idnits 2.17.1 draft-ietf-ccamp-optical-impairment-topology-yang-03.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == Line 769 has weird spacing: '...t-index uin...' == Line 776 has weird spacing: '...variety str...' == Line 791 has weird spacing: '...variety str...' == Line 804 has weird spacing: '...ntifier int...' == Line 834 has weird spacing: '...rier-id uin...' == (1 more instance...) -- The document date (March 9, 2020) is 1503 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Missing Reference: 'RFCXXXX' is mentioned on line 172, but not defined == Missing Reference: 'OTSiG-identifier' is mentioned on line 803, but not defined == Missing Reference: 'OTSi-carrier-id' is mentioned on line 806, but not defined == Missing Reference: 'RFC3688' is mentioned on line 2502, but not defined == Unused Reference: 'I-D.ietf-ccamp-wson-yang' is defined on line 2606, but no explicit reference was found in the text == Unused Reference: 'I-D.ietf-ccamp-layer0-types' is defined on line 2612, but no explicit reference was found in the text == Outdated reference: A later version (-28) exists of draft-ietf-ccamp-wson-yang-23 == Outdated reference: A later version (-09) exists of draft-ietf-ccamp-layer0-types-03 == Outdated reference: A later version (-10) exists of draft-ietf-ccamp-dwdm-if-param-yang-02 Summary: 0 errors (**), 0 flaws (~~), 16 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 CCAMP Working Group Y. Lee 3 Internet-Draft SKKU (Sung Kyun Kwan University) 4 Intended status: Standards Track V. Lopez 5 Expires: September 10, 2020 Telefonica 6 G. Galimberti 7 Cisco 8 D. Beller 9 Nokia 10 March 9, 2020 12 A Yang Data Model for Optical Impairment-aware Topology 13 draft-ietf-ccamp-optical-impairment-topology-yang-03 15 Abstract 17 In order to provision an optical connection through optical networks, 18 a combination of path continuity, resource availability, and 19 impairment constraints must be met to determine viable and optimal 20 paths through the network. The determination of appropriate paths is 21 known as Impairment-Aware Routing and Wavelength Assignment (IA-RWA) 22 for WSON, while it is known as Impairment-Aware Routing and Spectrum 23 Assigment (IA-RSA) for SSON. 25 This document provides a YANG data model for the impairment-aware TE 26 topology in optical networks. 28 Status of This Memo 30 This Internet-Draft is submitted to IETF in full conformance with the 31 provisions of BCP 78 and BCP 79. 33 Internet-Drafts are working documents of the Internet Engineering 34 Task Force (IETF). Note that other groups may also distribute 35 working documents as Internet-Drafts. The list of current Internet- 36 Drafts is at https://datatracker.ietf.org/drafts/current/. 38 Internet-Drafts are draft documents valid for a maximum of six months 39 and may be updated, replaced, or obsoleted by other documents at any 40 time. It is inappropriate to use Internet-Drafts as reference 41 material or to cite them other than as "work in progress." 43 This Internet-Draft will expire on September 10, 2020. 45 Copyright Notice 47 Copyright (c) 2020 IETF Trust and the persons identified as the 48 document authors. All rights reserved. 50 This document is subject to BCP 78 and the IETF Trust's Legal 51 Provisions Relating to IETF Documents 52 (https://trustee.ietf.org/license-info) in effect on the date of 53 publication of this document. Please review these documents 54 carefully, as they describe your rights and restrictions with respect 55 to this document. Code Components extracted from this document must 56 include Simplified BSD License text as described in Section 4.e of 57 the Trust Legal Provisions and are provided without warranty as 58 described in the Simplified BSD License. 60 Table of Contents 62 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 63 1.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 3 64 1.2. Tree Diagram . . . . . . . . . . . . . . . . . . . . . . 4 65 1.3. Prefixes in Data Node Names . . . . . . . . . . . . . . . 4 66 2. Reference Architecture . . . . . . . . . . . . . . . . . . . 4 67 2.1. Control Plane Architecture . . . . . . . . . . . . . . . 5 68 2.2. Transport Data Plane . . . . . . . . . . . . . . . . . . 6 69 2.3. OMS Media Links . . . . . . . . . . . . . . . . . . . . . 6 70 2.3.1. Optical Tributary Signal (OTSi) . . . . . . . . . . . 7 71 2.3.2. Optical Tributary Signal Group (OTSiG) . . . . . . . 7 72 2.3.3. Media Channel (MC) . . . . . . . . . . . . . . . . . 8 73 2.3.4. Media Channel Group (MCG) . . . . . . . . . . . . . . 9 74 2.4. Amplifiers . . . . . . . . . . . . . . . . . . . . . . . 10 75 2.5. Transponders . . . . . . . . . . . . . . . . . . . . . . 11 76 2.6. WSS/Filter . . . . . . . . . . . . . . . . . . . . . . . 11 77 2.7. Optical Fiber . . . . . . . . . . . . . . . . . . . . . . 11 78 2.8. ROADM Node Architectures . . . . . . . . . . . . . . . . 12 79 2.8.1. Integrated ROADM Architecture with Integrated Optical 80 Transponders . . . . . . . . . . . . . . . . . . . . 12 81 2.8.2. Integrated ROADMs with Integrated Optical 82 Transponders and Single Channel Add/Drop Interfaces 83 for Remote Optical Transponders . . . . . . . . . . . 13 84 2.8.3. Disaggregated ROADMs Subdivided into Degree, 85 Add/Drop, and Optical Transponder Subsystems . . . . 14 86 2.8.4. Optical Impairments Imposed by ROADM Nodes . . . . . 15 87 3. YANG Model (Tree Structure) . . . . . . . . . . . . . . . . . 17 88 4. Optical Impairment Topology YANG Model . . . . . . . . . . . 20 89 5. Security Considerations . . . . . . . . . . . . . . . . . . . 53 90 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 53 91 7. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 54 92 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 54 93 8.1. Normative References . . . . . . . . . . . . . . . . . . 54 94 8.2. Informative References . . . . . . . . . . . . . . . . . 54 95 Appendix A. Contributors . . . . . . . . . . . . . . . . . . . . 56 96 Appendix B. Additional Authors . . . . . . . . . . . . . . . . . 57 97 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 58 99 1. Introduction 101 In order to provision an optical connection (an optical path) through 102 a wavelength switched optical networks (WSONs) or spectrum switched 103 optical networks (SSONs), a combination of path continuity, resource 104 availability, and impairment constraints must be met to determine 105 viable and optimal paths through the network. The determination of 106 appropriate paths is known as Impairment-Aware Routing and Wavelength 107 Assignment (IA-RWA) [RFC6566] for WSON, while it is known as IA- 108 Routing and Spectrum Assigment (IA-RSA) for SSON. 110 This document provides a YANG data model for the impairment-aware 111 Traffic Engineering (TE) topology in WSONs and SSONs. The YANG model 112 described in this document is a WSON/SSON technology-specific Yang 113 model based on the information model developed in [RFC7446] and the 114 two encoding documents [RFC7581] and [RFC7579] that developed 115 protocol independent encodings based on [RFC7446]. 117 The intent of this document is to provide a Yang data model, which 118 can be utilized by a Multi-Domain Service Coordinator (MDSC) to 119 collect states of WSON impairment data from the Transport PNCs to 120 enable impairment-aware optical path computation according to the 121 ACTN Architecture [RFC8453]. The communication between controllers 122 is done via a NETCONF [RFC8341] or a RESTCONF [RFC8040]. 123 Similarly,this model can also be exported by the MDSC to a Customer 124 Network Controller (CNC), which can run an offline planning process 125 to map latter the services in the network. 127 This document augments the generic TE topology draft 128 [I-D.ietf-teas-yang-te-topo] where possible. 130 This document defines one YANG module: ietf-optical-impairment- 131 topology (Section 3) according to the new Network Management 132 Datastore Architecture [RFC8342]. 134 1.1. Terminology 136 Refer to [RFC6566], [RFC7698], and [G.807] for the key terms used in 137 this document. 139 The following terms are defined in [RFC7950] and are not redefined 140 here: 142 o client 143 o server 144 o augment 145 o data model 146 o data node 148 The following terms are defined in [RFC6241] and are not redefined 149 here: 151 o configuration data 152 o state data 154 The terminology for describing YANG data models is found in 155 [RFC7950]. 157 1.2. Tree Diagram 159 A simplified graphical representation of the data model is used in 160 Section 2 of this this document. The meaning of the symbols in these 161 diagrams is defined in [RFC8340]. 163 1.3. Prefixes in Data Node Names 165 In this document, names of data nodes and other data model objects 166 are prefixed using the standard prefix associated with the 167 corresponding YANG imported modules, as shown in Table 1. 169 +--------------+--------------------------+-------------------------+ 170 | Prefix | YANG module | Reference | 171 +--------------+--------------------------+-------------------------+ 172 | optical-imp- | ietf-optical-impairment- | [RFCXXXX] | 173 | topo | topology | | 174 | layer0-types | ietf-layer0-types | [I-D.ietf-ccamp-layer0- | 175 | | | types] | 176 | nw | ietf-network | [RFC8345] | 177 | nt | ietf-network-topology | [RFC8345] | 178 | tet | ietf-te-topology | [I-D.ietf-teas-yang-te- | 179 | | | topo] | 180 +--------------+--------------------------+-------------------------+ 182 Table 1: Prefixes and corresponding YANG modules 184 [Editor's note: The RFC Editor will replace XXXX with the number 185 assigned to the RFC once this draft becomes an RFC.] 187 2. Reference Architecture 188 2.1. Control Plane Architecture 190 Figure 1 shows the control plane architecture. 192 +--------+ 193 | MDSC | 194 +--------+ 195 Scope of this ID -------> || 196 | || 197 | +------------------------+ 198 | | OPTICAL | 199 +---------+ | | DOMAIN | +---------+ 200 | Device | | | CONTROLLER | | Device | 201 | config. | | +------------------------+ | config. | 202 +---------+ v // || \\ +---------+ 203 ______|______ // || \\ ______|______ 204 / OT \ // || \\ / OT \ 205 | +--------+ |// __--__ \\| +--------+ | 206 | |Vend. A |--|----+ ( ) +----|--| Vend. A| | 207 | +--------+ | | ~-( )-~ | | +--------+ | 208 | +--------+ | +---/ \---+ | +--------+ | 209 | |Vend. B |--|--+ / \ +--|--| Vend. B| | 210 | +--------+ | +---( OLS Segment )---+ | +--------+ | 211 | +--------+ | +---( )---+ | +--------+ | 212 | |Vend. C |--|--+ \ / +--|--| Vend. C| | 213 | +--------+ | +---\ /---+ | +--------+ | 214 | +--------+ | | ~-( )-~ | | +--------+ | 215 | |Vend. D |--|----+ (__ __) +----|--| Vend. D| | 216 | +--------+ | -- | +--------+ | 217 \_____________/ \_____________/ 218 ^ ^ 219 | | 220 | | 221 Scope of [I-D.ietf-ccamp-dwdm-if-param-yang] 223 Figure 1: Scope of draft-ietf-ccamp-dwdm-if-param-yang 225 The models developed in this document is an abstracted Yang model 226 that may be used in the interfaces between the MDSC and the Optical 227 Domain Controller (aka MPI) and between the Optical Domain Controller 228 and the Optical Device (aka SBI) in Figure 1. It is not intended to 229 support a detailed low-level DWDM interface model. DWDM interface 230 model is supported by the models presented in 231 [I-D.ietf-ccamp-dwdm-if-param-yang]. 233 2.2. Transport Data Plane 235 This section provides the description of the reference optical 236 network architecture and its relevant components to support optical 237 impairment-aware path computation. 239 Figure 2 shows the reference architecture. 241 +-------------------+ +-------------------+ 242 | ROADM Node | | ROADM Node | 243 | | | | 244 | PA +-------+ BA | ILA | PA +-------+ BA | 245 | +-+ | WSS/ | +-+ | _____ +--+ _____ | +-+ | WSS/ | +-+ | 246 --|-| |-|Filter |-| |-|-()____)-| |-()____)-|-| |-|Filter |-| |-|-- 247 | +-+ | | +-+ | +--+ | +-+ | | +-+ | 248 | +-------+ | optical | +-------+ | 249 | | | | | fiber | | | | | 250 | o o o | | o o o | 251 | transponders | | transponders | 252 +-------------------+ +-------------------+ 253 OTS Link OTS Link 254 <---------> <---------> 255 OMS Link 256 <--------------------------------> 258 PA: Pre-Amplifieror 259 BA: Booster Amplifier 260 ILA: In-Line Amplifier 262 Figure 2: Reference Architecture for Optical Transport Network 264 BA (on the left side ROADM) is the ingress Amplifier and PA (on the 265 right side ROADM is the egress amplifier for the OMS link shown in 266 Figure 2. 268 2.3. OMS Media Links 270 According to [G.872], OMS Media Link represents a media link between 271 two ROADMs. Specifically, it originates at the ROADM's Filter in the 272 source ROADM and terminates at the ROADM's Filter in the destination 273 ROADM. 275 OTS Media Link represents a media link: 277 (i) between ROADM's BA and ILA; 278 (ii) between a pair of ILAs; 279 (iii) between ILA and ROADM's PA. 281 OMS Media link can be decomposed in a sequence of OTS links type (i), 282 (ii), and (iii) as discussed above. OMS Media link would give an 283 abstracted view of impairment data (e.g., power, OSNR, etc.) to the 284 network controller. 286 For the sake of optical impairment evaluation OMS Media link can be 287 also decomposed in a sequence of elements such as BA, fiber section, 288 ILA, concentrated loss and PA. 290 [Editor's note: text below related to [G.807] needs to be revised! 291 [G.807] is now in publication process.] 293 2.3.1. Optical Tributary Signal (OTSi) 295 The OTSi is defined in ITU-T Recommendation G.959.1, section 3.2.4 296 [G.959.1]. The YANG model defined below assumes that a single OTSi 297 consists of a single modulated optical carrier. This single 298 modulated optical carrier conveys digital information. 299 Characteristics of the OTSi signal are modulation scheme (e.g. QPSK, 300 8-QAM, 16-QAM, etc.), baud rate (measure of the symbol rate), pulse 301 shaping (e.g. raised cosine - complying with the Nyquist inter symbol 302 interference criterion), etc. 304 2.3.2. Optical Tributary Signal Group (OTSiG) 306 The definition of the OTSiG is currently being moved from ITU-T 307 Recommendation G.709 [G.709] to the new draft Recommendation G.807 308 (still work in progress) [G.807]. The OTSiG is an electrical signal 309 that is carried by one or more OTSi's. The relationship between the 310 OTSiG and the the OTSi's is described in ITU-T draft Recommendation 311 G.807, section 10.2 [G.807]. The YANG model below supports both 312 cases: the single OTSi case where the OTSiG contains a single OTSi 313 (see ITU-T draft Recommendation G.807, Figure 10-2) and the multiple 314 OTSi case where the OTSiG consists of more than one OTSi (see ITU-T 315 draft Recommendation G.807, Figure 10-3). From a layer 0 topology 316 YANG model perspective, the OTSiG is a logical construct that 317 associates the OTSi's, which belong to the same OTSiG. The typical 318 application of an OTSiG consisting of more than one OTSi is inverse 319 multiplexing. Constraints exist for the OTSi's belonging to the same 320 OTSiG such as: (i) all OTSi's must be co-routed over the same optical 321 fibers and nodes and (ii) the differential delay between the 322 different OTSi's may not exceed a certain limit. Example: a 400Gbps 323 client signal may be carried by 4 OTSi's where each OTSi carries 324 100Gbps of client traffic. 326 OTSiG 327 _________________________/\__________________________ 328 / \ 329 m=7 330 - - - +---------------------------X---------------------------+ - - - 331 / / / | | / / / 332 / / /| OTSi OTSi OTSi OTSi |/ / / 333 / / / | ^ ^ ^ ^ | / / / 334 / / /| | | | | |/ / / 335 / / / | | | | | | / / / 336 / / /| | | | | |/ / / 337 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 338 --+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+--- 339 n = 4 340 K1 K2 K3 K4 342 Figure 3: MC Example containing all 4 OTSi signals of an OTSiG 344 2.3.3. Media Channel (MC) 346 The definition of the MC is currently being moved from ITU-T 347 Recommendation G.872 [G.872] to the new draft Recommendation G.807 348 (still work in progress) [G.807]. Section 3.2.2 defines the term MC 349 and section 7.1.2 provides a more detailed description with some 350 examples. The definition of the MC is very generic (see ITU-T draft 351 Recommendation G.807, Figure 7-1). In the YANG model below, the MC 352 is used with the following semantics: 354 The MC is an end-to-end topological network construct and can be 355 considered as an "optical pipe" with a well-defined frequency slot 356 between one or more optical transmitters each generating an OTSi and 357 the corresponding optical receivers terminating the OTSi's. If the 358 MC carries more than one OTSi, it is assumed that these OTSi's belong 359 to the same OTSiG. 361 m=8 362 +-------------------------------X-------------------------------+ 363 | | | 364 | +----------X----------+ | +----------X----------+ | 365 | | OTSi | | OTSi | | 366 | | ^ | | | ^ | | 367 | | | | | | | | 368 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 369 --+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+- 370 | n=4 | 371 K1 K2 373 <------------------------ Media Channel -----------------------> 375 Figure 4: Figure Caption TBA 377 The frequency slot of the MC is defined by the n value defining the 378 central frequency of the MC and the m value that defines the width of 379 the MC following the flexible grid definition in ITU-T Recommendation 380 G.694.1 [G.694.1]. In this model, the effective frequency slot as 381 defined in ITU-T draft Recommendation G.807 is equal to the frequency 382 slot of this end-to-end MC. It is also assumed that ROADM devices 383 can switch MCs. For various reasons (e.g. differential delay), it 384 is preferred to use a single MC for all OTSi's of the same OTSiG. It 385 may however not always be possible to find a single MC for carrying 386 all OTSi's of an OTSiG due to spectrum occupation along the OTSiG 387 path. 389 2.3.4. Media Channel Group (MCG) 391 The definition of the MCG is currently work in progress in ITU-T and 392 is defined in section 7.1.3 of the new ITU-T draft Recommendation 393 G.807 (still work in progress) [G.807]. The YANG model below assumes 394 that the MCG is a logical grouping of one or more MCs that are used 395 to to carry all OTSi's belonging to the same OTSiG. 397 The MCG can be considered as an association of MCs without defining a 398 hierarchy where each MC is defined by its (n,m) value pair. An MCG 399 consists of more than one MC when no single MC can be found from 400 source to destination that is wide enough to accommodate all OTSi's 401 (modulated carriers) that belong to the same OTSiG. In such a case 402 the set of OTSi's belonging to a single OTSiG have to be split across 403 2 or more MCs. 405 MCG1 = {M1.1, M1.2} 406 __________________________/\________________________ 407 / \ 408 M1.1 M2 M1.2 409 ____________/\____________ _____/\_____ ____/\____ 410 / \/ \/ \ 411 - - - +---------------------------+-------------+-----------+ - - - 412 / / / | | / / / / / / | | / / / 413 / / /| OTSi OTSi OTSi |/ / / / / / /| OTSi |/ / / 414 / / / | ^ ^ ^ | / / / / / / | ^ | / / / 415 / / /| | | | |/ / / / / / /| | |/ / / 416 / / / | | | | | / / / / / / | | | / / / 417 / / /| | | | |/ / / / / / /| | |/ / / 418 -7 -4 -1 0 1 2 3 4 5 6 7 8 ... 14 17 20 419 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 420 n=0 n=17 421 K1 K2 K3 K4 423 Figure 5: Figure Caption TBA 425 The MCG is relevant for path computation because all end-to-end MCs 426 belonging to the same MCG have to be co-routed, i.e., have to follow 427 the same path. Additional constraints may exist (e.g. differential 428 delay). 430 2.4. Amplifiers 432 Optical amplifiers are in charge of amplifying the optical signal in 433 the optical itself without any electrical conversion. There are 434 three main technologies to build amplifiers: Erbium Doped Fiber 435 Amplifier (EDFA), Raman Fiber Amplifier (RFA), and Semiconductor 436 Optical Amplifier (SOA). Nowadays, most of optical networks uses 437 EDFAs. However, RFA has an attractive feature that it works in any 438 wavelength band with a similar or lower noise figures compared to 439 EDFA. On the other hand, RFAs consumes more power and are more 440 expensive than EDFAs. 442 Amplifiers can be classified according to their location in the 443 communication link. There are three basic types of amplifiers: ILA, 444 Pre-Amplifier and Booster. ILA is In-Line Amplifier which is a 445 separate node type while Pre-Amplifier and Booster Amplifier are 446 integral elements of ROADM node. From a data modeling perspective, 447 Pre-Amplifier and Booster Amplifier are internal functions of a ROADM 448 node and as such these elements are hidden within ROADM node. In 449 this document, we would avoid internal node details, but attempt to 450 abstract as much as possible. 452 One modeling consideration of the ROADM internal is to model power 453 parameter through the ROADM, factoring the output power from the Pre- 454 Amplifier minus the ROADM power loss would give the input power to 455 the Booster Amplifier. In other words, Power_in (@ ROADM Booster) = 456 Power_out (@ ROADM Pre-Amplifier) - Power_loss (@ ROADM WSS/Filter). 458 2.5. Transponders 460 A Transponder is the element that sends and receives the optical 461 signal from a fiber. A transponder is typically characterized by its 462 data rate and the maximum distance the signal can travel. Channel 463 frequency, per channel input power, FEC and Modulation are also 464 associated with a transponder. From a path computation point of 465 view, the selection of the compatible source and destination 466 transponders is an important factor for optical signal to traverse 467 through the fiber. There are three main approaches to determine 468 optical signal compatibility. Application Code based on G.698.2 is 469 one approach that only checks the code at both ends of the link. 470 Another approach is organization codes that are specific to an 471 organization or a vendor. The third approach is specify all the 472 relevant parameters explicitly, e.g., FEC type, Modulation type, etc. 474 [Editor's note: The current YANG model described in Section 3 with 475 respect to the relationship between the transponder attributes and 476 the OTSi will need to be investigated in the future revision] 478 2.6. WSS/Filter 480 WSS separates the incoming light input spectrally as well as 481 spatially, then chooses the wavelength that is of interest by 482 deflecting it from the original optical path and then couple it to 483 another optical fibre port. WSS/Filter is internal to ROADM. So 484 this document does not model the inside of ROADM. 486 2.7. Optical Fiber 488 There are various optical fiber types defined by ITU-T. There are 489 several fiber-level parameters that need to be factored in, such as, 490 fiber-type, length, loss coefficient, pmd, connectors (in/out). 492 ITU-T G.652 defines Standard Singlemode Fiber; G.654 Cutoff Shifted 493 Fiber; G.655 Non-Zero Dispersion Shifted Fiber; G.656 Non-Zero 494 Dispersion for Wideband Optical Transport; G.657 Bend-Insensitive 495 Fiber. There may be other fiber-types that need to be considered. 497 2.8. ROADM Node Architectures 499 The ROADM node architectures in today's dense wavelength division 500 multiplexing (DWDM) networks can be categorized as follows: 502 o Integrated ROADM architecture with integrated optical transponders 504 o Integrated ROADM architecture with integrated optical transponders 505 and single channel add/drop ports for remote optical transponders 507 o Disaggregated ROADM architecture where the ROADM is subdivided 508 into degree, add/drop, and optical transponder subsystems handled 509 as separate network elements 511 The TE topology YANG model augmentations including optical 512 impairments for DWDM networks defined below intend to cover all the 3 513 categories of ROADM architectures listed above. In the case of a 514 disaggregated ROADM architecture, it is assumed that optical domain 515 controller already performs some form of abstraction and presents the 516 TE-node representing the disaggregated ROADM in the same way as an 517 integrated ROADM with integrated optical transponders if the optical 518 transponder subsystems and the add/drop subsystems are collocated 519 (short fiber links not imposing significant optical impairments). 521 The different ROADM architectures are briefly described and 522 illustrated in the following subsections. 524 [Editor's note: The modeling of remote optical transponders located 525 for example in the client device with a single channel link between 526 the OT and the add/drop port of the ROADM requires further 527 investigations and will be addressed in a future revision of this 528 document.] 530 2.8.1. Integrated ROADM Architecture with Integrated Optical 531 Transponders 533 Figure 2 and Figure 6 below show the typical architecture of an 534 integrated ROADM node, which contains the optical transponders as an 535 integral part of the ROADM node. Such an integrated ROADM node 536 provides DWDM interfaces as external interfaces for interconnecting 537 the device with its neighboring ROADMs (see OTS link above). The 538 number of these interfaces denote also the degree of the ROADM. A 539 degree 3 ROADM for example has 3 DWDM links that interconnect the 540 ROADM node with 3 neighboring ROADMs. Additionally, the ROADM 541 provides client interfaces for interconnecting the ROADM with client 542 devices such as IP routers or Ethernet switches. These client 543 interfaces are the client interfaces of the integrated optical 544 transponders. 546 . . . . . . . . . . . . . . . . . . 547 +-----.-------------------------------- .-----+ 548 | . ROADM . | 549 | . /| +-----------------+ |\ . | 550 Line | . / |--| |--| \ . | Line 551 WEST | /| . | |--| |--| | . |\ | EAST 552 ------+-/ |-.-| |--| OCX |--| |-.-| \-+----- 553 ------+-\ |-.-| |--| |--| |-.-| /-+----- 554 | \| . | |--| |--| | . |/ | 555 | . \ |--| |--| / . | 556 | . \| +-----------------+ |/ . | 557 | . . | 558 | . +---+ +---+ +---+ +---+ . | 559 | . | O | | O | | O | | O | . | 560 | . | T | | T | | T | | T | . | 561 | . +---+ +---+ +---+ +---+ . | 562 | . | | | | | | | | . | 563 +-----.------+-+---+-+---+-+---+-+------.-----+ 564 . . . .|.| . |.| . |.| . |.|. . . . 565 | | | | | | | | TE Node 566 Client Interfaces 568 Figure 6: ROADM Architectiure with Integrated Transponders 570 2.8.2. Integrated ROADMs with Integrated Optical Transponders and 571 Single Channel Add/Drop Interfaces for Remote Optical 572 Transponders 574 Figure 7 below shows the extreme case where all optical transponders 575 are not integral parts of the ROADM but are separate devices that are 576 interconnected with add/drop ports of the ROADM. If the optical 577 transponders and the ROADM are collocated and if short single channel 578 fiber links are used to interconnect the optical transponders with an 579 add/drop port of the ROADM, the optical domain controller may present 580 these optical transponders in the same way as integrated optical 581 transponders. If, however, the optical impairments of the single 582 channel fiber link between the optical transponder and the add/drop 583 port of the ROADM cannot be neglected, it is necessary to represent 584 the fiber link with its optical impairments in the topology model 585 This also implies that the optical transponders belong to a separate 586 TE node 588 [Editor's note: this requires further study]. 590 . . . . . . . . . . . . . . . . . . 591 . Abstracted ROADM . 592 +-----.-------------------------------- .-----+ 593 | . ROADM . | 594 | . /| +-----------------+ |\ . | 595 Line | . / |--| |--| \ . | Line 596 WEST | /| . | |--| |--| | . |\ | EAST 597 ------+-/ |-.-| |--| OCX |--| |-.-| \-+----- 598 ------+-\ |-.-| |--| |--| |-.-| /-+----- 599 | \| . | |--| |--| | . |/ | 600 | . \ |--| |--| / . | 601 | . \| +-----------------+ |/ . | 602 +-----.---------|----|---|----|---------.-----| 603 Colored OT . +-+ ++ ++ +-+ . 604 line I/F . | | | | . 605 . +---+ +---+ +---+ +---+ . 606 . | O | | O | | O | | O | . 607 . | T | | T | | T | | T | . 608 . +---+ +---+ +---+ +---+ . 609 . . . .|.| . |.| . |.| . |.|. . . . 610 | | | | | | | | TE Node 611 Client Interfaces 613 Figure 7: ROADM Architectiure with Remote Transponders 615 2.8.3. Disaggregated ROADMs Subdivided into Degree, Add/Drop, and 616 Optical Transponder Subsystems 618 Recently, some DWDM network operators started demanding ROADM 619 subsystems from their vendors. An example is the OpenROADM project 620 where multiple operators and vendors are developing related YANG 621 models. The subsystems of a disaggregated ROADM are: single degree 622 subsystems, add/drop subsystems and optical transponder subsystems. 623 These subsystems separate network elements and each network element 624 provides a separate management and control interface. The subsystems 625 are typically interconnected using short fiber patch cables and form 626 together a disaggregated ROADM node. This disaggregated ROADM 627 architecture is depicted in Figure 8 below. 629 As this document defines TE topology YANG model augmentations 630 [I-D.ietf-teas-yang-te-topo] for the TE topology YANG model provided 631 at the north-bound interface of the optical domain controller, it is 632 a valid assumption that the optical domain controller abstracts the 633 subsystems of a disaggregated ROADM and presents the disaggregated 634 ROADM in the same way as an integrated ROADM hiding all the 635 interconnects that are not relevant from an external TE topology 636 view. 638 . . . . . . . . . . . . . . . . . . 639 . Abstracted ROADM . 640 +-----.----------+ +----------.-----+ 641 | Degree 1 | | Degree 2 | 642 Line | . +-----+ | + +-----+ . | Line 643 1 | /| . | W |-|------------|-| W | . |\ | 2 644 -----+-/ |-.--| S ******** ******** S |--.-| \-+----- 645 -----+-\ |-.--| S | | * * | | S |--.-| /-+----- 646 | \| . | |-|-+ * * +-|-| | . |/ | 647 | . +-+-+-+ | | * * | | +-+-+-+ . | 648 +-----.----|-----+ | * * | +-----|----.-----+ 649 . | | * * | | . 650 +-----.----|-----+ | * * | +-----|----.-----+ 651 | Degree 4 | | | * * | | | Degree 3 | 652 Line | . +-----+ | | * * | | +-----+ . | Line 653 4 | /| . | W |-|-|--*--*--+ | | W | . |\ | 3 654 -----+-/ |-.--| S | | +--*--*----|-| S |--.-| \-+----- 655 -----+-\ |-.--| S |-|----*--*----|-| S |--.-| /-+----- 656 | \| . | | | * * | | | . |/ | 657 | . +--*--+ | * * | +--*--+ . | 658 +-----.-----*----+ * * +----*-----.-----+ 659 . * * * * . 660 . +--*---------*--*---------*--+ . 661 . | ADD | . 662 . | DROP | . 663 . +----------------------------+ . 664 Colored OT . | | | | . 665 Line I/F . +---+ +---+ +---+ +---+ . 666 . | O | | O | | O | | O | . 667 . | T | | T | | T | | T | . 668 . +---+ +---+ +---+ +---+ . 669 . . .|.| . |.| . |.| . |.|. . . 670 | | | | | | | | TE Node 671 Client Interfaces 673 Figure 8: Disaggregated ROADM Architecture with Remote Transponders 675 2.8.4. Optical Impairments Imposed by ROADM Nodes 677 When an optical OTSi signal traverses a ROADM node, optical 678 impairments are imposed on the signal by various passive or active 679 optical components inside the ROADM node. Examples of optical 680 impairments are: 682 o Chromatic dispersion (CD) 683 o Polarization mode dispersion (PMD) 684 o Polarization dependent loss (PDL) 685 o Optical amplifier noise due to amplified spontaneous emission 686 (ASE) 687 o In-band cross-talk 688 o Filtering effects (for further study) 690 A ROADM node contains a wavelength selective photonic switching 691 function (WSS)that is capable of switching media channels (MCs) 692 described in Section 2.3.4. These MCs can be established between two 693 line ports of the ROADM or between a line port and an Add/Drop port 694 of the ROADM. The Add/Drop ports of a ROADM are those ports to which 695 optical transponders are connected. Typically, this is a single 696 channel signal (single OTSi), but principally this could also be a 697 group of OTSi signals. The optical impairments associated with these 698 MCs are different and the paths of the MCs inside the ROADM node can 699 be categorized as follows: 701 o Express path: MC path between two line ports of the ROADM 702 (unidirectional) 704 o Add Path: MC path from an Add port to a line port of the ROADM 706 o Drop path: MC path from a line port to a Drop port of the ROADM 708 Due to the symmetrical architecture of the ROADM node, the optical 709 impairments associated with the express path are typically the same 710 between any two line ports of the ROADM whereas the optical 711 impairments for the add and drop paths are different and therefore 712 have to be modeled separately. 714 The optical impairments associated with each of the three types of 715 ROADM-node-internal paths described above are modeled as optical 716 impairment parameter sets. These parameter sets are modeled as an 717 augmentation of the te-node-attributes defined in 718 [I-D.ietf-teas-yang-te-topo]. The te-node-attributes are augmented 719 with a list of roadm-path-impairments for the three ROADM path types 720 distinguished by the impairment-type. Each roadm-path-impairments 721 list entry contains the set of optical impairment parameters for one 722 of the three path types indicated by the impairment-type. For the 723 optical feasibility calculation based on the optical impairments, it 724 is necessary to know whether the optical power of the OTSi stays 725 within a certain power window. This is reflected by some optical 726 power related parameters such as loss parameters or power parameters, 727 which are included in the optical impairment parameter sets (see tree 728 view in Section 3). 730 [I-D.ietf-teas-yang-te-topo] defines a connectivity matrix and a 731 local link connectivity list for the TE node. The connectivity 732 matrix describes the connectivity for the express paths between the 733 different lines of the ROADM and the local link connectivity list 734 describes the connectivity for the Add and Drop paths of the ROADM. 735 These matrices are augmented with a new roadm-path-impairment matrix 736 element, an add-path-impairment, and drop-path-impairment matrix 737 element, respectively, which are defined as a pointer to the 738 corresponding entry in the roadm-path-impairments list (leaf-ref). 740 [Editor's note: this section is still work in progress] 742 3. YANG Model (Tree Structure) 744 module: ietf-optical-impairment-topology 745 augment /nw:networks/nw:network/nw:network-types/tet:te-topology: 746 +--rw optical-impairment-topology! 747 augment /nw:networks/nw:network/nt:link/tet:te/ 748 tet:te-link-attributes: 749 +--ro OMS-attributes 750 +--ro generalized-snr? decimal64 751 +--ro equalization-mode identityref 752 +--ro (power-param)? 753 | +--:(channel-power) 754 | | +--ro nominal-channel-power? decimal64 755 | +--:(power-spectral-density) 756 | +--ro nominal-power-spectral-density? decimal64 757 +--ro media-channel-group* [i] 758 | +--ro i int16 759 | +--ro media-channels* [flexi-n] 760 | +--ro flexi-n uint16 761 | +--ro flexi-m? uint16 762 | +--ro OTSiG-ref? -> /nw:networks/network/node/tet:te/ 763 tunnel-termination-point/OTSiG-element/OTSiG-identifier 764 | +--ro OTSi-ref? -> /nw:networks/network/node/tet:te/ 765 tunnel-termination-point/ 766 OTSiG-element[OTSiG-identifier=current()/../OTSiG-ref]/ 767 OTSiG-container/OTSi/OTSi-carrier-id 768 +--ro OMS-elements* [elt-index] 769 +--ro elt-index uint16 770 +--ro uid? string 771 +--ro type identityref 772 +--ro element 773 +--ro (element)? 774 +--:(amplifier) 775 | +--ro amplifier 776 | +--ro type-variety string 777 | +--ro operational 778 | +--ro actual-gain decimal64 779 | +--ro tilt-target decimal64 780 | +--ro out-voa decimal64 781 | +--ro in-voa decimal64 782 | +--ro (power-param)? 783 | +--:(channel-power) 784 | | +--ro nominal-channel-power? 785 decimal64 786 | +--:(power-spectral-density) 787 | +--ro nominal-power-spectral-density? 788 decimal64 789 +--:(fiber) 790 | +--ro fiber 791 | +--ro type-variety string 792 | +--ro length decimal64 793 | +--ro loss-coef decimal64 794 | +--ro total-loss decimal64 795 | +--ro pmd? decimal64 796 | +--ro conn-in? decimal64 797 | +--ro conn-out? decimal64 798 +--:(concentratedloss) 799 +--ro concentratedloss 800 +--ro loss? decimal64 801 augment /nw:networks/nw:network/nw:node/tet:te/ 802 tet:tunnel-termination-point: 803 +--ro OTSiG-element* [OTSiG-identifier] 804 | +--ro OTSiG-identifier int16 805 | +--ro OTSiG-container 806 | +--ro OTSi* [OTSi-carrier-id] 807 | +--ro OTSi-carrier-id int16 808 | +--ro OTSi-carrier-frequency? decimal64 809 | +--ro OTSi-signal-width? decimal64 810 | +--ro channel-delta-power? decimal64 811 +--ro transponders-list* [transponder-id] 812 +--ro transponder-id uint32 813 +--ro (mode)? 814 | +--:(G.692.2) 815 | | +--ro standard-mode? standard-mode 816 | +--:(organizational-mode) 817 | | +--ro operational-mode? operational-mode 818 | | +--ro organization-identifier? vendor-identifier 819 | +--:(explicit-mode) 820 | +--ro available-modulation-types* identityref 821 | +--ro configured-modulation-type? identityref 822 | +--ro available-baud-rates* uint32 823 | +--ro configured-baud-rate? uint32 824 | +--ro available-FEC-types* identityref 825 | +--ro configured-FEC-type? identityref 826 | +--ro FEC-code-rate? decimal64 827 | +--ro FEC-threshold? decimal64 828 +--ro power? int32 829 +--ro power-min? int32 830 +--ro power-max? int32 831 augment /nw:networks/nw:network/nw:node/tet:te/ 832 tet:tunnel-termination-point: 833 +--ro transponder-list* [carrier-id] 834 +--ro carrier-id uint32 835 augment /nw:networks/nw:network/nw:node/tet:te/ 836 tet:te-node-attributes: 837 +--ro roadm-path-impairments* [roadm-path-impairments-id] 838 +--ro roadm-path-impairments-id uint32 839 +--ro (impairment-type)? 840 +--:(roadm-express-path) 841 | +--ro roadm-express-path 842 | +--ro roadm-pmd? decimal64 843 | +--ro roadm-cd? decimal64 844 | +--ro roadm-pdl? decimal64 845 | +--ro roadm-inband-crosstalk? decimal64 846 | +--ro roadm-maxloss? decimal64 847 +--:(roadm-add-path) 848 | +--ro roadm-add-path 849 | +--ro roadm-pmd? decimal64 850 | +--ro roadm-cd? decimal64 851 | +--ro roadm-pdl? decimal64 852 | +--ro roadm-inband-crosstalk? decimal64 853 | +--ro roadm-maxloss? decimal64 854 | +--ro roadm-pmax? decimal64 855 | +--ro roadm-osnr? decimal64 856 | +--ro roadm-noise-figure? decimal64 857 +--:(roadm-drop-path) 858 +--ro roadm-drop-path 859 +--ro roadm-pmd? decimal64 860 +--ro roadm-cd? decimal64 861 +--ro roadm-pdl? decimal64 862 +--ro roadm-inband-crosstalk? decimal64 863 +--ro roadm-maxloss? decimal64 864 +--ro roadm-minloss? decimal64 865 +--ro roadm-typloss? decimal64 866 +--ro roadm-pmin? decimal64 867 +--ro roadm-pmax? decimal64 868 +--ro roadm-ptyp? decimal64 869 +--ro roadm-osnr? decimal64 870 +--ro roadm-noise-figure? decimal64 871 augment /nw:networks/nw:network/nw:node/tet:te/ 872 tet:information-source-entry/tet:connectivity-matrices: 873 +--ro roadm-path-impairments? -> ../../../ 874 tet:te-node-attributes/roadm-path-impairments/ 875 roadm-path-impairments-id 876 augment /nw:networks/nw:network/nw:node/tet:te/ 877 tet:information-source-entry/tet:connectivity-matrices/ 878 tet:connectivity-matrix: 879 +--ro roadm-path-impairments? -> ../../../../ 880 tet:te-node-attributes/roadm-path-impairments/ 881 roadm-path-impairments-id 882 augment /nw:networks/nw:network/nw:node/tet:te/ 883 tet:te-node-attributes/tet:connectivity-matrices: 884 +--ro roadm-path-impairments? -> ../../roadm-path-impairments/ 885 roadm-path-impairments-id 886 augment /nw:networks/nw:network/nw:node/tet:te/ 887 tet:te-node-attributes/tet:connectivity-matrices/ 888 tet:connectivity-matrix: 889 +--ro roadm-path-impairments? -> ../../../ 890 roadm-path-impairments/roadm-path-impairments-id 891 augment /nw:networks/nw:network/nw:node/tet:te/ 892 tet:tunnel-termination-point/tet:local-link-connectivities: 893 +--ro add-path-impairments? -> ../../../ 894 tet:te-node-attributes/roadm-path-impairments/ 895 roadm-path-impairments-id 896 +--ro drop-path-impairments? -> ../../../ 897 tet:te-node-attributes/roadm-path-impairments/ 898 roadm-path-impairments-id 899 augment /nw:networks/nw:network/nw:node/tet:te/ 900 tet:tunnel-termination-point/tet:local-link-connectivities/ 901 tet:local-link-connectivity: 902 +--ro add-path-impairments? -> ../../../../ 903 tet:te-node-attributes/roadm-path-impairments/ 904 roadm-path-impairments-id 905 +--ro drop-path-impairments? -> ../../../../ 906 tet:te-node-attributes/roadm-path-impairments/ 907 roadm-path-impairments-id 909 4. Optical Impairment Topology YANG Model 911 [Editor's note: YANG code below may have to be updated before 912 submission!] 914 915 module ietf-optical-impairment-topology { 916 yang-version 1.1; 918 namespace "urn:ietf:params:xml" 919 +":ns:yang:ietf-optical-impairment-topology"; 921 prefix "optical-imp-topo"; 923 import ietf-network { 924 prefix "nw"; 926 } 928 import ietf-network-topology { 929 prefix "nt"; 930 } 932 import ietf-te-topology { 933 prefix "tet"; 934 } 936 import ietf-layer0-types { 937 prefix "layer0-types"; 938 } 940 organization 941 "IETF CCAMP Working Group"; 943 contact 944 "Editor: Young Lee 945 Editor: Haomian Zheng 946 Editor: Nicola Sambo 947 Editor: Victor Lopez 948 Editor: Gabriele Galimberti 949 Editor: Giovanni Martinelli 950 Editor: Jean-Luc Auge 951 Editor: Le Rouzic Esther 952 Editor: Julien Meuric 953 Editor: Italo Busi 954 Editor: Dieter Beller 955 Editor: Sergio Belotti 956 Editor: Griseri Enrico 957 Editor: Gert Grammel "; 959 description 960 "This module contains a collection of YANG definitions for 961 impairment-aware optical networks. 963 Copyright (c) 2019 IETF Trust and the persons identified as 964 authors of the code. All rights reserved. 966 Redistribution and use in source and binary forms, with or 967 without modification, is permitted pursuant to, and subject 968 to the license terms contained in, the Simplified BSD 969 License set forth in Section 4.c of the IETF Trust's Legal 970 Provisions Relating to IETF Documents 971 (http://trustee.ietf.org/license-info)."; 973 revision 2020-03-09 { 974 description 975 "Initial Version"; 976 reference 977 "RFC XXXX: A Yang Data Model for Impairment-aware 978 Optical Networks"; 979 } 981 // identity 983 identity modulation { 984 description "base identity for modulation type"; 985 } 987 identity QPSK { 988 base modulation; 989 description 990 "QPSK (Quadrature Phase Shift Keying) modulation"; 991 } 993 identity DP-QPSK { 994 base modulation; 995 description 996 "DP-QPSK (Dual Polarization Quadrature 997 Phase Shift Keying) modulation"; 998 } 999 identity QAM8 { 1000 base modulation; 1001 description 1002 "8QAM (8-State Quadrature Amplitude Modulation) modulation"; 1003 } 1004 identity QAM16 { 1005 base modulation; 1006 description 1007 "QAM16 (Quadrature Amplitude Modulation)"; 1008 } 1009 identity DP-QAM8 { 1010 base modulation; 1011 description 1012 "DP-QAM8 (Dual Polarization Quadrature Amplitude Modulation)"; 1013 } 1014 identity DC-DP-QAM8 { 1015 base modulation; 1016 description 1017 "DC DP-QAM8 (Dual Polarization Quadrature Amplitude Modulation)"; 1018 } 1019 identity DP-QAM16 { 1020 base modulation; 1021 description 1022 "DP-QAM16 (Dual Polarization Quadrature Amplitude Modulation)"; 1023 } 1024 identity DC-DP-QAM16 { 1025 base modulation; 1026 description 1027 "DC DP-QAM16 (Dual Polarization Quadrature 1028 Amplitude Modulation)"; 1029 } 1031 identity FEC { 1032 description 1033 "Enumeration that defines the type of 1034 Forward Error Correction"; 1035 } 1036 identity reed-solomon { 1037 base FEC; 1038 description 1039 "Reed-Solomon error correction"; 1040 } 1041 identity hamming-code { 1042 base FEC; 1043 description 1044 "Hamming Code error correction"; 1045 } 1046 identity golay { 1047 base FEC; 1048 description "Golay error correction"; 1049 } 1051 // typedef 1053 typedef fiber-type { 1054 type enumeration { 1055 enum G.652 { 1056 description "G.652 Standard Singlemode Fiber"; 1057 } 1058 enum G.654 { 1059 description "G.654 Cutoff Shifted Fiber"; 1060 } 1061 enum G.653 { 1062 description "G.653 Dispersion Shifted Fiber"; 1063 } 1064 enum G.655 { 1065 description "G.655 Non-Zero Dispersion Shifted Fiber"; 1066 } 1067 enum G.656 { 1068 description "G.656 Non-Zero Dispersion for Wideband 1069 Optical Transport"; 1071 } 1072 enum G.657 { 1073 description "G.657 Bend-Insensitive Fiber"; 1074 } 1075 } 1076 description 1077 "ITU-T based fiber-types"; 1078 } 1080 /*temporary defined here for disalignment with*/ 1081 /* ietf-layer0-types module*/ 1083 typedef operational-mode { 1084 type string; 1085 description 1086 "Vendor-specific mode that guarantees 1087 interoperability."; 1088 reference "ITU-T G.698.2 (11/2018)"; 1089 } 1091 // temporary defined here for disalignment with 1092 //ietf-layer0-types module 1093 typedef standard-mode { 1094 type string; 1095 description 1096 "ITU-T G.698.2 standard mode that guarantees 1097 interoperability. 1098 It must be an string with the following format: 1099 B-DScW-ytz(v) where all these attributes 1100 are conformant 1101 to the ITU-T recomendation"; 1102 reference "ITU-T G.698.2 (11/2018)"; 1103 } 1105 // temporary defined here for disalignment 1106 //with ietf-layer0-types module 1107 typedef vendor-identifier { 1108 type string; 1109 description 1110 "vendor identifier that uses vendor-specific mode"; 1111 reference 1112 "RFC7581: Routing and Wavelength Assignment Information 1113 Encoding for Wavelength Switched Optical Networks"; 1114 } 1116 // grouping 1118 grouping transponder-attributes { 1119 description "Configuration of an optical transponder"; 1121 leaf-list available-modulation-types { 1122 type identityref { 1123 base modulation; 1124 } 1125 config false; 1126 description 1127 "List of modulation types the OTSi supports"; 1128 } 1130 leaf configured-modulation-type { 1131 type identityref { 1132 base modulation; 1133 } 1134 config false; 1135 description 1136 "Currently configured OTSi modulation type"; 1137 } 1139 leaf-list available-baud-rates { 1140 type uint32; 1141 units Bd; 1142 config false; 1143 description 1144 "list of available baud-rates. 1145 Baud-rate is the unit for 1146 symbol rate or modulation rate 1147 in symbols per second or 1148 pulses per second. 1149 It is the number of distinct symbol 1150 changes (signal events) made to the 1151 transmission medium 1152 per second in a digitally 1153 modulated signal or a line code"; 1154 } 1156 leaf configured-baud-rate { 1157 type uint32; 1158 units Bd; 1159 config false; 1160 description "configured baud-rate"; 1161 } 1163 leaf-list available-FEC-types { 1164 type identityref { 1165 base FEC; 1166 } 1167 config false; 1168 description "List determining all the available FEC"; 1169 } 1171 leaf configured-FEC-type { 1172 type identityref { 1173 base FEC; 1174 } 1175 config false; 1176 description 1177 "FEC type configured for the transponder"; 1178 } 1180 leaf FEC-code-rate { 1181 type decimal64 { 1182 fraction-digits 8; 1183 range "0..max"; 1184 } 1185 config false; 1186 description "FEC-code-rate"; 1187 } 1189 leaf FEC-threshold { 1190 type decimal64 { 1191 fraction-digits 8; 1192 range "0..max"; 1193 } 1194 config false; 1195 description 1196 "Threshold on the BER, for which FEC 1197 is able to correct errors"; 1198 } 1200 } 1202 grouping sliceable-transponder-attributes { 1203 description 1204 "Configuration of a sliceable transponder."; 1205 list transponder-list { 1206 key "carrier-id"; 1207 config false; 1208 description "List of carriers"; 1209 leaf carrier-id { 1210 type uint32; 1211 config false; 1212 description "Identifier of the carrier"; 1213 } 1214 } 1216 } 1218 grouping optical-fiber-data { 1219 description 1220 "optical link (fiber) attributes with impairment data"; 1221 leaf fiber-type { 1222 type fiber-type; 1223 config false; 1224 description "fiber-type"; 1225 } 1227 leaf span-length { 1228 type decimal64 { 1229 fraction-digits 2; 1230 } 1231 units "km"; 1232 config false; 1233 description "the lenght of the fiber span in km"; 1234 } 1236 leaf input-power { 1237 type decimal64 { 1238 fraction-digits 2; 1239 } 1240 units "dBm"; 1241 config false; 1242 description 1243 "Average input power level estimated at the receiver 1244 of the link"; 1245 } 1247 leaf output-power { 1248 type decimal64 { 1249 fraction-digits 2; 1250 } 1251 units "dBm"; 1252 description 1253 "Mean launched power at the transmitter of the link"; 1254 } 1256 leaf pmd { 1257 type decimal64 { 1258 fraction-digits 8; 1259 range "0..max"; 1260 } 1261 units "ps/(km)^0.5"; 1262 config false; 1263 description 1264 "Polarization Mode Dispersion"; 1265 } 1267 leaf cd { 1268 type decimal64 { 1269 fraction-digits 5; 1270 } 1271 units "ps/nm/km"; 1272 config false; 1273 description 1274 "Cromatic Dispersion"; 1275 } 1277 leaf osnr { 1278 type decimal64 { 1279 fraction-digits 5; 1280 } 1281 units "dB"; 1282 config false; 1283 description 1284 "Optical Signal-to-Noise Ratio (OSNR) estimated 1285 at the receiver"; 1286 } 1288 leaf sigma { 1289 type decimal64 { 1290 fraction-digits 5; 1291 } 1292 units "dB"; 1293 config false; 1294 description 1295 "sigma in the Gausian Noise Model"; 1296 } 1297 } 1299 grouping optical-channel-data { 1300 description 1301 "optical impairment data per channel/wavelength"; 1302 leaf bit-rate { 1303 type decimal64 { 1304 fraction-digits 8; 1305 range "0..max"; 1306 } 1307 units "Gbit/s"; 1308 config false; 1309 description 1310 "Gross bit rate"; 1311 } 1312 leaf BER { 1313 type decimal64 { 1314 fraction-digits 18; 1315 range "0..max"; 1316 } 1317 config false; 1318 description 1319 "BER (Bit Error Rate)"; 1320 } 1322 leaf ch-input-power { 1323 type decimal64 { 1324 fraction-digits 2; 1325 } 1326 units "dBm"; 1327 config false; 1328 description 1329 "Per channel average input power level 1330 estimated at the receiver of the link"; 1331 } 1333 leaf ch-pmd { 1334 type decimal64 { 1335 fraction-digits 8; 1336 range "0..max"; 1337 } 1338 units "ps/(km)^0.5"; 1339 config false; 1340 description 1341 "per channel Polarization Mode Dispersion"; 1342 } 1344 leaf ch-cd { 1345 type decimal64 { 1346 fraction-digits 5; 1347 } 1348 units "ps/nm/km"; 1349 config false; 1350 description 1351 "per channel Cromatic Dispersion"; 1352 } 1354 leaf ch-osnr { 1355 type decimal64 { 1356 fraction-digits 5; 1357 } 1358 units "dB"; 1359 config false; 1360 description 1361 "per channel Optical Signal-to-Noise Ratio 1362 (OSNR) estimated at the receiver"; 1363 } 1365 leaf q-factor { 1366 type decimal64 { 1367 fraction-digits 5; 1368 } 1369 units "dB"; 1370 config false; 1371 description 1372 "q-factor estimated at the receiver"; 1373 } 1374 } 1376 grouping standard-mode { 1377 description 1378 "ITU-T G.698.2 standard mode that guarantees interoperability. 1379 It must be an string with the following format: 1380 B-DScW-ytz(v) where all these attributes are conformant 1381 to the ITU-T recomendation"; 1383 leaf standard-mode { 1384 type standard-mode; 1385 config false; 1386 description 1387 "G.698.2 standard mode"; 1388 } 1389 } 1391 grouping organizational-mode { 1392 description 1393 "Transponder operational mode supported by organizations or 1394 vendor"; 1396 leaf operational-mode { 1397 type operational-mode; 1398 config false; 1399 description 1400 "configured organization- or vendor-specific 1401 application identifiers (AI) supported by the transponder"; 1402 } 1404 leaf organization-identifier { 1405 type vendor-identifier; 1406 config false; 1407 description 1408 "organization identifier that uses organizational 1409 mode"; 1411 } 1412 } 1414 /* 1415 * Identities 1416 */ 1417 identity type-element { 1418 description 1419 "Base identity for element type"; 1420 } 1422 identity Fiber { 1423 base type-element; 1424 description 1425 "Fiber element"; 1426 } 1428 identity Roadm { 1429 base type-element; 1430 description 1431 "Roadm element"; 1432 } 1434 identity Edfa { 1435 base type-element; 1436 description 1437 "Edfa element"; 1438 } 1440 identity Concentratedloss { 1441 base type-element; 1442 description 1443 "Concentratedloss element"; 1444 } 1446 identity type-power-mode { 1447 description 1448 "power equalization mode used within the 1449 OMS and its elements"; 1450 } 1452 identity power-spectral-density { 1453 base type-power-mode; 1454 description 1455 "all elements must use power spectral density (W/Hz)"; 1457 } 1459 identity channel-power { 1460 base type-power-mode; 1461 description 1462 "all elements must use power (dBm)"; 1463 } 1465 /* 1466 * Groupings 1467 */ 1468 grouping amplifier-params { 1469 description "describes parameters for an amplifier"; 1470 container amplifier{ 1471 description "amplifier type, operatonal parameters 1472 are described"; 1473 leaf type-variety { 1474 type string ; 1475 mandatory true ; 1476 description 1477 "String identifier of amplifier type referencing 1478 a specification in a separate equipment catalog"; 1479 } 1480 container operational { 1481 description "amplifier operationnal parameters"; 1482 leaf actual-gain { 1483 type decimal64 { 1484 fraction-digits 2; 1485 } 1486 units dB ; 1487 mandatory true ; 1488 description ".."; 1489 } 1490 leaf tilt-target { 1491 type decimal64 { 1492 fraction-digits 2; 1493 } 1494 mandatory true ; 1495 description ".."; 1496 } 1497 leaf out-voa { 1498 type decimal64 { 1499 fraction-digits 2; 1500 } 1501 units dB; 1502 mandatory true; 1503 description ".."; 1504 } 1505 leaf in-voa { 1506 type decimal64 { 1507 fraction-digits 2; 1508 } 1509 units dB; 1510 mandatory true; 1511 description ".."; 1512 } 1513 uses power-param; 1514 } 1515 } 1516 } 1518 grouping fiber-params { 1519 description 1520 "String identifier of fiber type referencing a 1521 specification in a separate equipment catalog"; 1522 container fiber { 1523 description "fiber characteristics"; 1524 leaf type-variety { 1525 type string ; 1526 mandatory true ; 1527 description "fiber type"; 1528 } 1529 leaf length { 1530 type decimal64 { 1531 fraction-digits 2; 1532 } 1533 units km; 1534 mandatory true ; 1535 description "length of fiber"; 1536 } 1537 leaf loss-coef { 1538 type decimal64 { 1539 fraction-digits 2; 1540 } 1541 units dB/km; 1542 mandatory true ; 1543 description "loss coefficient of the fiber"; 1544 } 1545 leaf total-loss { 1546 type decimal64 { 1547 fraction-digits 2; 1548 } 1549 units dB; 1550 mandatory true ; 1551 description 1552 "includes all losses: fiber loss and conn-in and 1553 conn-out losses"; 1554 } 1555 leaf pmd{ 1556 type decimal64 { 1557 fraction-digits 2; 1558 } 1559 units sqrt(ps); 1560 description "pmd of the fiber"; 1561 } 1562 leaf conn-in{ 1563 type decimal64 { 1564 fraction-digits 2; 1565 } 1566 units dB; 1567 description "connector-in"; 1568 } 1569 leaf conn-out{ 1570 type decimal64 { 1571 fraction-digits 2; 1572 } 1573 units dB; 1574 description "connector-out"; 1575 } 1576 } 1577 } 1579 grouping roadm-express-path { 1580 description "roadm express path optical impairments"; 1582 container roadm-express-path { 1583 description "roadm parameters per express path"; 1585 leaf roadm-pmd { 1586 type decimal64 { 1587 fraction-digits 8; 1588 range "0..max"; 1589 } 1590 units "ps/(km)^0.5"; 1591 description 1592 "Polarization Mode Dispersion"; 1593 } 1594 leaf roadm-cd { 1595 type decimal64 { 1596 fraction-digits 5; 1597 } 1598 units "ps/nm"; 1599 description "Chromatic Dispersion"; 1600 } 1601 leaf roadm-pdl { 1602 type decimal64 { 1603 fraction-digits 2; 1604 } 1605 units dB ; 1606 description "Polarization dependent loss"; 1607 } 1608 leaf roadm-inband-crosstalk { 1609 type decimal64 { 1610 fraction-digits 2; 1611 } 1612 units dB; 1613 description 1614 "In-band crosstalk, or coherent crosstalk, can occur in 1615 components that can have multiple same wavelength inputs 1616 with the inputs either routed to different output ports, 1617 or all but 1 blocked"; 1618 } 1619 leaf roadm-maxloss { 1620 type decimal64 { 1621 fraction-digits 2; 1622 } 1623 units dB; 1624 description 1625 "This is the maximum expected add path loss from the 1626 ROADM ingress to the ROADM egress 1627 assuming no additional add path loss is added"; 1628 } 1629 } 1630 } 1632 grouping roadm-add-path { 1633 description "roadm add block path optical impairments"; 1635 container roadm-add-path { 1636 description "roadm optical impairment parameters 1637 per add path"; 1639 leaf roadm-pmd { 1640 type decimal64 { 1641 fraction-digits 8; 1642 range "0..max"; 1643 } 1644 units "ps"; 1645 description 1646 "Polarization Mode Dispersion"; 1648 } 1649 leaf roadm-cd { 1650 type decimal64 { 1651 fraction-digits 5; 1652 } 1653 units "ps/nm"; 1654 description "Cromatic Dispersion"; 1655 } 1656 leaf roadm-pdl { 1657 type decimal64 { 1658 fraction-digits 2; 1659 } 1660 units dB ; 1661 description "Polarization dependent loss"; 1662 } 1663 leaf roadm-inband-crosstalk { 1664 type decimal64 { 1665 fraction-digits 2; 1666 } 1667 units dB ; 1668 description 1669 "In-band crosstalk, or coherent crosstalk, 1670 can occur in components that can have multiple same 1671 wavelength inputs,with the inputs either 1672 routed to different output ports, 1673 or all but 1 blocked. 1674 In the case of add path it is the total 1675 of the add block 1676 + egress WSS crosstalk contributions."; 1677 } 1678 leaf roadm-maxloss { 1679 type decimal64 { 1680 fraction-digits 2; 1681 } 1682 units dB ; 1683 description 1684 "This is the maximum expected add path loss from 1685 the add/drop port input to the ROADM egress, 1686 assuming no additional add path loss is added. 1687 This is used to establish the minimum required 1688 transponder output power required 1689 to hit the ROADM egress target power 1690 levels and preventing 1691 to hit the WSS attenuation limits. 1692 If the add path contains an internal amplifier 1693 this loss value should be based 1694 on worst case expected amplifier gain due to 1695 ripple or gain uncertainty"; 1697 } 1698 leaf roadm-pmax { 1699 type decimal64 { 1700 fraction-digits 2; 1701 } 1702 units dBm ; 1703 description 1704 "This is the maximum (per carrier) power level 1705 permitted at the add block input ports, 1706 that can be handled by the ROADM node. 1707 This may reflect either add amplifier power 1708 contraints or WSS adjustment limits. 1709 Higher power transponders would need to have 1710 their launch power reduced 1711 to this value or lower"; 1712 } 1713 leaf roadm-osnr { 1714 type decimal64 { 1715 fraction-digits 5; 1716 } 1717 units "dB"; 1718 description 1719 "Optical Signal-to-Noise Ratio (OSNR). 1720 If the add path contains the ability to adjust the 1721 carrier power levels into an add path amplifier 1722 (if present) to a target value, 1723 this reflects the OSNR contribution of the 1724 add amplifier assuming this target value is obtained. 1725 The worst case OSNR based on the input power and 1726 NF calculation method, and this value, should be used 1727 (if both are defined)."; 1728 } 1729 leaf roadm-noise-figure { 1730 type decimal64 { 1731 fraction-digits 5; 1732 } 1733 units "dB"; 1734 description 1735 "Noise Figure. If the add path contains an amplifier, 1736 this is the noise figure of that amplifier inferred 1737 to the add port. 1738 This permits add path OSNR calculation based 1739 on the input power levels to the add block 1740 without knowing the ROADM path losses to 1741 the add amplifier."; 1742 } 1743 } 1744 } 1745 grouping roadm-drop-path { 1746 description "roadm drop block path optical impairments"; 1748 container roadm-drop-path { 1749 description "roadm optical impairment parameters 1750 per drop path"; 1752 leaf roadm-pmd { 1753 type decimal64 { 1754 fraction-digits 8; 1755 range "0..max"; 1756 } 1757 units "ps/(km)^0.5"; 1758 description 1759 "Polarization Mode Dispersion"; 1760 } 1761 leaf roadm-cd { 1762 type decimal64 { 1763 fraction-digits 5; 1764 } 1765 units "ps/nm"; 1766 description "Chromatic Dispersion"; 1767 } 1768 leaf roadm-pdl { 1769 type decimal64 { 1770 fraction-digits 2; 1771 } 1772 units dB ; 1773 description "Polarization dependent loss"; 1774 } 1775 leaf roadm-inband-crosstalk { 1776 type decimal64 { 1777 fraction-digits 2; 1778 } 1779 units dB; 1780 description 1781 "In-band crosstalk, or coherent crosstalk, can occur in 1782 components that can have multiple same wavelength 1783 inputs,with the inputs either routed to different 1784 output ports,or all but 1 blocked. 1785 In the case of drop path it is the total 1786 of the ingress 1787 to drop e.g. WSS and drop block crosstalk 1788 contributions."; 1789 } 1790 leaf roadm-maxloss { 1791 type decimal64 { 1792 fraction-digits 2; 1794 } 1795 units dB ; 1796 description 1797 "The net loss from the ROADM input,to the output 1798 of the drop block. 1799 If ROADM ingress to drop path includes an amplifier, 1800 the amplifier gain reduces the net loss. 1801 This is before any additional drop path attenuation 1802 that may be required 1803 due to drop amplifier power contraints. 1804 The max value correspond to worst case expected loss, 1805 including amplifier gain ripple or uncertainty. 1806 It is the maximum output power of the drop 1807 amplifier."; 1808 } 1809 leaf roadm-minloss { 1810 type decimal64 { 1811 fraction-digits 2; 1812 } 1813 units dB ; 1814 description 1815 "The net loss from the ROADM input, to the 1816 output of the drop block. 1817 If this ROADM ingress to drop path includes 1818 an amplifier,the amplifier gain reduces the net loss. 1819 This is before any additional drop path attenuation 1820 that may be required due to drop amplifier power 1821 contraints. 1822 The min value correspond to best case expected loss, 1823 including amplifier gain ripple or uncertainty."; 1824 } 1825 leaf roadm-typloss { 1826 type decimal64 { 1827 fraction-digits 2; 1828 } 1829 units dB ; 1830 description 1831 "The net loss from the ROADM input, 1832 to the output of the drop block. 1833 If this ROADM ingress to drop path 1834 includes an amplifier, 1835 the amplifier gain reduces the net loss. 1836 This is before any additional drop path 1837 attenuation 1838 that may be required due to drop amplifier 1839 power contraints. 1840 The typ value correspond to typical case 1841 expected loss."; 1843 } 1844 leaf roadm-pmin { 1845 type decimal64 { 1846 fraction-digits 2; 1847 } 1848 units dBm ; 1849 description 1850 "If the drop path has additional loss 1851 that is added, for example, 1852 to hit target power levels into a 1853 drop path amplifier, or simply, to reduce the 1854 power of a "strong" carrier 1855 (due to ripple,for example), 1856 then the use of the ROADM input power levels and 1857 the above drop losses is not appropriate. 1858 This parameter corresponds to the min per 1859 carrier power levels 1860 expected at the output of the drop block. 1861 A detail example of the comparison using 1862 these parameters is 1863 detailed in section xxx of the document yyy."; 1864 } 1865 leaf roadm-pmax { 1866 type decimal64 { 1867 fraction-digits 2; 1868 } 1869 units dBm ; 1870 description 1871 "If the drop path has additional loss that is added, 1872 for example, to hit target power levels into a 1873 drop path amplifier,or simply,to reduce the power 1874 of a "strong" carrier(due to ripple,for example), 1875 then the use of the ROADM input power levels and the 1876 above drop losses is not appropriate. 1877 This parameter corresponds to the best case per 1878 carrier power levels expected at the output of the 1879 drop block. 1880 A detail example of the comparison using 1881 these parameters 1882 is detailed in section xxx of the document yyy"; 1883 } 1884 leaf roadm-ptyp { 1885 type decimal64 { 1886 fraction-digits 2; 1887 } 1888 units dBm ; 1889 description 1890 "If the drop path has additional loss that is added, 1891 for example, to hit target power levels into a 1892 drop path amplifier,or simply,to reduce the 1893 power of a "strong" carrier(due to ripple,for example), 1894 then the use of the ROADM input power levels and 1895 the above drop losses is not appropriate. 1896 This parameter corresponds to the typical case 1897 per carrier power levels expected 1898 at the output of the drop block."; 1899 } 1900 leaf roadm-osnr { 1901 type decimal64 { 1902 fraction-digits 5; 1903 } 1904 units "dB"; 1905 description 1906 "Optical Signal-to-Noise Ratio (OSNR). 1907 Expected OSNR contribution of the drop path 1908 amplifier(if present) 1909 for the case of additional drop path loss 1910 (before this amplifier) 1911 in order to hit a target power level (per carrier). 1912 If both, the OSNR based on the ROADM 1913 input power level 1914 (Pcarrier = 1915 Pref+10Log(carrier-baudrate/ref-baud) + delta-power) 1916 and the input inferred NF(NF.drop), 1917 and this OSNR value, are defined, 1918 the minimum value between these two should be used"; 1919 } 1920 leaf roadm-noise-figure { 1921 type decimal64 { 1922 fraction-digits 5; 1923 } 1924 units "dB"; 1925 description 1926 "Drop path Noise Figure. 1927 If the drop path contains an amplifier, 1928 this is the noise figure 1929 of that amplifier, inferred to the 1930 ROADM ingress port. 1931 This permits to determine 1932 amplifier OSNR contribution 1933 without having to specify the 1934 ROADM node's losses to that amplifier. 1935 This applies for the case of no 1936 additional drop path loss, 1937 before the amplifier, in order to reduce the power 1938 of the carriers to a target value"; 1940 } 1941 } 1942 } 1944 grouping concentratedloss-params{ 1945 description "concentrated loss"; 1946 container concentratedloss{ 1947 description "concentrated loss"; 1948 leaf loss { 1949 type decimal64 { 1950 fraction-digits 2; 1951 } 1952 units dB ; 1953 description ".."; 1954 } 1955 } 1956 } 1958 grouping power-param{ 1959 description 1960 "optical power or PSD after the ROADM or after the out-voa"; 1961 choice power-param { 1962 description 1963 "select the mode: channel power or power spectral density"; 1964 case channel-power { 1965 /* when "equalization-mode='channel-power'"; */ 1966 leaf nominal-channel-power{ 1967 type decimal64 { 1968 fraction-digits 1; 1969 } 1970 units dBm ; 1971 description 1972 " Reference channel power after the ROADM or after 1973 the out-voa. "; 1974 } 1975 } 1976 case power-spectral-density{ 1977 /* when "equalization-mode='power-spectral-density'"; */ 1978 leaf nominal-power-spectral-density{ 1979 type decimal64 { 1980 fraction-digits 16; 1981 } 1982 units W/Hz ; 1983 description 1984 " Reference power spectral density after 1985 the ROADM or after the out-voa. 1986 Typical value : 3.9 E-14, resolution 0.1nW/MHz"; 1987 } 1989 } 1990 } 1991 } 1993 grouping oms-general-optical-params { 1994 description "OMS link optical parameters"; 1995 leaf generalized-snr { 1996 type decimal64 { 1997 fraction-digits 5; 1998 } 1999 units "dB@0.1nm"; 2000 description "generalized snr"; 2001 } 2002 leaf equalization-mode{ 2003 type identityref { 2004 base type-power-mode; 2005 } 2006 mandatory true; 2007 description "equalization mode"; 2008 } 2009 uses power-param; 2010 } 2012 grouping OTSiG { 2013 description "OTSiG definition , representing client 2014 digital information stream supported by 1 or more OTSi"; 2016 container OTSiG-container { 2017 config false; 2018 description 2019 "the container contains the related list of OTSi. 2020 The list could also be of only 1 element"; 2021 list OTSi { 2022 key "OTSi-carrier-id"; 2023 description 2024 "list of OTSi's under OTSi-G"; 2025 leaf OTSi-carrier-id { 2026 type int16; 2027 description "OTSi carrier-id"; 2028 } 2029 leaf OTSi-carrier-frequency { 2030 type decimal64 { 2031 fraction-digits 3; 2032 } 2033 units GHz; 2034 config false; 2035 description 2036 "OTSi carrier frequency"; 2038 } 2039 leaf OTSi-signal-width { 2040 type decimal64 { 2041 fraction-digits 3; 2042 } 2043 units GHz; 2044 config false; 2045 description 2046 "OTSi signal width"; 2047 } 2048 leaf channel-delta-power { 2049 type decimal64 { 2050 fraction-digits 2; 2051 } 2052 units dB; 2053 config false; 2054 description 2055 "optional ; delta power to ref channel 2056 input-power applied 2057 to this media channel"; 2058 } 2060 } 2061 } // OTSiG container 2062 } // OTSiG grouping 2064 grouping media-channel-groups { 2065 description "media channel groups"; 2066 list media-channel-group { 2067 key "i"; 2068 description 2069 "list of media channel groups"; 2070 leaf i { 2071 type int16; 2072 description "index of media channel group member"; 2073 } 2075 list media-channels { 2076 key "flexi-n"; 2077 description 2078 "list of media channels represented as (n,m)"; 2079 uses layer0-types:flexi-grid-channel; 2080 leaf OTSiG-ref { 2081 type leafref { 2082 path "/nw:networks/nw:network/nw:node/tet:te" + 2083 "/tet:tunnel-termination-point" + 2084 "/OTSiG-element/OTSiG-identifier" ; 2086 } 2087 description 2088 "Reference to the OTSiG list to get OTSiG 2089 identifier of the 2090 OSiG carried by this media channel 2091 that reports the transient stat"; 2092 } 2093 leaf OTSi-ref { 2094 type leafref { 2095 path "/nw:networks/nw:network/nw:node/tet:te" + 2096 "/tet:tunnel-termination-point/" 2097 +"OTSiG-element[OTSiG-identifier=current()" 2098 +"/../OTSiG-ref]/" 2099 + "OTSiG-container/OTSi/OTSi-carrier-id" ; 2100 } 2101 description 2102 "Reference to the OTSi list supporting the 2103 related OTSiG" ; 2104 } 2106 } // media channels list 2107 } // media-channel-groups list 2108 } // media media-channel-groups grouping 2110 grouping oms-element { 2111 description "OMS description"; 2112 list OMS-elements { 2113 key "elt-index"; 2114 description 2115 "defines the spans and the amplifier blocks of 2116 the amplified lines"; 2117 leaf elt-index { 2118 type uint16; 2119 description 2120 "ordered list of Index of OMS element 2121 (whether it's a Fiber, an EDFA or a 2122 Concentratedloss)"; 2123 } 2124 leaf uid { 2125 type string; 2126 description 2127 "unique id of the element if it exists"; 2128 } 2129 leaf type { 2130 type identityref { 2131 base type-element; 2132 } 2133 mandatory true; 2134 description "element type"; 2135 } 2137 container element { 2138 description "element of the list of elements of the OMS"; 2139 choice element { 2140 description "OMS element type"; 2141 case amplifier { 2142 /* when "type = 'Edfa'"; */ 2143 uses amplifier-params ; 2144 } 2145 case fiber { 2146 /* when "type = 'Fiber'"; */ 2147 uses fiber-params ; 2148 } 2149 case concentratedloss { 2150 /* when "type = 'Concentratedloss'"; */ 2151 uses concentratedloss-params ; 2152 } 2153 } 2154 } 2155 } 2156 } 2158 /* Data nodes */ 2160 augment "/nw:networks/nw:network/nw:network-types" 2161 + "/tet:te-topology" { 2162 description "optical-impairment topology augmented"; 2163 container optical-impairment-topology { 2164 presence "indicates an impairment-aware topology of 2165 optical networks"; 2166 description 2167 "Container to identify impairment-aware topology type"; 2168 } 2169 } 2171 augment "/nw:networks/nw:network/nt:link/tet:te" 2172 + "/tet:te-link-attributes" { 2173 when "/nw:networks/nw:network/nw:network-types" 2174 +"/tet:te-topology/" 2175 +"optical-imp-topo:optical-impairment-topology" { 2176 description 2177 "This augment is only valid for Optical Impairment."; 2178 } 2179 description "Optical Link augmentation for impairment data."; 2180 container OMS-attributes { 2181 config false; 2182 description "OMS attributes"; 2183 uses oms-general-optical-params; 2184 uses media-channel-groups; 2185 uses oms-element; 2186 } 2187 } 2189 augment "/nw:networks/nw:network/nw:node/tet:te" 2190 + "/tet:tunnel-termination-point" { 2191 when "/nw:networks/nw:network/nw:network-types" 2192 +"/tet:te-topology/optical-imp-topo:optical-impairment-topology"{ 2193 description 2194 "This augment is only valid for Impairment with non-sliceable 2195 transponder model"; 2196 } 2197 description 2198 "Tunnel termination point augmentation for non-sliceable 2199 transponder model."; 2201 list OTSiG-element { 2202 key "OTSiG-identifier"; 2203 config false; 2204 description 2205 "the list of possible OTSiG representing client digital 2206 stream"; 2208 leaf OTSiG-identifier { 2209 type int16; 2210 description "index of OTSiG element"; 2211 } 2212 uses OTSiG; 2213 } 2215 list transponders-list { 2216 key "transponder-id"; 2217 config false; 2218 description "list of transponders"; 2219 leaf transponder-id { 2220 type uint32; 2221 description "transponder identifier"; 2222 } 2224 choice mode { 2225 description "standard mode, organizational mode or 2226 explicit mode"; 2228 case G.692.2 { 2229 uses standard-mode; 2231 } 2233 case organizational-mode { 2234 uses organizational-mode; 2235 } 2237 case explicit-mode { 2238 uses transponder-attributes; 2239 } 2240 } 2242 leaf power { 2243 type int32; 2244 units "dBm"; 2245 config false; 2246 description "per channel power"; 2247 } 2249 leaf power-min { 2250 type int32; 2251 units "dBm"; 2252 config false; 2253 description "minimum power of the transponder"; 2254 } 2255 leaf power-max { 2256 type int32; 2257 units "dBm"; 2258 config false; 2259 description "maximum power of the transponder"; 2260 } 2261 } 2262 } 2264 augment "/nw:networks/nw:network/nw:node/tet:te" 2265 + "/tet:tunnel-termination-point" { 2266 when "/nw:networks/nw:network/nw:network-types" 2267 +"/tet:te-topology/" 2268 + "optical-imp-topo:optical-impairment-topology" { 2269 description 2270 "This augment is only valid for optical impairment 2271 with sliceable transponder model"; 2272 } 2273 description 2274 "Tunnel termination point augmentation for sliceable 2275 transponder model."; 2276 uses sliceable-transponder-attributes; 2277 } 2278 augment "/nw:networks/nw:network/nw:node/tet:te" 2279 + "/tet:te-node-attributes" { 2280 when "/nw:networks/nw:network/nw:network-types" 2281 + "/tet:te-topology" 2282 + "/optical-imp-topo:optical-impairment-topology" { 2284 description 2285 "This augment is only valid for Optical Impairment 2286 topology"; 2287 } 2288 description 2289 "node attributes augmentantion for optical-impairment ROADM 2290 node"; 2292 list roadm-path-impairments { 2293 key "roadm-path-impairments-id"; 2294 config false; 2295 description "list of set of optical impairments related 2296 to ROADM "; 2298 leaf roadm-path-impairments-id { 2299 type uint32; 2300 description "index of the ROADM path-impairment list"; 2301 } 2302 choice impairment-type { 2303 description "type path impairment"; 2304 case roadm-express-path { 2305 uses roadm-express-path; 2306 } 2307 case roadm-add-path { 2308 uses roadm-add-path; 2309 } 2310 case roadm-drop-path { 2311 uses roadm-drop-path; 2312 } 2313 } 2314 } // list path impairments 2315 } // augmentation for optical-impairment ROADM 2317 augment "/nw:networks/nw:network/nw:node/tet:te/" 2318 + "tet:information-source-entry/tet:connectivity-matrices"{ 2319 when "/nw:networks/nw:network/nw:network-types" 2320 + "/tet:te-topology/" 2321 + "optical-imp-topo:optical-impairment-topology" { 2322 description 2323 "This augment is only valid for Optical Impairment 2324 topology "; 2325 } 2326 description 2327 "Augment default TE node connectivity matrix information 2328 source."; 2330 leaf roadm-path-impairments { 2331 type leafref { 2332 path "../../../tet:te-node-attributes/" 2333 + "roadm-path-impairments/roadm-path-impairments-id"; 2334 } 2335 description "pointer to the list set of ROADM optical 2336 impairments"; 2337 } 2338 } // augmentation connectivity-matrices information-source 2340 augment "/nw:networks/nw:network/nw:node/tet:te/" 2341 + "tet:information-source-entry/tet:connectivity-matrices/" 2342 + "tet:connectivity-matrix" { 2343 when "/nw:networks/nw:network/nw:network-types" 2344 + "/tet:te-topology/" 2345 + "optical-imp-topo:optical-impairment-topology" { 2346 description 2347 "This augment is only valid for Optical Impairment 2348 topology "; 2349 } 2351 description 2352 "Augment TE node connectivity matrix entry information 2353 source."; 2355 leaf roadm-path-impairments { 2356 type leafref { 2357 path "../../../../tet:te-node-attributes/" 2358 + "roadm-path-impairments/roadm-path-impairments-id"; 2359 } 2360 description "pointer to the list set of ROADM optical 2361 impairments"; 2362 } 2363 } // augmentation connectivity-matrix information-source 2365 augment "/nw:networks/nw:network/nw:node/tet:te/" 2366 + "tet:te-node-attributes/tet:connectivity-matrices" { 2367 when "/nw:networks/nw:network/nw:network-types" 2368 + "/tet:te-topology/" 2369 + "optical-imp-topo:optical-impairment-topology" { 2370 description 2371 "This augment is only valid for Optical Impairment 2372 topology "; 2373 } 2374 description 2375 "Augment default TE node connectivity matrix."; 2376 leaf roadm-path-impairments { 2377 type leafref { 2378 path "../../roadm-path-impairments/" 2379 + "roadm-path-impairments-id"; 2380 } 2381 config false; /*the identifier in the list */ 2382 /*"roadm-path-impairments" of ROADM optical impairment*/ 2383 /*is read-only as the rest of attributes*/ 2384 description "pointer to the list set of ROADM optical 2385 impairments"; 2386 } 2387 } // augmentation connectivity-matrices 2389 augment "/nw:networks/nw:network/nw:node/tet:te/" 2390 + "tet:te-node-attributes/" 2391 + "tet:connectivity-matrices/tet:connectivity-matrix" { 2392 when "/nw:networks/nw:network/nw:network-types" 2393 + "/tet:te-topology/" 2394 + "optical-imp-topo:optical-impairment-topology" { 2395 description 2396 "This augment is only valid for 2397 Optical Impairment topology "; 2398 } 2400 description 2401 "Augment TE node connectivity matrix entry."; 2403 leaf roadm-path-impairments { 2404 type leafref { 2405 path "../../../roadm-path-impairments/" 2406 + "roadm-path-impairments-id"; 2407 } 2408 config false; 2409 description "pointer to the list set of ROADM optical 2410 impairments"; 2411 } 2412 } // augmentation connectivity-matrix 2414 augment "/nw:networks/nw:network/nw:node/tet:te/" 2415 + "tet:tunnel-termination-point/" 2416 + "tet:local-link-connectivities" { 2418 when "/nw:networks/nw:network/nw:network-types" 2419 + "/tet:te-topology/" 2420 + "optical-imp-topo:optical-impairment-topology" { 2421 description 2422 "This augment is only valid for Optical Impairment topology "; 2423 } 2425 description 2426 "Augment default TTP LLC."; 2427 leaf add-path-impairments { 2428 type leafref { 2429 path "../../../tet:te-node-attributes/" 2430 + "roadm-path-impairments/roadm-path-impairments-id" ; 2431 } 2432 config false; 2433 description "pointer to the list set of ROADM optical 2434 impairments"; 2435 } 2436 leaf drop-path-impairments { 2437 type leafref { 2438 path "../../../tet:te-node-attributes/" 2439 + "roadm-path-impairments/roadm-path-impairments-id" ; 2440 } 2441 config false; 2442 description "pointer to the list set of ROADM 2443 optical impairments"; 2444 } 2445 } // augmentation local-link-connectivities 2447 augment "/nw:networks/nw:network/nw:node/tet:te/" 2448 + "tet:tunnel-termination-point/" 2449 + "tet:local-link-connectivities/" 2450 + "tet:local-link-connectivity" { 2452 when "/nw:networks/nw:network/nw:network-types" 2453 + "/tet:te-topology/" 2454 + "optical-imp-topo:optical-impairment-topology" { 2455 description 2456 "This augment is only valid for 2457 Optical Impairment topology "; 2458 } 2460 description 2461 "Augment TTP LLC entry."; 2462 leaf add-path-impairments { 2463 type leafref { 2464 path "../../../../tet:te-node-attributes/" 2465 + "roadm-path-impairments/roadm-path-impairments-id" ; 2466 } 2467 config false; 2468 description "pointer to the list set of ROADM optical 2469 impairments"; 2471 } 2472 leaf drop-path-impairments { 2473 type leafref { 2474 path "../../../../tet:te-node-attributes/" 2475 + "roadm-path-impairments/roadm-path-impairments-id" ; 2476 } 2477 config false; 2478 description "pointer to the list set of ROADM optical 2479 impairments"; 2480 } 2481 } // augmentation local-link-connectivity 2482 } 2484 2486 5. Security Considerations 2488 The configuration, state, and action data defined in this document 2489 are designed to be accessed via a management protocol with a secure 2490 transport layer, such as NETCONF [RFC6241]. The NETCONF access 2491 control model [RFC8341] provides the means to restrict access for 2492 particular NETCONF users to a preconfigured subset of all available 2493 NETCONF protocol operations and content. 2495 A number of configuration data nodes defined in this document are 2496 read-only; however, these data nodes may be considered sensitive or 2497 vulnerable in some network environments (TBD). 2499 6. IANA Considerations 2501 This document registers the following namespace URIs in the IETF XML 2502 registry [RFC3688]: 2504 -------------------------------------------------------------------- 2505 URI: urn:ietf:params:xml:ns:yang:ietf-optical-impairment-topology 2506 Registrant Contact: The IESG. 2507 XML: N/A, the requested URI is an XML namespace. 2508 -------------------------------------------------------------------- 2510 This document registers the following YANG modules in the YANG Module 2511 Names registry [RFC7950]: 2513 -------------------------------------------------------------------- 2514 name: ietf-optical-impairment-topology 2515 namespace: urn:ietf:params:xml:ns:yang:ietf-optical-impairment- 2516 topology 2517 prefix: optical-imp-topo 2518 reference: RFC XXXX (TDB) 2519 -------------------------------------------------------------------- 2521 7. Acknowledgments 2523 We thank Daniele Ceccarelli and Oscar G. De Dios for useful 2524 discussions and motivation for this work. 2526 8. References 2528 8.1. Normative References 2530 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", 2531 RFC 7950, DOI 10.17487/RFC7950, August 2016, 2532 . 2534 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF 2535 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017, 2536 . 2538 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration 2539 Access Control Model", STD 91, RFC 8341, 2540 DOI 10.17487/RFC8341, March 2018, 2541 . 2543 8.2. Informative References 2545 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., 2546 and A. Bierman, Ed., "Network Configuration Protocol 2547 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, 2548 . 2550 [RFC6566] Lee, Y., Ed., Bernstein, G., Ed., Li, D., and G. 2551 Martinelli, "A Framework for the Control of Wavelength 2552 Switched Optical Networks (WSONs) with Impairments", 2553 RFC 6566, DOI 10.17487/RFC6566, March 2012, 2554 . 2556 [RFC7446] Lee, Y., Ed., Bernstein, G., Ed., Li, D., and W. Imajuku, 2557 "Routing and Wavelength Assignment Information Model for 2558 Wavelength Switched Optical Networks", RFC 7446, 2559 DOI 10.17487/RFC7446, February 2015, 2560 . 2562 [RFC7579] Bernstein, G., Ed., Lee, Y., Ed., Li, D., Imajuku, W., and 2563 J. Han, "General Network Element Constraint Encoding for 2564 GMPLS-Controlled Networks", RFC 7579, 2565 DOI 10.17487/RFC7579, June 2015, 2566 . 2568 [RFC7581] Bernstein, G., Ed., Lee, Y., Ed., Li, D., Imajuku, W., and 2569 J. Han, "Routing and Wavelength Assignment Information 2570 Encoding for Wavelength Switched Optical Networks", 2571 RFC 7581, DOI 10.17487/RFC7581, June 2015, 2572 . 2574 [RFC7698] Gonzalez de Dios, O., Ed., Casellas, R., Ed., Zhang, F., 2575 Fu, X., Ceccarelli, D., and I. Hussain, "Framework and 2576 Requirements for GMPLS-Based Control of Flexi-Grid Dense 2577 Wavelength Division Multiplexing (DWDM) Networks", 2578 RFC 7698, DOI 10.17487/RFC7698, November 2015, 2579 . 2581 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", 2582 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018, 2583 . 2585 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K., 2586 and R. Wilton, "Network Management Datastore Architecture 2587 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018, 2588 . 2590 [RFC8345] Clemm, A., Medved, J., Varga, R., Bahadur, N., 2591 Ananthakrishnan, H., and X. Liu, "A YANG Data Model for 2592 Network Topologies", RFC 8345, DOI 10.17487/RFC8345, March 2593 2018, . 2595 [RFC8453] Ceccarelli, D., Ed. and Y. Lee, Ed., "Framework for 2596 Abstraction and Control of TE Networks (ACTN)", RFC 8453, 2597 DOI 10.17487/RFC8453, August 2018, 2598 . 2600 [I-D.ietf-teas-yang-te-topo] 2601 Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and 2602 O. Dios, "YANG Data Model for Traffic Engineering (TE) 2603 Topologies", draft-ietf-teas-yang-te-topo-22 (work in 2604 progress), June 2019. 2606 [I-D.ietf-ccamp-wson-yang] 2607 Zheng, H., Lee, Y., Guo, A., Lopezalvarez, V., and D. 2608 King, "A YANG Data Model for WSON (Wavelength Switched 2609 Optical Networks)", draft-ietf-ccamp-wson-yang-23 (work in 2610 progress), November 2019. 2612 [I-D.ietf-ccamp-layer0-types] 2613 Zheng, H., Lee, Y., Guo, A., Lopezalvarez, V., and D. 2614 King, "A YANG Data Model for Layer 0 Types", draft-ietf- 2615 ccamp-layer0-types-03 (work in progress), November 2019. 2617 [I-D.ietf-ccamp-dwdm-if-param-yang] 2618 Galimberti, G., Kunze, R., Hiremagalur, D., and G. 2619 Grammel, "A YANG model to manage the optical interface 2620 parameters for an external transponder in a WDM network", 2621 draft-ietf-ccamp-dwdm-if-param-yang-02 (work in progress), 2622 November 2019. 2624 [G.807] "Generic functional architecture of the optical media 2625 network", ITU-T Recommendation G.807 - in publication 2626 process, February 2020. 2628 [G.709] "Interfaces for the Optical Transport Network (OTN)", 2629 ITU-T Recommendation G.709, June 2016. 2631 [G.694.1] "Spectral grids for WDM applications: DWDM frequency 2632 grid", ITU-T Recommendation G.694.1, February 2012. 2634 [G.959.1] "Optical transport network physical layer interfaces", 2635 ITU-T Recommendation G.959.1, February 2012. 2637 [G.872] "Architecture of optical transport networks", 2638 ITU-T Recommendation G.872, January 2017. 2640 Appendix A. Contributors 2642 Aihua Guo 2643 Huawei Technologies 2645 Email: aguo@futurewei.com 2647 Jonas Martensson 2648 RISE 2650 Email: jonas.martensson@ri.se 2652 Appendix B. Additional Authors 2654 Haomian Zheng 2655 Huawei Technologies 2657 Email: zhenghaomian@huawei.com 2659 Italo Busi 2660 Huawei Technologies 2662 Email: Italo.Busi@huawei.com 2664 Nicola Sambo 2665 Scuola Superiore Sant'Anna 2667 Email: nicosambo@gmail.com 2669 Giovanni Martinelli 2670 Cisco 2672 Email: giomarti@cisco.com 2674 Jean-Luc Auge 2675 Orange 2677 Email: jeanluc.auge@orange.com 2679 Esther Le Rouzic 2680 Orange 2682 Email: esther.lerouzic@orange.com 2684 Julien Meuric 2685 Orange 2687 Email: julien.meuric@orange.com 2689 Sergio Belotti 2690 Nokia 2692 Email: Sergio.belotti@nokia.com 2693 Griseri Enrico 2694 Nokia 2696 Email: Enrico.Griseri@nokia.com 2698 Gert Grammel 2699 Juniper 2701 Email: ggrammel@juniper.net 2703 Authors' Addresses 2705 Young Lee 2706 SKKU (Sung Kyun Kwan University) 2708 Email: younglee.tx@gmail.com 2710 Victor Lopez 2711 Telefonica 2713 Email: victor.lopezalvarez@telefonica.com 2715 G. Galimberti 2716 Cisco 2718 Email: ggalimbe@cisco.com 2720 Dieter Beller 2721 Nokia 2723 Email: Dieter.Beller@nokia.com