spectral grids for WDM applications: 368 DWDM frequency grid"; 369 } 371 identity dwdm-100ghz { 372 base dwdm-ch-spc-type; 373 description 374 "100GHz channel spacing"; 376 } 378 identity dwdm-50ghz { 379 base dwdm-ch-spc-type; 380 description 381 "50GHz channel spacing"; 382 } 384 identity dwdm-25ghz { 385 base dwdm-ch-spc-type; 386 description 387 "25GHz channel spacing"; 388 } 390 identity dwdm-12p5ghz { 391 base dwdm-ch-spc-type; 392 description 393 "12.5GHz channel spacing"; 394 } 396 identity flexi-ch-spc-type { 397 description 398 "Flexi-grid channel spacing type"; 399 reference 400 "RFC7698: Framework and Requirements for GMPLS-Based Control 401 of Flexi-Grid Dense Wavelength Division Multiplexing (DWDM) 402 Networks 403 ITU-T G.694.1 (02/2012): Spectral grids for WDM applications: 404 DWDM frequency grid"; 405 } 407 identity flexi-ch-spc-6p25ghz { 408 base flexi-ch-spc-type; 409 description 410 "6.25GHz channel spacing"; 411 } 413 identity flexi-slot-width-granularity { 414 description 415 "Flexi-grid slot width granularity"; 416 } 418 identity flexi-swg-12p5ghz { 419 base flexi-slot-width-granularity; 420 description 421 "12.5GHz slot width granularity"; 422 } 423 identity cwdm-ch-spc-type { 424 description 425 "CWDM channel spacing type"; 426 reference 427 "RFC6205: Generalized Labels for 428 Lambda-Switch-Capable (LSC) Label Switching Routers, 429 ITU-T G.694.2 (12/2003): Spectral grids for WDM applications: 430 CWDM wavelength grid"; 431 } 433 identity cwdm-20nm { 434 base cwdm-ch-spc-type; 435 description 436 "20nm channel spacing"; 437 } 439 /* Groupings. */ 441 grouping wson-label-start-end { 442 description 443 "The WSON label-start or label-end used to 444 specify WSON label range."; 445 choice grid-type { 446 description 447 "Label for DWDM or CWDM grid"; 448 case dwdm { 449 leaf dwdm-n { 450 type l0-types:dwdm-n; 451 description 452 "The central frequency of DWDM. "; 453 reference 454 "RFC6205: Generalized Labels for 455 Lambda-Switch-Capable (LSC) Label Switching Routers"; 456 } 457 } 458 case cwdm { 459 leaf cwdm-n { 460 type l0-types:cwdm-n; 461 description 462 "Channel wavelength computing input. "; 463 reference 464 "RFC6205: Generalized Labels for 465 Lambda-Switch-Capable (LSC) Label Switching Routers"; 466 } 467 } 468 } 469 reference 470 "RFC6205: Generalized Labels for 471 Lambda-Switch-Capable (LSC) Label Switching Routers"; 472 } 474 grouping wson-label-hop { 475 description 476 "Generic label hop information for WSON"; 477 choice grid-type { 478 description 479 "Label for DWDM or CWDM grid"; 480 case dwdm { 481 choice single-or-super-channel { 482 description "single or super channel"; 483 case single { 484 leaf dwdm-n { 485 type l0-types:dwdm-n; 486 description 487 "The given value 'N' is used to determine the 488 nominal central frequency."; 489 } 490 } 491 case super { 492 leaf-list subcarrier-dwdm-n { 493 type l0-types:dwdm-n; 494 description 495 "The given values 'N' are used to determine the 496 nominal central frequency for each subcarrier 497 channels."; 498 reference 499 "ITU-T Recommendation G.694.1: Spectral grids for 500 WDM applications: DWDM frequency grid"; 501 } 502 } 503 } 504 } 505 case cwdm { 506 leaf cwdm-n { 507 type l0-types:cwdm-n; 508 description 509 "The given value 'N' is used to determine the nominal 510 central wavelength."; 511 reference 512 "RFC6205: Generalized Labels for 513 Lambda-Switch-Capable (LSC) Label Switching Routers"; 514 } 515 } 516 } 517 reference 518 "RFC6205: Generalized Labels for 519 Lambda-Switch-Capable (LSC) Label Switching Routers"; 520 } 522 grouping l0-label-range-info { 523 description 524 "Information for layer 0 label range."; 525 leaf grid-type { 526 type identityref { 527 base l0-grid-type; 528 } 529 description "Grid type"; 530 } 531 leaf priority { 532 type uint8; 533 description 534 "Priority in Interface Switching Capability 535 Descriptor (ISCD)."; 536 reference 537 "RFC4203: OSPF Extensions in Support of Generalized 538 Multi-Protocol Label Switching (GMPLS)."; 539 } 540 reference 541 "RFC6205: Generalized Labels for 542 Lambda-Switch-Capable (LSC) Label Switching Routers"; 543 } 545 grouping wson-label-step { 546 description "Label step information for WSON"; 547 choice l0-grid-type { 548 description 549 "Grid type: DWDM, CWDM, etc."; 550 case dwdm { 551 leaf wson-dwdm-channel-spacing { 552 type identityref { 553 base dwdm-ch-spc-type; 554 } 555 description 556 "Label-step is the channel-spacing (GHz), e.g., 557 100.000, 50.000, 25.000, or 12.500 GHz for DWDM"; 558 reference 559 "RFC6205: Generalized Labels for 560 Lambda-Switch-Capable (LSC) Label Switching Routers"; 561 } 562 } 563 case cwdm { 564 leaf wson-cwdm-channel-spacing { 565 type identityref { 566 base cwdm-ch-spc-type; 568 } 569 description 570 "Label-step is the channel-spacing (nm), i.e., 20 nm 571 for CWDM, which is the only value defined for CWDM"; 572 reference 573 "RFC6205: Generalized Labels for 574 Lambda-Switch-Capable (LSC) Label Switching Routers"; 575 } 576 } 577 } 578 reference 579 "RFC6205: Generalized Labels for 580 Lambda-Switch-Capable (LSC) Label Switching Routers 581 ITU-T G.694.2 (12/2003): Spectral grids for WDM applications: 582 CWDM wavelength grid"; 583 } 585 grouping flexi-grid-label-start-end { 586 description 587 "Label-start and Label-end information for Flexi-grid."; 588 leaf flexi-n { 589 type l0-types:flexi-n; 590 description 591 "The given value 'N' is used to determine the nominal 592 central frequency."; 593 } 594 reference 595 "RFC7698: Framework and Requirements for GMPLS-Based Control 596 of Flexi-Grid Dense Wavelength Division Multiplexing (DWDM) 597 Networks"; 598 } 600 grouping flexi-grid-frequency-slot { 601 description "Flexi-grid frequency slot grouping."; 602 uses flexi-grid-label-start-end; 603 leaf flexi-m { 604 type l0-types:flexi-m; 605 description 606 "The given value 'M' is used to determine the slot width."; 607 } 608 reference 609 "RFC7698: Framework and Requirements for GMPLS-Based Control 610 of Flexi-Grid Dense Wavelength Division Multiplexing (DWDM) 611 Networks"; 612 } 614 grouping flexi-grid-label-hop { 615 description "Flexi-grid path label."; 616 choice single-or-super-channel { 617 description "single or super channel"; 618 case single { 619 uses flexi-grid-frequency-slot; 620 } 621 case super { 622 list subcarrier-flexi-n { 623 key flexi-n; 624 uses flexi-grid-frequency-slot; 625 description 626 "List of subcarrier channels for flexi-grid 627 super channel."; 628 } 629 } 630 } 631 reference 632 "RFC7698: Framework and Requirements for GMPLS-Based Control 633 of Flexi-Grid Dense Wavelength Division Multiplexing (DWDM) 634 Networks"; 635 } 637 grouping flexi-grid-label-range-info { 638 description 639 "Info of Flexi-grid-specific label range"; 640 uses l0-label-range-info; 641 container flexi-grid { 642 description "flexi-grid definition"; 643 leaf slot-width-granularity { 644 type identityref { 645 base flexi-slot-width-granularity; 646 } 647 default flexi-swg-12p5ghz; 648 description 649 "Minimum space between slot widths. Default is 650 12.500 GHz"; 651 reference 652 "RFC7698: Framework and Requirements for GMPLS-Based 653 Control of Flexi-Grid Dense Wavelength Division 654 Multiplexing (DWDM) Networks"; 655 } 656 leaf min-slot-width-factor { 657 type uint16 { 658 range "1..max"; 659 } 660 default 1; 661 description 662 "Slot width range: two multipliers of the slot width , 663 granularity, each indicating the minimal and maximal slot 664 width supported by a port, respectively. 666 Minimum slot width is calculated by: 667 Minimum slot width (GHz) = 668 min-slot-width-factor * slot-width-granularity"; 669 reference 670 "RFC8363: GMPLS OSPF-TE Extensions in Support of Flexi-Grid 671 Dense Wavelength Division Multiplexing (DWDM) Networks"; 672 } 674 leaf max-slot-width-factor { 675 type uint16 { 676 range "1..max"; 677 } 678 description 679 "Slot width range: two multipliers of the slot width , 680 granularity, each indicating the minimal and maximal slot 681 width supported by a port, respectively. 683 Maximum slot width is calculated by: 684 Maximum slot width (GHz) = 685 max-slot-width-factor * slot-width-granularity"; 686 reference 687 "RFC8363: GMPLS OSPF-TE Extensions in Support of Flexi-Grid 688 Dense Wavelength Division Multiplexing (DWDM) Networks"; 689 } 690 } 691 } 693 grouping flexi-grid-label-step { 694 description "Label step information for flexi-grid"; 695 leaf flexi-grid-channel-spacing { 696 type identityref { 697 base flexi-ch-spc-type; 698 } 699 default flexi-ch-spc-6p25ghz; 700 description 701 "Label-step is the nominal central frequency 702 granularity (GHz), e.g., 6.25 GHz"; 703 reference 704 "RFC7699: Generalized Labels for the Flexi-Grid in 705 Lambda Switch Capable (LSC) Label Switching Routers"; 706 } 707 leaf flexi-n-step { 708 type uint8; 709 description 710 "This attribute defines the multiplier for the supported 711 values of 'N'. 713 For example, given a grid with a nominal central frequency 714 granularity of 6.25 GHz, the granularity of the supported 715 values of the nominal central frequency could be 12.5 GHz. 716 In this case, the values of flexi-n should be even and this 717 constraints is reported by setting the flexi-n-step to 2. 719 This attribute is also known as central frequency 720 granularity in RFC8363."; 721 reference 722 "RFC8363: GMPLS OSPF-TE Extensions in Support of Flexi-Grid 723 Dense Wavelength Division Multiplexing (DWDM) Networks"; 724 } 725 } 726 } 728 730 4. Security Considerations 732 The YANG module specified in this document defines a schema for data 733 that is designed to be accessed via network management protocols such 734 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer 735 is the secure transport layer, and the mandatory-to-implement secure 736 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer 737 is HTTPS, and the mandatory-to-implement secure transport is TLS 738 [RFC8446]. 740 The NETCONF access control model [RFC8341] provides the means to 741 restrict access for particular NETCONF users to a preconfigured 742 subset of all available NETCONF protocol operations and content. The 743 NETCONF Protocol over Secure Shell (SSH) [RFC6242] describes a method 744 for invoking and running NETCONF within a Secure Shell (SSH) session 745 as an SSH subsystem. The NETCONF access control model [RFC8341] 746 provides the means to restrict access for particular NETCONF or 747 RESTCONF users to a preconfigured subset of all available NETCONF or 748 RESTCONF protocol operations and content. 750 The YANG module in this document defines optical layer 0 type 751 definitions (i.e., typedef, identity and grouping statements) in YANG 752 data modeling language to be imported and used by other layer 0 753 specific modules. When imported and used, the resultant schema will 754 have data nodes that can be writable, or readable. The access to 755 such data nodes may be considered sensitive or vulnerable in some 756 network environments. Write operations (e.g., edit-config) to these 757 data nodes without proper protection can have a negative effect on 758 network operations. 760 The security considerations spelled out in the YANG 1.1 specification 761 [RFC7950] apply for this document as well. 763 5. IANA Considerations 765 It is proposed that IANA should assign new URIs from the "IETF XML 766 Registry" [RFC3688] as follows: 768 URI: urn:ietf:params:xml:ns:yang:ietf-layer0-types 769 Registrant Contact: The IESG 770 XML: N/A; the requested URI is an XML namespace. 772 This document registers following YANG modules in the YANG Module 773 Names registry [RFC7950]. 775 name: ietf-layer0-types 776 namespace: urn:ietf:params:xml:ns:yang:ietf-layer0-types 777 prefix: l0-types 778 reference: RFC XXXX(TBD) 780 6. Acknowledgements 782 The authors and the working group give their sincere thanks for 783 Robert Wilton for the YANG doctor review, and Tom Petch for his 784 comments during the model and document development. 786 7. Contributors 788 Dhruv Dhody 789 Huawei 790 Email: dhruv.ietf@gmail.com 792 Bin Yeong Yoon 793 ETRI 794 Email: byyun@etri.re.kr 796 Ricard Vilalta 797 CTTC 798 Email: ricard.vilalta@cttc.es 800 Italo Busi 801 Huawei 802 Email: Italo.Busi@huawei.com 804 8. References 806 8.1. Normative References 808 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., 809 and A. Bierman, Ed., "Network Configuration Protocol 810 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, 811 . 813 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure 814 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011, 815 . 817 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", 818 RFC 7950, DOI 10.17487/RFC7950, August 2016, 819 . 821 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF 822 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017, 823 . 825 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration 826 Access Control Model", STD 91, RFC 8341, 827 DOI 10.17487/RFC8341, March 2018, 828 . 830 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K., 831 and R. Wilton, "Network Management Datastore Architecture 832 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018, 833 . 835 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol 836 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018, 837 . 839 8.2. Informative References 841 [I-D.ietf-teas-yang-te-types] 842 Saad, T., Gandhi, R., Liu, X., Beeram, V., and I. Bryskin, 843 "Traffic Engineering Common YANG Types", draft-ietf-teas- 844 yang-te-types-13 (work in progress), November 2019. 846 [ITU-Tg6941] 847 International Telecommunication Union, "Spectral grids for 848 WDM applications: DWDM frequency grid", ITU-T G.694.1, 849 February 2012. 851 [ITU-Tg6982] 852 International Telecommunication Union, "Amplified 853 multichannel dense wavelength division multiplexing 854 applications with single channel optical interfaces", 855 ITU-T G.698.2, November 2018. 857 [ITU-Tg709] 858 International Telecommunication Union, "Interfaces for the 859 optical transport network", ITU-T G.709, June 2016. 861 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, 862 DOI 10.17487/RFC3688, January 2004, 863 . 865 [RFC6163] Lee, Y., Ed., Bernstein, G., Ed., and W. Imajuku, 866 "Framework for GMPLS and Path Computation Element (PCE) 867 Control of Wavelength Switched Optical Networks (WSONs)", 868 RFC 6163, DOI 10.17487/RFC6163, April 2011, 869 . 871 [RFC6205] Otani, T., Ed. and D. Li, Ed., "Generalized Labels for 872 Lambda-Switch-Capable (LSC) Label Switching Routers", 873 RFC 6205, DOI 10.17487/RFC6205, March 2011, 874 . 876 [RFC7205] Romanow, A., Botzko, S., Duckworth, M., and R. Even, Ed., 877 "Use Cases for Telepresence Multistreams", RFC 7205, 878 DOI 10.17487/RFC7205, April 2014, 879 . 881 [RFC7446] Lee, Y., Ed., Bernstein, G., Ed., Li, D., and W. Imajuku, 882 "Routing and Wavelength Assignment Information Model for 883 Wavelength Switched Optical Networks", RFC 7446, 884 DOI 10.17487/RFC7446, February 2015, 885 . 887 [RFC7581] Bernstein, G., Ed., Lee, Y., Ed., Li, D., Imajuku, W., and 888 J. Han, "Routing and Wavelength Assignment Information 889 Encoding for Wavelength Switched Optical Networks", 890 RFC 7581, DOI 10.17487/RFC7581, June 2015, 891 . 893 [RFC7698] Gonzalez de Dios, O., Ed., Casellas, R., Ed., Zhang, F., 894 Fu, X., Ceccarelli, D., and I. Hussain, "Framework and 895 Requirements for GMPLS-Based Control of Flexi-Grid Dense 896 Wavelength Division Multiplexing (DWDM) Networks", 897 RFC 7698, DOI 10.17487/RFC7698, November 2015, 898 . 900 [RFC8363] Zhang, X., Zheng, H., Casellas, R., Gonzalez de Dios, O., 901 and D. Ceccarelli, "GMPLS OSPF-TE Extensions in Support of 902 Flexi-Grid Dense Wavelength Division Multiplexing (DWDM) 903 Networks", RFC 8363, DOI 10.17487/RFC8363, May 2018, 904 . 906 Authors' Addresses 908 Haomian Zheng 909 Huawei Technologies 910 H1, Huawei Xiliu Beipo Village, Songshan Lake 911 Dongguan, Guangdong 523808 912 China 914 Email: zhenghaomian@huawei.com 916 Young Lee 917 Samsung 918 South Korea 920 Email: younglee.tx@gmail.com 922 Aihua Guo 923 Futurewei 925 Email: aihuaguo@futurewei.com 927 Victor Lopez 928 Telefonica 930 Email: victor.lopezalvarez@telefonica.com 932 Daniel King 933 University of Lancaster 935 Email: d.king@lancaster.ac.uk