idnits 2.17.1 draft-ietf-ccamp-optical-impairment-topology-yang-01.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- ** There are 15 instances of too long lines in the document, the longest one being 13 characters in excess of 72. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == Line 518 has weird spacing: '...t-index uin...' == Line 525 has weird spacing: '...variety str...' == Line 544 has weird spacing: '...variety str...' == Line 557 has weird spacing: '...ntifier int...' == Line 589 has weird spacing: '...rier-id uin...' -- The document date (May 27, 2019) is 1795 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Missing Reference: 'RFCXXXX' is mentioned on line 178, but not defined == Missing Reference: 'OTSiG-identifier' is mentioned on line 556, but not defined == Missing Reference: 'OTSi-carrier-id' is mentioned on line 559, but not defined == Missing Reference: 'RFC6536' is mentioned on line 1545, but not defined ** Obsolete undefined reference: RFC 6536 (Obsoleted by RFC 8341) == Missing Reference: 'RFC3688' is mentioned on line 1556, but not defined == Unused Reference: 'WSON-Topo' is defined on line 1637, but no explicit reference was found in the text == Outdated reference: A later version (-28) exists of draft-ietf-ccamp-wson-yang-13 Summary: 2 errors (**), 0 flaws (~~), 13 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 1 CCAMP Working Group Y. Lee 2 Internet Draft Futurewei 3 Intended Status: Standard Track 4 Expires: November 27, 2019 V. Lopez 5 Telefonica 7 G. Galimberti 8 Cisco 10 Jean Luc Auge 11 Orange 13 D. Beller 14 Nokia 16 May 27, 2019 18 A Yang Data Model for Optical Impairment-aware Topology 20 draft-ietf-ccamp-optical-impairment-topology-yang-01 22 Abstract 24 In order to provision an optical connection through optical 25 networks, a combination of path continuity, resource availability, 26 and impairment constraints must be met to determine viable and 27 optimal paths through the network. The determination of appropriate 28 paths is known as Impairment-Aware Routing and Wavelength Assignment 29 (IA-RWA) for WSON, while it is known as Impairment-Aware Routing and 30 Spectrum Assigment (IA-RSA) for SSON. 32 This document provides a YANG data model for the impairment-aware TE 33 topology in optical networks. 35 Status of this Memo 37 This Internet-Draft is submitted to IETF in full conformance with 38 the provisions of BCP 78 and BCP 79. 40 Internet-Drafts are working documents of the Internet Engineering 41 Task Force (IETF), its areas, and its working groups. Note that 42 other groups may also distribute working documents as Internet- 43 Drafts. 45 Internet-Drafts are draft documents valid for a maximum of six 46 months and may be updated, replaced, or obsoleted by other documents 47 at any time. It is inappropriate to use Internet-Drafts as 48 reference material or to cite them other than as "work in progress." 49 The list of current Internet-Drafts can be accessed at 50 http://www.ietf.org/ietf/1id-abstracts.txt 52 The list of Internet-Draft Shadow Directories can be accessed at 53 http://www.ietf.org/shadow.html 55 This Internet-Draft will expire on November 27, 2019. 57 Copyright Notice 59 Copyright (c) 2019 IETF Trust and the persons identified as the 60 document authors. All rights reserved. 62 This document is subject to BCP 78 and the IETF Trust's Legal 63 Provisions Relating to IETF Documents 64 (http://trustee.ietf.org/license-info) in effect on the date of 65 publication of this document. Please review these documents 66 carefully, as they describe your rights and restrictions with 67 respect to this document. Code Components extracted from this 68 document must include Simplified BSD License text as described in 69 Section 4.e of the Trust Legal Provisions and are provided without 70 warranty as described in the Simplified BSD License. 72 Table of Contents 74 1. Introduction...................................................3 75 1.1. Terminology...............................................4 76 1.2. Tree diagram..............................................4 77 1.3. Prefixes in Data Node Names...............................4 78 2. Reference Architecture.........................................5 79 2.1. Control Plane Architecture................................5 80 2.2. Transport Data Plane......................................6 81 2.3. OMS Media Links...........................................7 82 2.3.1. Optical Tributary Signal (OTSi)......................7 83 2.3.2. Optical Tributary Signal Group (OTSiG)...............7 84 2.3.3. Media Channel Group (MCG)............................9 85 2.4. Amplifiers...............................................11 86 2.5. Transponders.............................................11 87 2.6. WSS/Filter...............................................12 88 2.7. Optical Fiber............................................12 89 3. YANG Model (Tree Structure)...................................12 90 4. Optical Impairment Topology YANG Model........................14 91 5. Security Considerations.......................................34 92 6. IANA Considerations...........................................34 93 7. Acknowledgments...............................................35 94 8. References....................................................36 95 8.1. Normative References.....................................36 96 8.2. Informative References...................................36 97 9. Contributors..................................................38 98 Authors' Addresses...............................................38 100 1. Introduction 102 In order to provision an optical connection (an optical path) 103 through a wavelength switched optical networks (WSONs) or spectrum 104 switched optical networks (SSONs), a combination of path continuity, 105 resource availability, and impairment constraints must be met to 106 determine viable and optimal paths through the network. The 107 determination of appropriate paths is known as Impairment-Aware 108 Routing and Wavelength Assignment (IA-RWA) [RFC6566] for WSON, while 109 it is known as IA-Routing and Spectrum Assigment (IA-RSA) for SSON. 111 This document provides a YANG data model for the impairment-aware 112 Traffic Engineering (TE) topology in WSONs and SSONs. The YANG model 113 described in this document is a WSON/SSON technology-specific Yang 114 model based on the information model developed in [RFC7446] and the 115 two encoding documents [RFC7581] and [RFC7579] that developed 116 protocol independent encodings based on [RFC7446]. 118 The intent of this document is to provide a Yang data model, which 119 can be utilized by a Multi-Domain Service Coordinator (MDSC) to 120 collect states of WSON impairment data from the Transport PNCs to 121 enable impairment-aware optical path computation according to the 122 ACTN Architecture [RFC8453]. The communication between controllers 123 is done via a NETCONF [RFC8341] or a RESTCONF [RFC8040]. Similarly, 124 this model can also be exported by the MDSC to a Customer Network 125 Controller (CNC), which can run an offline planning process to map 126 latter the services in the network. 128 This document augments the generic TE topology draft [TE-TOPO] where 129 possible. 131 This document defines one YANG module: ietf-optical-impairment- 132 topology (Section 3) according to the new Network Management 133 Datastore Architecture [RFC8342]. 135 1.1. Terminology 137 Refer to [RFC6566], [RFC7698], and [G.807] for the key terms used in 138 this document. 140 The following terms are defined in [RFC7950] and are not redefined 141 here: 143 o client 145 o server 147 o augment 149 o data model 151 o data node 153 The following terms are defined in [RFC6241] and are not redefined 154 here: 156 o configuration data 158 o state data 160 The terminology for describing YANG data models is found in 161 [RFC7950]. 163 1.2. Tree diagram 165 A simplified graphical representation of the data model is used in 166 Section 2 of this this document. The meaning of the symbols in 167 these diagrams is defined in [RFC8340]. 169 1.3. Prefixes in Data Node Names 171 In this document, names of data nodes and other data model objects 172 are prefixed using the standard prefix associated with the 173 corresponding YANG imported modules, as shown in Table 1. 175 +------------------+----------------------------------+------------+ 176 | Prefix | YANG module | Reference | 177 +------------------+----------------------------------+------------+ 178 | optical-imp-topo | ietf-optical-impairment-topology | [RFCXXXX] | 179 | layer0-types | ietf-layer0-types | [L0-Types] | 180 | nw | ietf-network | [RFC8345] | 181 | nt | ietf-network-topology | [RFC8345] | 182 | tet | ietf-te-topology | [TE-TOPO] | 183 +------------------+----------------------------------+------------+ 185 Table 1: Prefixes and corresponding YANG modules 187 Note: The RFC Editor will replace XXXX with the number assigned to 188 the RFC once this draft becomes an RFC. 190 2. Reference Architecture 192 2.1. Control Plane Architecture 194 Figure 1 shows the control plane architecture. 196 +--------+ 197 | MDSC | 198 +--------+ 199 Scope of this ID -------> || 200 | || 201 | +------------------------+ 202 | | OPTICAL | 203 +---------+ | | DOMAIN | +---------+ 204 | Device | | | CONTROLLER | | Device | 205 | config. | | +------------------------+ | config. | 206 +---------+ v // || \\ +---------+ 207 ______|______ // || \\ ______|______ 208 / OT \ // || \\ / OT \ 209 | +--------+ |// __--__ \\| +--------+ | 210 | |Vend. A |--|----+ ( ) +----|--| Vend. A| | 211 | +--------+ | | ~-( )-~ | | +--------+ | 212 | +--------+ | +---/ \---+ | +--------+ | 213 | |Vend. B |--|--+ / \ +--|--| Vend. B| | 214 | +--------+ | +---( OLS Segment )---+ | +--------+ | 215 | +--------+ | +---( )---+ | +--------+ | 216 | |Vend. C |--|--+ \ / +--|--| Vend. C| | 217 | +--------+ | +---\ /---+ | +--------+ | 218 | +--------+ | | ~-( )-~ | | +--------+ | 219 | |Vend. D |--|----+ (__ __) +----|--| Vend. D| | 220 | +--------+ | -- | +--------+ | 221 \_____________/ \_____________/ 222 ^ ^ 223 | | 224 | | 226 Scope of draft-ietf-ccamp-dwdm-if-param-yang 228 Figure 1. Control Plane Architecture 230 The models developed in this document is an abstracted Yang model 231 that may be used in the interfaces between the MDSC and the Optical 232 Domain Controller (aka MPI) and between the Optical Domain 233 Controller and the Optical Device (aka SBI) in Figure 1. It is not 234 intended to support detailed low-level DWDM interface model. DWDM 235 interface model is supported by the models presented in [draft-ietf- 236 ccamp-dwdm-if-parameter-yang]. 238 2.2. Transport Data Plane 240 This section provides the description of the reference optical 241 network architecture and its relevant components to support optical 242 impairment-aware path computation. 244 Figure 2 shows the reference architecture. 246 +-------------------+ +-------------------+ 247 | ROADM Node | | ROADM Node | 248 | | | | 249 | PA +-------+ BA | ILA | PA +-------+ BA | 250 | +-+ | WSS/ | +-+ | _____ +--+ _____ | +-+ | WSS/ | +-+ | 251 --|-| |-|Filter |-| |-|-()____)--| |-()____)-|-| |-|Filter |-| |-|-- 252 | +-+ | | +-+ | +--+ | +-+ | | +-+ | 253 | +-------+ | optical | +-------+ | 254 | | | | | fiber | | | | | 255 | | | | | | | | | | 256 | o-o-o | | o-o-o | 257 | transponders | | transponders | 258 +-------------------+ +-------------------+ 259 OTS Link OTS Link 260 -----------> ----------> 262 OMS Link 263 ---------------------------------> 265 PA: Pre-Amplifier 266 BA: Booster Amplifier 267 ILA: In-Line Amplifier 269 Figure 2. Reference Architecture for Optical Transport Network 271 BA (on the left side ROADM) is the ingress Amplifier and PA (on the 272 right side ROADM is the egress amplifier for the OMS link shown in 273 the Figure. 275 2.3. OMS Media Links 277 According to [G.872], OMS Media Link represents a media link between 278 two ROADM. Specifically, it originates at the ROADM's Filter in the 279 source ROADM and terminates at the ROADM's Filter in the destination 280 ROADM. 282 OTS Media Link represents a media link: 283 (i) between ROADM's BA and ILA; 284 (ii) between a pair of ILAs; 285 (iii) between ILA and ROADM's PA. 287 OMS Media link can be decomposed in a sequence of OTS links type 288 (i), (ii), and (iii) as discussed above. OMS Media link would give 289 an abstracted view of impairment data (e.g., power, OSNR, etc.) to 290 the network controller. 292 For the sake of optical impairment evaluation OMS Media link can be 293 also decomposed in a sequence of elements such as BA, fiber section, 294 ILA, concentrated loss and PA. 296 2.3.1. Optical Tributary Signal (OTSi) 298 The OTSi is defined in ITU-T Recommendation G.959.1, section 3.2.4 299 [G.959.1]. The YANG model defined below assumes that a single OTSi 300 consists of a single modulated optical carrier. This single 301 modulated optical carrier conveys digital information. 302 Characteristics of the OTSi signal are modulation scheme (e.g. QPSK, 303 8-QAM, 16-QAM, etc.), baud rate (measure of the symbol rate), pulse 304 shaping (e.g. raised cosine - complying with the Nyquist inter 305 symbol interference criterion), etc. 307 2.3.2. Optical Tributary Signal Group (OTSiG) 309 The definition of the OTSiG is currently being moved from ITU-T 310 Recommendation G.709 [G.709] to the new draft Recommendation G.807 311 (still work in progress) [G.807]. The OTSiG is an electrical signal 312 that is carried by one or more OTSi's. The relationship between the 313 OTSiG and the the OTSi's is described in ITU-T draft Recommendation 314 G.807, section 10.2 [G.807]. The YANG model below supports both 315 cases: the single OTSi case where the OTSiG contains a single OTSi 316 (see ITU-T draft Recommendation G.807, Figure 10-2) and the multiple 317 OTSi case where the OTSiG consists of more than one OTSi (see ITU-T 318 draft Recommendation G.807, Figure 10-3). From a layer 0 topology 319 YANG model perspective, the OTSiG is a logical construct that 320 associates the OTSi's, which belong to the same OTSiG. The typical 321 application of an OTSiG consisting of more than one OTSi is inverse 322 multiplexing. Constraints exist for the OTSi's belonging to the same 323 OTSiG such as: (i) all OTSi's must be co-routed over the same 324 optical fibers and nodes and (ii) the differential delay between the 325 different OTSi's may not exceed a certain limit. Example: a 400Gbps 326 client signal may be carried by 4 OTSi's where each OTSi carries 327 100Gbps of client traffic. 329 OTSiG 330 __________________________/\__________________________ 331 / \ 332 m=7 333 - - - +---------------------------X---------------------------+ - - 334 / / / | | / / 335 / / /| OTSi OTSi OTSi OTSi |/ / / 336 / / / | ^ ^ ^ ^ | / / 337 / / /| | | | | |/ / / 338 / / / | | | | | | / / 339 / / /| | | | | |/ / / 340 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 341 --+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+--- 342 n = ? 343 K1 K2 K3 K4 345 2.3.3 Media Channel (MC) 347 The definition of the MC is currently being moved from ITU-T 348 Recommendation G.872 [G.872] to the new draft Recommendation G.807 349 (still work in progress) [G.807]. Section 3.2.2 defines the term MC 350 and section 7.1.2 provides a more detailed description with some 351 examples. The definition of the MC is very generic (see ITU-T draft 352 Recommendation G.807, Figure 7-1). In the YANG model below, the MC 353 is used with the following semantics: 355 The MC is an end-to-end topological network construct and can be 356 considered as an "optical pipe" with a well-defined frequency slot 357 between one or more optical transmitters each generating an OTSi and 358 the corresponding optical receivers terminating the OTSi's. If the 359 MC carries more than one OTSi, it is assumed that these OTSi's 360 belong to the same OTSiG. 362 m=8 363 +-------------------------------X------------------------------+ 364 | | | 365 | +----------X----------+ | +----------X----------+ | 366 | | OTSi | | OTSi | | 367 | | o | | | o | | 368 | | | | | | | | 369 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 370 --+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+-- 371 | n=4 | 372 K1 K2 374 <------------------------ Media Channel -----------------------> 376 The frequency slot of the MC is defined by the n value defining the 377 central frequency of the MC and the m value that defines the width 378 of the MC following the flexible grid definition in ITU-T 379 Recommendation G.694.1 [G.694.1]. In this model, the effective 380 frequency slot as defined in ITU-T draft Recommendation G.807 is 381 equal to the frequency slot of this end-to-end MC. It is also 382 assumed that ROADM devices can switch MCs. For various reasons (e.g. 383 differential delay), it is preferred to use a single MC for all 384 OTSi's of the same OTSiG. It may however not always be possible to 385 find a single MC for carrying all OTSi's of an OTSiG due to spectrum 386 occupation along the OTSiG path. 388 2.3.3. Media Channel Group (MCG) 389 The definition of the MCG is currently work in progress in ITU-T and 390 is defined in section 7.1.3 of the new ITU-T draft Recommendation 391 G.807 (still work in progress) [G.807]. The YANG model below assumes 392 that the MCG is a logical grouping of one or more MCs that are used 393 to to carry all OTSi's belonging to the same OTSiG. 395 The MCG can be considered as an association of MCs without defining 396 a hierarchy where each MC is defined by its (n,m) value pair. An MCG 397 consists of more than one MC when no single MC can be found from 398 source to destination that is wide enough to accommodate all OTSi's 399 (modulated carriers) that belong to the same OTSiG. In such a case 400 the set of OTSi's belonging to a single OTSiG have to be split 401 across 2 or more MCs. 403 MCG1 = {M1.1, M1.2} 404 _______________________/\_____________________________ 405 / \ 406 M1.1 M2 M1.2 407 ________/\____________ _____/\______ ____/\_____ 408 / \ / \/ \ 410 - - +-------------------------------------------------------+ - - 411 / / | | / / / / / / /| | / / 412 / /| OTSi OTSi OTSi |/ / / / / / / | OTSi |/ / 413 / / | ^ ^ ^ | / / / / / / /| ^ | / / 414 / /| | | | |/ / / / / / / | | |/ / 415 / / | | | | | / / / / / / /| | | / / 416 / /| | | | |/ / / / / / / | | |/ / 417 -7 -1 0 1 2 3 4 5 6 7 8 9 10 . . . . . 17 . . 21 418 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 419 n=0 n=11 n=17 420 K1 K2 K3 K4 422 The MCG is relevant for path computation because all end-to-end MCs 423 belonging to the same MCG have to be co-routed, i.e., have to follow 424 the same path. Additional constraints may exist (e.g. differential 425 delay). 427 2.4. Amplifiers 429 Optical amplifiers are in charge of amplifying the optical signal in 430 the optical itself without any electrical conversion. There are 431 three main technologies to build amplifiers: Erbium Doped Fiber 432 Amplifier (EDFA), Raman Fiber Amplifier (RFA), and Semiconductor 433 Optical Amplifier (SOA). Nowadays, most of optical networks uses 434 EDFAs. However, RFA has an attractive feature that it works in any 435 wavelength band with a similar or lower noise figures compared to 436 EDFA. On the other hand, RFAs consumes more power and are more 437 expensive than EDFAs. 439 Amplifiers can be classified according to their location in the 440 communication link. There are three basic types of amplifiers: ILA, 441 Pre-Amplifier and Booster. ILA is In-Line Amplifier which is a 442 separate node type while Pre-Amplifier and Booster Amplifier are 443 integral elements of ROADM node. From a data modeling perspective, 444 Pre-Amplifier and Booster Amplifier are internal functions of a 445 ROADM node and as such these elements are hidden within ROADM node. 446 In this document, we would avoid internal node details, but attempt 447 to abstract as much as possible. 449 One modeling consideration of the ROADM internal is to model power 450 parameter through the ROADM, factoring the output power from the 451 Pre-Amplifier minus the ROADM power loss would give the input power 452 to the Booster Amplifier. In other words, Power_in (@ ROADM Booster) 453 = Power_out (@ ROADM Pre-Amplifier) - Power_loss (@ ROADM 454 WSS/Filter). 456 2.5. Transponders 458 A Transponder is the element that sends and receives the optical 459 signal from a fiber. A transponder is typically characterized by its 460 data rate and the maximum distance the signal can travel. Channel 461 frequency, per channel input power, FEC and Modulation are also 462 associated with a transponder. From a path computation point of 463 view, the selection of the compatible source and destination 464 transponders is an important factor for optical signal to traverse 465 through the fiber. There are three main approaches to determine 466 optical signal compatibility. Application Code based on G.698.2 is 467 one approach that only checks the code at both ends of the link. 468 Another approach is organization codes that are specific to an 469 organization or a vendor. The third approach is specify all the 470 relevant parameters explicitly, e.g., FEC type, Modulation type, 471 etc. 473 [Editor's Note: The current YANG model described in Section 3 with 474 respect to the relationship between the transponder attributes and 475 the OTSi will need to be investigated in the future revision] 477 2.6. WSS/Filter 479 WSS separates the incoming light input spectrally as well as 480 spatially, then chooses the wavelength that is of interest by 481 deflecting it from the original optical path and then couple it to 482 another optical fibre port. WSS/Filter is internal to ROADM. So this 483 document does not model the inside of ROADM. 485 2.7. Optical Fiber 487 There are various optical fiber types defined by ITU-T. There are 488 several fiber-level parameters that need to be factored in, such as, 489 fiber-type, length, loss coefficient, pmd, connectors (in/out). 491 ITU-T G.652 defines Standard Singlemode Fiber; G.654 Cutoff Shifted 492 Fiber; G.655 Non-Zero Dispersion Shifted Fiber; G.656 Non-Zero 493 Dispersion for Wideband Optical Transport; G.657 Bend-Insensitive 494 Fiber. There may be other fiber-types that need to be considered. 496 3. YANG Model (Tree Structure) 498 module: ietf-optical-impairment-topology 499 augment /nw:networks/nw:network/nw:network-types/tet:te-topology: 500 +--rw optical-impairment-topology! 501 augment /nw:networks/nw:network/nt:link/tet:te/tet:te-link-attributes: 502 +--ro OMS-attributes 503 +--ro generalized-snr? decimal64 504 +--ro equalization-mode identityref 505 +--ro (power-param)? 506 | +--:(channel-power) 507 | | +--ro nominal-channel-power? decimal64 508 | +--:(power-spectral-density) 509 | +--ro nominal-power-spectral-density? decimal64 510 +--ro media-channel-group* [i] 511 | +--ro i int16 512 | +--ro media-channels* [flexi-n] 513 | +--ro flexi-n uint16 514 | +--ro flexi-m? uint16 515 | +--ro OTSiG-ref? leafref 516 | +--ro OTSi-ref? leafref 517 +--ro OMS-elements* [elt-index] 518 +--ro elt-index uint16 519 +--ro uid? string 520 +--ro type identityref 521 +--ro element 522 +--ro (element)? 523 +--:(amplifier) 524 | +--ro amplifier 525 | +--ro type_variety string 526 | +--ro operational 527 | +--ro actual-gain 528 | | decimal64 529 | +--ro tilt-target 530 | | decimal64 531 | +--ro out-voa 532 | | decimal64 533 | +--ro in-voa 534 | | decimal64 535 | +--ro (power-param)? 536 | +--:(channel-power) 537 | | +--ro nominal-channel-power? 538 | | decimal64 539 | +--:(power-spectral-density) 540 | +--ro nominal-power-spectral-density? 541 | decimal64 542 +--:(fiber) 543 | +--ro fiber 544 | +--ro type_variety string 545 | +--ro length decimal64 546 | +--ro loss_coef decimal64 547 | +--ro total_loss decimal64 548 | +--ro pmd? decimal64 549 | +--ro conn_in? decimal64 550 | +--ro conn_out? decimal64 551 +--:(concentratedloss) 552 +--ro concentratedloss 553 +--ro loss? decimal64 554 augment /nw:networks/nw:network/nw:node/tet:te 555 /tet:tunnel-termination-point: 556 +--ro OTSiG-element* [OTSiG-identifier] 557 | +--ro OTSiG-identifier int16 558 | +--ro OTSiG-container 559 | +--ro OTSi* [OTSi-carrier-id] 560 | +--ro OTSi-carrier-id int16 561 | +--ro OTSi-carrier-frequency? decimal64 562 | +--ro OTSi-signal-width? decimal64 563 | +--ro channel-delta-power? decimal64 564 +--ro transponders-list* [transponder-id] 565 +--ro transponder-id uint32 566 +--ro (mode)? 567 | +--:(G.692.2) 568 | | +--ro standard_mode? layer0-types:standard-mode 569 | +--:(organizational_mode) 570 | | +--ro operational-mode? 571 | | | layer0-types:operational-mode 572 | | +--ro organization-identifier? 573 | | layer0-types:vendor-identifier 574 | +--:(explicit_mode) 575 | +--ro available-modulation* identityref 576 | +--ro modulation-type? identityref 577 | +--ro available-baud-rates* uint32 578 | +--ro configured-baud-rate? uint32 579 | +--ro available-FEC* identityref 580 | +--ro FEC-type? identityref 581 | +--ro FEC-code-rate? decimal64 582 | +--ro FEC-threshold? decimal64 583 +--ro power? int32 584 +--ro power-min? int32 585 +--ro power-max? int32 586 augment /nw:networks/nw:network/nw:node/tet:te 587 /tet:tunnel-termination-point: 588 +--ro transponder-list* [carrier-id] 589 +--ro carrier-id uint32 591 4. Optical Impairment Topology YANG Model 593 file ietf-optical-impairment-topology@2018-05-22.yang 594 module ietf-optical-impairment-topology { 595 yang-version 1.1; 597 namespace "urn:ietf:params:xml:ns:yang:ietf-optical-impairment-topology"; 599 prefix "optical-imp-topo"; 601 import ietf-network { 602 prefix "nw"; 603 } 604 import ietf-network-topology { 605 prefix "nt"; 606 } 608 import ietf-te-topology { 609 prefix "tet"; 610 } 612 import ietf-layer0-types { 613 prefix "layer0-types"; 614 } 616 organization 617 "IETF CCAMP Working Group"; 619 contact 620 "Editor: Young Lee 621 Editor: Haomian Zheng 622 Editor: Nicola Sambo 623 Editor: Victor Lopez 624 Editor: Gabriele Galimberti 625 Editor: Giovanni Martinelli 626 Editor: Auge Jean-Luc 627 Editor: Le Rouzic Esther 628 Editor: Julien Meuric 629 Editor: Italo Busi 630 Editor: Dieter Beller 631 Editor: Sergio Belotti 632 Editor: Griseri Enrico 633 Editor: Gert Grammel "; 635 description 636 "This module contains a collection of YANG definitions for 637 impairment-aware optical networks. 639 Copyright (c) 2019 IETF Trust and the persons identified as 640 authors of the code. All rights reserved. 642 Redistribution and use in source and binary forms, with or 643 without modification, is permitted pursuant to, and subject 644 to the license terms contained in, the Simplified BSD 645 License set forth in Section 4.c of the IETF Trust's Legal 646 Provisions Relating to IETF Documents 647 (http://trustee.ietf.org/license-info)."; 649 revision 2019-05-22 { 650 description 651 "Initial Version"; 652 reference 653 "RFC XXXX: A Yang Data Model for Impairment-aware 654 Optical Networks"; 655 } 657 identity modulation { 658 description "base identity for modulation type"; 659 } 661 identity QPSK { 662 base modulation; 663 description 664 "QPSK (Quadrature Phase Shift Keying) modulation"; 665 } 667 identity DP_QPSK { 668 base modulation; 669 description 670 "DP-QPSK (Dual Polarization Quadrature 671 Phase Shift Keying) modulation"; 672 } 673 identity QAM8 { 674 base modulation; 675 description 676 "8QAM (8-State Quadrature Amplitude Modulation) modulation"; 677 } 678 identity QAM16 { 679 base modulation; 680 description 681 "QAM16 (Quadrature Amplitude Modulation)"; 682 } 683 identity DP_QAM8 { 684 base modulation; 685 description 686 "DP-QAM8 (Dual Polarization Quadrature Amplitude Modulation)"; 687 } 688 identity DC_DP_QAM8 { 689 base modulation; 690 description 691 "DC DP-QAM8 (Dual Polarization Quadrature Amplitude Modulation)"; 692 } 693 identity DP_QAM16 { 694 base modulation; 695 description 696 "DP-QAM16 (Dual Polarization Quadrature Amplitude Modulation)"; 697 } 698 identity DC_DP_QAM16 { 699 base modulation; 700 description 701 "DC DP-QAM16 (Dual Polarization Quadrature Amplitude Modulation)"; 702 } 704 identity FEC { 705 description 706 "Enumeration that defines the type of 707 Forward Error Correction"; 708 } 709 identity reed-solomon { 710 base FEC; 711 description 712 "Reed-Solomon error correction"; 713 } 714 identity hamming-code { 715 base FEC; 716 description 717 "Hamming Code error correction"; 718 } 719 identity golay { 720 base FEC; 721 description "Golay error correction"; 722 } 724 typedef fiber-type { 725 type enumeration { 726 enum G.652 { 727 description "G.652 Standard Singlemode Fiber"; 728 } 729 enum G.654 { 730 description "G.654 Cutoff Shifted Fiber"; 731 } 732 enum G.653 { 733 description "G.653 Dispersion Shifted Fiber"; 734 } 735 enum G.655 { 736 description "G.655 Non-Zero Dispersion Shifted Fiber"; 737 } 738 enum G.656 { 739 description "G.656 Non-Zero Dispersion for Wideband 740 Optical Transport"; 741 } 742 enum G.657 { 743 description "G.657 Bend-Insensitive Fiber"; 744 } 745 } 746 description 747 "ITU-T based fiber-types"; 749 } 751 grouping transponder-attributes { 752 description "Configuration of an optical transponder"; 754 leaf-list available-modulation { 755 type identityref { 756 base modulation; 757 } 758 config false; 759 description 760 "List determining all the available modulations"; 761 } 763 leaf modulation-type { 764 type identityref { 765 base modulation; 766 } 767 config false; 768 description 769 "Modulation configured for the transponder"; 770 } 772 leaf-list available-baud-rates { 773 type uint32; 774 units Bd; 775 config false; 776 description 777 "list of available baud-rates. Baud-rate is the unit for 778 symbol rate or modulation rate in symbols per second or 779 pulses per second. It is the number of distinct symbol 780 changes (signaling events) made to the transmission medium 781 per second in a digitally modulated signal or a line code"; 782 } 784 leaf configured-baud-rate { 785 type uint32; 786 units Bd; 787 config false; 788 description "configured baud-rate"; 789 } 791 leaf-list available-FEC { 792 type identityref { 793 base FEC; 794 } 795 config false; 796 description "List determining all the available FEC"; 797 } 798 leaf FEC-type { 799 type identityref { 800 base FEC; 801 } 802 config false; 803 description 804 "FEC type configured for the transponder"; 805 } 807 leaf FEC-code-rate { 808 type decimal64 { 809 fraction-digits 8; 810 range "0..max"; 811 } 812 config false; 813 description "FEC-code-rate"; 814 } 816 leaf FEC-threshold { 817 type decimal64 { 818 fraction-digits 8; 819 range "0..max"; 820 } 821 config false; 822 description 823 "Threshold on the BER, for which FEC is able to correct errors"; 824 } 826 } 828 grouping sliceable-transponder-attributes { 829 description 830 "Configuration of a sliceable transponder."; 831 list transponder-list { 832 key "carrier-id"; 833 config false; 834 description "List of carriers"; 835 leaf carrier-id { 836 type uint32; 837 config false; 838 description "Identifier of the carrier"; 839 } 840 } 841 } 843 grouping optical-fiber-data { 844 description 845 "optical link (fiber) attributes with impairment data"; 846 leaf fiber-type { 847 type fiber-type; 848 config false; 849 description "fiber-type"; 850 } 852 leaf span-length { 853 type decimal64 { 854 fraction-digits 2; 855 } 856 units "km"; 857 config false; 858 description "the lenght of the fiber span in km"; 859 } 861 leaf input-power { 862 type decimal64 { 863 fraction-digits 2; 864 } 865 units "dBm"; 866 config false; 867 description 868 "Average input power level estimated at the receiver 869 of the link"; 870 } 872 leaf output-power { 873 type decimal64 { 874 fraction-digits 2; 875 } 876 units "dBm"; 877 description 878 "Mean launched power at the transmitter of the link"; 879 } 881 leaf pmd { 882 type decimal64 { 883 fraction-digits 8; 884 range "0..max"; 885 } 886 units "ps/(km)^0.5"; 887 config false; 888 description 889 "Polarization Mode Dispersion"; 890 } 892 leaf cd { 893 type decimal64 { 894 fraction-digits 5; 896 } 897 units "ps/nm/km"; 898 config false; 899 description 900 "Cromatic Dispersion"; 901 } 903 leaf osnr { 904 type decimal64 { 905 fraction-digits 5; 906 } 907 units "dB"; 908 config false; 909 description 910 "Optical Signal-to-Noise Ratio (OSNR) estimated 911 at the receiver"; 912 } 914 leaf sigma { 915 type decimal64 { 916 fraction-digits 5; 917 } 918 units "dB"; 919 config false; 920 description 921 "sigma in the Gausian Noise Model"; 922 } 923 } 925 grouping optical-channel-data { 926 description 927 "optical impairment data per channel/wavelength"; 928 leaf bit-rate { 929 type decimal64 { 930 fraction-digits 8; 931 range "0..max"; 932 } 933 units "Gbit/s"; 934 config false; 935 description 936 "Gross bit rate"; 937 } 939 leaf BER { 940 type decimal64 { 941 fraction-digits 18; 942 range "0..max"; 943 } 944 config false; 945 description 946 "BER (Bit Error Rate)"; 947 } 949 leaf ch-input-power { 950 type decimal64 { 951 fraction-digits 2; 952 } 953 units "dBm"; 954 config false; 955 description 956 "Per channel average input power level 957 estimated at the receiver of the link"; 958 } 960 leaf ch-pmd { 961 type decimal64 { 962 fraction-digits 8; 963 range "0..max"; 964 } 965 units "ps/(km)^0.5"; 966 config false; 967 description 968 "per channel Polarization Mode Dispersion"; 969 } 971 leaf ch-cd { 972 type decimal64 { 973 fraction-digits 5; 974 } 975 units "ps/nm/km"; 976 config false; 977 description 978 "per channel Cromatic Dispersion"; 979 } 981 leaf ch-osnr { 982 type decimal64 { 983 fraction-digits 5; 984 } 985 units "dB"; 986 config false; 987 description 988 "per channel Optical Signal-to-Noise Ratio 989 (OSNR) estimated at the receiver"; 990 } 992 leaf q-factor { 993 type decimal64 { 994 fraction-digits 5; 995 } 996 units "dB"; 997 config false; 998 description 999 "q-factor estimated at the receiver"; 1000 } 1001 } 1003 grouping standard_mode { 1004 description 1005 "ITU-T G.698.2 standard mode that guarantees interoperability. 1006 It must be an string with the following format: 1007 B-DScW-ytz(v) where all these attributes are conformant 1008 to the ITU-T recomendation"; 1010 leaf standard_mode { 1011 type layer0-types:standard-mode; 1012 config false; 1013 description 1014 "G.698.2 standard mode"; 1015 } 1016 } 1018 grouping organizational_mode { 1019 description 1020 "Transponder operational mode supported by organizations or 1021 vendor"; 1023 leaf operational-mode { 1024 type layer0-types:operational-mode; 1025 config false; 1026 description 1027 "configured organization- or vendor-specific 1028 application identifiers (AI) supported by the transponder"; 1029 } 1031 leaf organization-identifier { 1032 type layer0-types:vendor-identifier; 1033 config false; 1034 description 1035 "organization identifier that uses organizational 1036 mode"; 1038 } 1039 } 1041 /* 1042 * Identities 1043 */ 1044 identity type-element { 1045 description 1046 "Base identity for element type"; 1047 } 1049 identity Fiber { 1050 base type-element; 1051 description 1052 "Fiber element"; 1053 } 1055 identity Roadm { 1056 base type-element; 1057 description 1058 "Roadm element"; 1059 } 1061 identity Edfa { 1062 base type-element; 1063 description 1064 "Edfa element"; 1065 } 1067 identity Concentratedloss { 1068 base type-element; 1069 description 1070 "Concentratedloss element"; 1071 } 1073 identity type-power-mode { 1074 description 1075 "power equalization mode used within the OMS and its elements"; 1076 } 1078 identity power-spectral-density { 1079 base type-power-mode; 1080 description 1081 "all elements must use power spectral density (W/Hz)"; 1082 } 1084 identity channel-power { 1085 base type-power-mode; 1086 description 1087 "all elements must use power (dBm)"; 1088 } 1090 /* 1091 * Groupings 1092 */ 1093 grouping amplifier-params { 1094 description "describes parameters for an amplifier"; 1095 container amplifier{ 1096 description "amplifier type, operatonal parameters are described"; 1097 leaf type_variety { 1098 type string ; 1099 mandatory true ; 1100 description 1101 "String identifier of amplifier type referencing 1102 a specification in a separate equipment catalog"; 1103 } 1104 container operational { 1105 description "amplifier operationnal parameters"; 1106 leaf actual-gain { 1107 type decimal64 { 1108 fraction-digits 2; 1109 } 1110 units dB ; 1111 mandatory true ; 1112 description ".."; 1113 } 1114 leaf tilt-target { 1115 type decimal64 { 1116 fraction-digits 2; 1117 } 1118 mandatory true ; 1119 description ".."; 1120 } 1121 leaf out-voa { 1122 type decimal64 { 1123 fraction-digits 2; 1124 } 1125 units dB; 1126 mandatory true; 1127 description ".."; 1128 } 1129 leaf in-voa { 1130 type decimal64 { 1131 fraction-digits 2; 1132 } 1133 units dB; 1134 mandatory true; 1135 description ".."; 1136 } 1137 uses power-param; 1138 } 1139 } 1140 } 1141 grouping fiber-params { 1142 description "String identifier of fiber type referencing a specification in a 1143 separate equipment catalog"; 1144 container fiber { 1145 description "fiber characteristics"; 1146 leaf type_variety { 1147 type string ; 1148 mandatory true ; 1149 description "fiber type"; 1150 } 1151 leaf length { 1152 type decimal64 { 1153 fraction-digits 2; 1154 } 1155 units km; 1156 mandatory true ; 1157 description "length of fiber"; 1158 } 1159 leaf loss_coef { 1160 type decimal64 { 1161 fraction-digits 2; 1162 } 1163 units dB/km; 1164 mandatory true ; 1165 description "loss coefficient of the fiber"; 1166 } 1167 leaf total_loss { 1168 type decimal64 { 1169 fraction-digits 2; 1170 } 1171 units dB; 1172 mandatory true ; 1173 description 1174 "includes all losses: fiber loss and conn_in and conn_out losses"; 1175 } 1176 leaf pmd{ 1177 type decimal64 { 1178 fraction-digits 2; 1179 } 1180 units sqrt(ps); 1181 description "pmd of the fiber"; 1182 } 1183 leaf conn_in{ 1184 type decimal64 { 1185 fraction-digits 2; 1186 } 1187 units dB; 1188 description "connector-in"; 1189 } 1190 leaf conn_out{ 1191 type decimal64 { 1192 fraction-digits 2; 1193 } 1194 units dB; 1195 description "connector-out"; 1196 } 1197 } 1198 } 1200 grouping roadm-params{ 1201 description "roadm parameters description"; 1202 container roadm{ 1203 description "roadm parameters"; 1204 leaf type_variety { 1205 type string ; 1206 mandatory true ; 1207 description "String identifier of roadm type referencing a specification in a 1208 separate equipment catalog"; 1209 } 1210 leaf loss { 1211 type decimal64 { 1212 fraction-digits 2; 1213 } 1214 units dB ; 1215 description ".."; 1216 } 1217 } 1218 } 1220 grouping concentratedloss-params{ 1221 description "concentrated loss"; 1222 container concentratedloss{ 1223 description "concentrated loss"; 1224 leaf loss { 1225 type decimal64 { 1226 fraction-digits 2; 1227 } 1228 units dB ; 1229 description ".."; 1230 } 1231 } 1232 } 1234 grouping power-param{ 1235 description 1236 "optical power or PSD after the ROADM or after the out-voa"; 1237 choice power-param { 1238 description 1239 "select the mode: channel power or power spectral density"; 1240 case channel-power { 1241 /* when "equalization-mode='channel-power'"; */ 1242 leaf nominal-channel-power{ 1243 type decimal64 { 1244 fraction-digits 1; 1245 } 1246 units dBm ; 1247 description 1248 " Reference channel power after the ROADM or after the out-voa. "; 1249 } 1250 } 1251 case power-spectral-density{ 1252 /* when "equalization-mode='power-spectral-density'"; */ 1253 leaf nominal-power-spectral-density{ 1254 type decimal64 { 1255 fraction-digits 16; 1256 } 1257 units W/Hz ; 1258 description 1259 " Reference power spectral density after the ROADM or after the out-voa. 1260 Typical value : 3.9 E-14, resolution 0.1nW/MHz"; 1261 } 1262 } 1263 } 1264 } 1266 grouping oms-general-optical-params { 1267 description "OMS link optical parameters"; 1268 leaf generalized-snr { 1269 type decimal64 { 1270 fraction-digits 5; 1271 } 1272 units "dB@0.1nm"; 1273 description "generalized snr"; 1274 } 1275 leaf equalization-mode{ 1276 type identityref { 1277 base type-power-mode; 1278 } 1279 mandatory true; 1280 description "equalization mode"; 1281 } 1282 uses power-param; 1283 } 1285 grouping OTSiG { 1286 description "OTSiG definition , representing client digital information stream 1287 supported by 1 or more OTSi"; 1289 container OTSiG-container { 1290 config false; 1291 description 1292 "the container contains the related list of OTSi. 1293 The list could also be of only 1 element"; 1294 list OTSi { 1295 key "OTSi-carrier-id"; 1296 description 1297 "list of OTSi's under OTSi-G"; 1298 leaf OTSi-carrier-id { 1299 type int16; 1300 description "OTSi carrier-id"; 1301 } 1302 leaf OTSi-carrier-frequency { 1303 type decimal64 { 1304 fraction-digits 3; 1305 } 1306 units GHz; 1307 config false; 1308 description 1309 "OTSi carrier frequency"; 1310 } 1311 leaf OTSi-signal-width { 1312 type decimal64 { 1313 fraction-digits 3; 1314 } 1315 units GHz; 1316 config false; 1317 description 1318 "OTSi signal width"; 1319 } 1320 leaf channel-delta-power { 1321 type decimal64 { 1322 fraction-digits 2; 1323 } 1324 units dB; 1325 config false; 1326 description 1327 "optional ; delta power to ref channel input-power applied 1328 to this media channel"; 1329 } 1331 } 1332 } // OTSiG container 1333 } // OTSiG grouping 1334 grouping media-channel-groups { 1335 description "media channel groups"; 1336 list media-channel-group { 1337 key "i"; 1338 description 1339 "list of media channel groups"; 1340 leaf i { 1341 type int16; 1342 description "index of media channel group member"; 1343 } 1345 list media-channels { 1346 key "flexi-n"; 1347 description 1348 "list of media channels represented as (n,m)"; 1349 uses layer0-types:flexi-grid-channel; 1350 leaf OTSiG-ref { 1351 type leafref { 1352 path "/nw:networks/nw:network/nw:node/tet:te" + 1353 "/tet:tunnel-termination-point/OTSiG-element/OTSiG-identifier" ; 1355 } 1356 description 1357 "Reference to the OTSiG list to get OTSiG identifier of the 1358 OSiG carried by this media channel that reports the transient stat"; 1359 } 1360 leaf OTSi-ref { 1361 type leafref { 1362 path "/nw:networks/nw:network/nw:node/tet:te" + 1363 "/tet:tunnel-termination-point/OTSiG-element[OTSiG- 1364 identifier=current()/../OTSiG-ref]/"+ 1365 "OTSiG-container/OTSi/OTSi-carrier-id" ; 1366 } 1367 description 1368 "Reference to the OTSi list supporting the related OTSiG" ; 1369 } 1371 } // media channels list 1372 } // media-channel-groups list 1373 } // media media-channel-groups grouping 1375 grouping oms-element { 1376 description "OMS description"; 1377 list OMS-elements { 1378 key "elt-index"; 1379 description 1380 "defines the spans and the amplifier blocks of the amplified lines"; 1381 leaf elt-index { 1382 type uint16; 1383 description 1384 "ordered list of Index of OMS element (whether it's a Fiber, an EDFA or a 1385 Concentratedloss)"; 1386 } 1387 leaf uid { 1388 type string; 1389 description 1390 "unique id of the element if it exists"; 1391 } 1392 leaf type { 1393 type identityref { 1394 base type-element; 1395 } 1396 mandatory true; 1397 description "element type"; 1398 } 1400 container element { 1401 description "element of the list of elements of the OMS"; 1402 choice element { 1403 description "OMS element type"; 1404 case amplifier { 1405 /* when "type = 'Edfa'"; */ 1406 uses amplifier-params ; 1407 } 1408 case fiber { 1409 /* when "type = 'Fiber'"; */ 1410 uses fiber-params ; 1411 } 1412 case concentratedloss { 1413 /* when "type = 'Concentratedloss'"; */ 1414 uses concentratedloss-params ; 1415 } 1416 } 1417 } 1418 } 1419 } 1421 /* Data nodes */ 1423 augment "/nw:networks/nw:network/nw:network-types" 1424 + "/tet:te-topology" { 1425 description "optical-impairment topology augmented"; 1426 container optical-impairment-topology { 1427 presence "indicates an impairment-aware topology of optical networks"; 1428 description 1429 "Container to identify impairment-aware topology type"; 1430 } 1432 } 1434 augment "/nw:networks/nw:network/nt:link/tet:te" 1435 + "/tet:te-link-attributes" { 1436 when "/nw:networks/nw:network/nw:network-types" 1437 +"/tet:te-topology/optical-imp-topo:optical-impairment-topology" { 1438 description 1439 "This augment is only valid for Optical Impairment."; 1440 } 1441 description "Optical Link augmentation for impairment data."; 1442 container OMS-attributes { 1443 config false; 1444 description "OMS attributes"; 1445 uses oms-general-optical-params; 1446 uses media-channel-groups; 1447 uses oms-element; 1448 } 1449 } 1451 augment "/nw:networks/nw:network/nw:node/tet:te" 1452 + "/tet:tunnel-termination-point" { 1453 when "/nw:networks/nw:network/nw:network-types" 1454 +"/tet:te-topology/optical-imp-topo:optical-impairment-topology" { 1455 description 1456 "This augment is only valid for Impairment with non-sliceable 1457 transponder model"; 1458 } 1459 description 1460 "Tunnel termination point augmentation for non-sliceable 1461 transponder model."; 1463 list OTSiG-element { 1464 key "OTSiG-identifier"; 1465 config false; 1466 description 1467 "the list of possible OTSiG representing client digital stream"; 1469 leaf OTSiG-identifier { 1470 type int16; 1471 description "index of OTSiG element"; 1472 } 1473 uses OTSiG; 1474 } 1476 list transponders-list { 1477 key "transponder-id"; 1478 config false; 1479 description "list of transponders"; 1480 leaf transponder-id { 1482 type uint32; 1483 description "transponder identifier"; 1484 } 1486 choice mode { 1487 description "standard mode, organizational mode or explicit mode"; 1489 case G.692.2 { 1490 uses standard_mode; 1491 } 1493 case organizational_mode { 1494 uses organizational_mode; 1495 } 1497 case explicit_mode { 1498 uses transponder-attributes; 1499 } 1500 } 1502 leaf power { 1503 type int32; 1504 units "dBm"; 1505 config false; 1506 description "per channel power"; 1507 } 1509 leaf power-min { 1510 type int32; 1511 units "dBm"; 1512 config false; 1513 description "minimum power of the transponder"; 1514 } 1516 leaf power-max { 1517 type int32; 1518 units "dBm"; 1519 config false; 1520 description "maximum power of the transponder"; 1521 } 1522 } 1523 } 1525 augment "/nw:networks/nw:network/nw:node/tet:te" 1526 + "/tet:tunnel-termination-point" { 1527 when "/nw:networks/nw:network/nw:network-types" 1528 +"/tet:te-topology/optical-imp-topo:optical-impairment-topology" { 1529 description 1530 "This augment is only valid for optical impairment with sliceable 1531 transponder model"; 1532 } 1533 description 1534 "Tunnel termination point augmentation for sliceable transponder model."; 1535 uses sliceable-transponder-attributes; 1536 } 1537 } 1538 1540 5. Security Considerations 1542 The configuration, state, and action data defined in this document 1543 are designed to be accessed via a management protocol with a secure 1544 transport layer, such as NETCONF [RFC6241]. The NETCONF access 1545 control model [RFC6536] provides the means to restrict access for 1546 particular NETCONF users to a preconfigured subset of all available 1547 NETCONF protocol operations and content. 1549 A number of configuration data nodes defined in this document are 1550 read-only; however, these data nodes may be considered sensitive or 1551 vulnerable in some network environments (TBD). 1553 6. IANA Considerations 1555 This document registers the following namespace URIs in the IETF XML 1556 registry [RFC3688]: 1558 -------------------------------------------------------------------- 1559 URI: urn:ietf:params:xml:ns:yang:ietf-optical-impairment-topology 1560 Registrant Contact: The IESG. 1561 XML: N/A, the requested URI is an XML namespace. 1562 -------------------------------------------------------------------- 1564 This document registers the following YANG modules in the YANG 1565 Module Names registry [RFC7950]: 1567 -------------------------------------------------------------------- 1568 name: ietf-optical-impairment-topology 1569 namespace: urn:ietf:params:xml:ns:yang:ietf-optical-impairment- 1570 topology 1571 prefix: optical-imp-topo 1572 reference: RFC XXXX (TDB) 1573 -------------------------------------------------------------------- 1575 7. Acknowledgments 1577 We thank Daniele Ceccarelli and Oscar G. De Dios for useful 1578 discussions and motivation for this work. 1580 8. References 1582 8.1. Normative References 1584 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", 1585 RFC 7950, August 2016. 1587 [RFC8040] A. Bierman, M. Bjorklund, K. Watsen, "RESTCONF Protocol", 1588 RFC 8040, January 2017. 1590 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration 1591 Access Control Model", RFC 8341, March 2018. 1593 8.2. Informative References 1595 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., 1596 and A. Bierman, Ed., "Network Configuration Protocol 1597 (NETCONF)", RFC 6241, June 2011. 1599 [RFC6566] Y. Lee, G. Bernstein, D. Li, G. Martinelli, "A Framework 1600 for the Control of Wavelength Switched Optical Networks 1601 (WSONs) with Impairments", RFC 6566, March 2012. 1603 [RFC7446] Y. Lee, G. Bernstein, D. Li, W. Imajuku, "Routing and 1604 Wavelength Assignment Information Model for Wavelength 1605 Switched Optical Networks", RFC 7446, Feburary 2015. 1607 [RFC7579] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "General Network 1608 Element Constraint Encoding for GMPLS Controlled 1609 Networks", RFC 7579, June 2015. 1611 [RFC7581] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and 1612 Wavelength Assignment Information Encoding for Wavelength 1613 Switched Optical Networks", RFC 7581, June 2015. 1615 [RFC7698] O. Gonzalez de Dios, Ed. and R. Casellas, Ed., "Framework 1616 and Requirements for GMPLS-Based Control of Flexi-Grid 1617 Dense Wavelength Division Multiplexing (DWDM) Networks", 1618 RFC 7698, November 2015. 1620 [RFC8340] M. Bjorklund, L. Berger, Ed., "YANG Tree Diagrams", RFC 1621 8340, March 2018. 1623 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K., 1624 and R. Wilton, "Network Management Datastore Architecture 1625 (NMDA)", RFC 8342, March 2018. 1627 [RFC8345] A. Clemm, et al, "A YANG Data Model for Network 1628 Topologies", RFC 8345, March 2018. 1630 [TE-TOPO] X. Liu, et al., "YANG Data Model for TE Topologies", work 1631 in progress: draft-ietf-teas-yang-te-topo. 1633 [RFC8453] Ceccarelli, D. and Y. Lee, "Framework for Abstraction and 1634 Control of Traffic Engineered Networks", RFC 8453, August 1635 2018. 1637 [WSON-Topo] Y. Lee, Ed., "A Yang Data Model for WSON Optical 1638 Networks", draft-ietf-ccamp-wson-yang-13, work in 1639 progress. 1641 [L0-Types] Y. Lee, Ed., "A YANG Data Model for Layer 0 Types", 1642 draft-ietf-ccamp-layer0-types, work in progress. 1644 [G.807] "Draft new Recommendation ITU-T G.807 (ex G.media)", ITU-T 1645 Recommendation G.807, work in progress. 1647 [G.709] "Interfaces for the Optical Transport Network (OTN)", ITU-T 1648 Recommendation G.709, June 2016. 1650 [G.694.1] "Spectral grids for WDM applications: DWDM frequency 1651 grid", ITU-T Recommendation G.694.1, February 2012. 1653 [G.959.1] "Optical transport network physical layer interfaces", 1654 ITU-T Recommendation G.959.1, February 2012. 1656 [G.872] "Architecture of optical transport networks", ITU-T 1657 Recommendation G.872, January 2017. 1659 9. Contributors 1661 Jonas Martensson 1662 RISE 1664 Email: jonas.martensson@ri.se 1666 Aihua Guo 1667 Huawei Technologies 1669 Email: aguo@futurewei.com 1671 Authors' Addresses 1673 Young Lee 1674 Futurewei Technologies 1676 Email: younglee.tx@gmail.com 1678 Haomian Zheng 1679 Huawei Technologies 1681 Email: zhenghaomian@huawei.com 1683 Italo Busi 1684 Huawei Technologies 1686 Email: Italo.Busi@huawei.com 1688 Nicola Sambo 1689 Scuola Superiore Sant'Anna 1691 Email: nicosambo@gmail.com 1693 Victor Lopez 1694 Telefonica 1696 Email: victor.lopezalvarez@telefonica.com 1698 G. Galimberti 1699 Cisco 1700 Email: ggalimbe@cisco.com 1702 Giovanni Martinelli 1703 Cisco 1704 Email: giomarti@cisco.com 1706 AUGE Jean Luc 1707 Orange 1709 Email: jeanluc.auge@orange.com 1711 LE ROUZIC Esther 1712 Orange 1714 Email: esther.lerouzic@orange.com 1716 Julien Meuric 1717 Orange 1719 Email: julien.meuric@orange.com 1721 Dieter Beller 1722 Nokia 1724 Email: dieter.beller@nokia.com 1726 Sergio Belotti 1727 Nokia 1729 Email: Sergio.belotti@nokia.com 1731 Griseri Enrico 1732 Nokia 1734 Email: enrico.griseri@nokia.com 1736 Gert Grammel 1737 Juniper 1739 Email: ggrammel@juniper.net