idnits 2.17.1 draft-ietf-ccamp-optical-impairment-topology-yang-04.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == Line 772 has weird spacing: '...t-index uin...' == Line 779 has weird spacing: '...variety str...' == Line 794 has weird spacing: '...variety str...' == Line 807 has weird spacing: '...ntifier int...' == Line 837 has weird spacing: '...rier-id uin...' == (1 more instance...) -- The document date (September 8, 2020) is 1326 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Missing Reference: 'RFCXXXX' is mentioned on line 174, but not defined == Missing Reference: 'OTSiG-identifier' is mentioned on line 806, but not defined == Missing Reference: 'OTSi-carrier-id' is mentioned on line 809, but not defined == Missing Reference: 'RFC3688' is mentioned on line 2505, but not defined == Unused Reference: 'I-D.ietf-ccamp-wson-yang' is defined on line 2609, but no explicit reference was found in the text == Unused Reference: 'I-D.ietf-ccamp-layer0-types' is defined on line 2615, but no explicit reference was found in the text == Outdated reference: A later version (-28) exists of draft-ietf-ccamp-wson-yang-25 == Outdated reference: A later version (-09) exists of draft-ietf-ccamp-layer0-types-06 == Outdated reference: A later version (-10) exists of draft-ietf-ccamp-dwdm-if-param-yang-04 Summary: 0 errors (**), 0 flaws (~~), 16 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 CCAMP Working Group Y. Lee 3 Internet-Draft SKKU (Sung Kyun Kwan University) 4 Intended status: Standards Track JL. Auge 5 Expires: March 12, 2021 Orange 6 V. Lopez 7 Telefonica 8 G. Galimberti 9 Cisco 10 D. Beller 11 Nokia 12 September 8, 2020 14 A Yang Data Model for Optical Impairment-aware Topology 15 draft-ietf-ccamp-optical-impairment-topology-yang-04 17 Abstract 19 In order to provision an optical connection through optical networks, 20 a combination of path continuity, resource availability, and 21 impairment constraints must be met to determine viable and optimal 22 paths through the network. The determination of appropriate paths is 23 known as Impairment-Aware Routing and Wavelength Assignment (IA-RWA) 24 for WSON, while it is known as Impairment-Aware Routing and Spectrum 25 Assigment (IA-RSA) for SSON. 27 This document provides a YANG data model for the impairment-aware TE 28 topology in optical networks. 30 Status of This Memo 32 This Internet-Draft is submitted in full conformance with the 33 provisions of BCP 78 and BCP 79. 35 Internet-Drafts are working documents of the Internet Engineering 36 Task Force (IETF). Note that other groups may also distribute 37 working documents as Internet-Drafts. The list of current Internet- 38 Drafts is at https://datatracker.ietf.org/drafts/current/. 40 Internet-Drafts are draft documents valid for a maximum of six months 41 and may be updated, replaced, or obsoleted by other documents at any 42 time. It is inappropriate to use Internet-Drafts as reference 43 material or to cite them other than as "work in progress." 45 This Internet-Draft will expire on March 12, 2021. 47 Copyright Notice 49 Copyright (c) 2020 IETF Trust and the persons identified as the 50 document authors. All rights reserved. 52 This document is subject to BCP 78 and the IETF Trust's Legal 53 Provisions Relating to IETF Documents 54 (https://trustee.ietf.org/license-info) in effect on the date of 55 publication of this document. Please review these documents 56 carefully, as they describe your rights and restrictions with respect 57 to this document. Code Components extracted from this document must 58 include Simplified BSD License text as described in Section 4.e of 59 the Trust Legal Provisions and are provided without warranty as 60 described in the Simplified BSD License. 62 Table of Contents 64 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 65 1.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 3 66 1.2. Tree Diagram . . . . . . . . . . . . . . . . . . . . . . 4 67 1.3. Prefixes in Data Node Names . . . . . . . . . . . . . . . 4 68 2. Reference Architecture . . . . . . . . . . . . . . . . . . . 5 69 2.1. Control Plane Architecture . . . . . . . . . . . . . . . 5 70 2.2. Transport Data Plane . . . . . . . . . . . . . . . . . . 6 71 2.3. OMS Media Links . . . . . . . . . . . . . . . . . . . . . 6 72 2.3.1. Optical Tributary Signal (OTSi) . . . . . . . . . . . 7 73 2.3.2. Optical Tributary Signal Group (OTSiG) . . . . . . . 7 74 2.3.3. Media Channel (MC) . . . . . . . . . . . . . . . . . 8 75 2.3.4. Media Channel Group (MCG) . . . . . . . . . . . . . . 9 76 2.4. Amplifiers . . . . . . . . . . . . . . . . . . . . . . . 10 77 2.5. Transponders . . . . . . . . . . . . . . . . . . . . . . 11 78 2.6. WSS/Filter . . . . . . . . . . . . . . . . . . . . . . . 11 79 2.7. Optical Fiber . . . . . . . . . . . . . . . . . . . . . . 11 80 2.8. ROADM Node Architectures . . . . . . . . . . . . . . . . 12 81 2.8.1. Integrated ROADM Architecture with Integrated Optical 82 Transponders . . . . . . . . . . . . . . . . . . . . 12 83 2.8.2. Integrated ROADMs with Integrated Optical 84 Transponders and Single Channel Add/Drop Interfaces 85 for Remote Optical Transponders . . . . . . . . . . . 13 86 2.8.3. Disaggregated ROADMs Subdivided into Degree, 87 Add/Drop, and Optical Transponder Subsystems . . . . 14 88 2.8.4. Optical Impairments Imposed by ROADM Nodes . . . . . 15 89 3. YANG Model (Tree Structure) . . . . . . . . . . . . . . . . . 17 90 4. Optical Impairment Topology YANG Model . . . . . . . . . . . 20 91 5. Security Considerations . . . . . . . . . . . . . . . . . . . 53 92 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 53 93 7. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 54 94 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 54 95 8.1. Normative References . . . . . . . . . . . . . . . . . . 54 96 8.2. Informative References . . . . . . . . . . . . . . . . . 54 97 Appendix A. Contributors . . . . . . . . . . . . . . . . . . . . 56 98 Appendix B. Additional Authors . . . . . . . . . . . . . . . . . 57 99 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 58 101 1. Introduction 103 In order to provision an optical connection (an optical path) through 104 a wavelength switched optical networks (WSONs) or spectrum switched 105 optical networks (SSONs), a combination of path continuity, resource 106 availability, and impairment constraints must be met to determine 107 viable and optimal paths through the network. The determination of 108 appropriate paths is known as Impairment-Aware Routing and Wavelength 109 Assignment (IA-RWA) [RFC6566] for WSON, while it is known as IA- 110 Routing and Spectrum Assigment (IA-RSA) for SSON. 112 This document provides a YANG data model for the impairment-aware 113 Traffic Engineering (TE) topology in WSONs and SSONs. The YANG model 114 described in this document is a WSON/SSON technology-specific Yang 115 model based on the information model developed in [RFC7446] and the 116 two encoding documents [RFC7581] and [RFC7579] that developed 117 protocol independent encodings based on [RFC7446]. 119 The intent of this document is to provide a Yang data model, which 120 can be utilized by a Multi-Domain Service Coordinator (MDSC) to 121 collect states of WSON impairment data from the Transport PNCs to 122 enable impairment-aware optical path computation according to the 123 ACTN Architecture [RFC8453]. The communication between controllers 124 is done via a NETCONF [RFC8341] or a RESTCONF [RFC8040]. 125 Similarly,this model can also be exported by the MDSC to a Customer 126 Network Controller (CNC), which can run an offline planning process 127 to map latter the services in the network. 129 This document augments the generic TE topology draft 130 [I-D.ietf-teas-yang-te-topo] where possible. 132 This document defines one YANG module: ietf-optical-impairment- 133 topology (Section 3) according to the new Network Management 134 Datastore Architecture [RFC8342]. 136 1.1. Terminology 138 Refer to [RFC6566], [RFC7698], and [G.807] for the key terms used in 139 this document. 141 The following terms are defined in [RFC7950] and are not redefined 142 here: 144 o client 145 o server 146 o augment 147 o data model 148 o data node 150 The following terms are defined in [RFC6241] and are not redefined 151 here: 153 o configuration data 154 o state data 156 The terminology for describing YANG data models is found in 157 [RFC7950]. 159 1.2. Tree Diagram 161 A simplified graphical representation of the data model is used in 162 Section 2 of this this document. The meaning of the symbols in these 163 diagrams is defined in [RFC8340]. 165 1.3. Prefixes in Data Node Names 167 In this document, names of data nodes and other data model objects 168 are prefixed using the standard prefix associated with the 169 corresponding YANG imported modules, as shown in Table 1. 171 +--------------+--------------------------+-------------------------+ 172 | Prefix | YANG module | Reference | 173 +--------------+--------------------------+-------------------------+ 174 | optical-imp- | ietf-optical-impairment- | [RFCXXXX] | 175 | topo | topology | | 176 | layer0-types | ietf-layer0-types | [I-D.ietf-ccamp-layer0- | 177 | | | types] | 178 | nw | ietf-network | [RFC8345] | 179 | nt | ietf-network-topology | [RFC8345] | 180 | tet | ietf-te-topology | [I-D.ietf-teas-yang-te- | 181 | | | topo] | 182 +--------------+--------------------------+-------------------------+ 184 Table 1: Prefixes and corresponding YANG modules 186 [Editor's note: The RFC Editor will replace XXXX with the number 187 assigned to the RFC once this draft becomes an RFC.] 189 2. Reference Architecture 191 2.1. Control Plane Architecture 193 Figure 1 shows the control plane architecture. 195 +--------+ 196 | MDSC | 197 +--------+ 198 Scope of this ID -------> || 199 | || 200 | +------------------------+ 201 | | OPTICAL | 202 +---------+ | | DOMAIN | +---------+ 203 | Device | | | CONTROLLER | | Device | 204 | config. | | +------------------------+ | config. | 205 +---------+ v // || \\ +---------+ 206 ______|______ // || \\ ______|______ 207 / OT \ // || \\ / OT \ 208 | +--------+ |// __--__ \\| +--------+ | 209 | |Vend. A |--|----+ ( ) +----|--| Vend. A| | 210 | +--------+ | | ~-( )-~ | | +--------+ | 211 | +--------+ | +---/ \---+ | +--------+ | 212 | |Vend. B |--|--+ / \ +--|--| Vend. B| | 213 | +--------+ | +---( OLS Segment )---+ | +--------+ | 214 | +--------+ | +---( )---+ | +--------+ | 215 | |Vend. C |--|--+ \ / +--|--| Vend. C| | 216 | +--------+ | +---\ /---+ | +--------+ | 217 | +--------+ | | ~-( )-~ | | +--------+ | 218 | |Vend. D |--|----+ (__ __) +----|--| Vend. D| | 219 | +--------+ | -- | +--------+ | 220 \_____________/ \_____________/ 221 ^ ^ 222 | | 223 | | 224 Scope of [I-D.ietf-ccamp-dwdm-if-param-yang] 226 Figure 1: Scope of draft-ietf-ccamp-dwdm-if-param-yang 228 The models developed in this document is an abstracted Yang model 229 that may be used in the interfaces between the MDSC and the Optical 230 Domain Controller (aka MPI) and between the Optical Domain Controller 231 and the Optical Device (aka SBI) in Figure 1. It is not intended to 232 support a detailed low-level DWDM interface model. DWDM interface 233 model is supported by the models presented in 234 [I-D.ietf-ccamp-dwdm-if-param-yang]. 236 2.2. Transport Data Plane 238 This section provides the description of the reference optical 239 network architecture and its relevant components to support optical 240 impairment-aware path computation. 242 Figure 2 shows the reference architecture. 244 +-------------------+ +-------------------+ 245 | ROADM Node | | ROADM Node | 246 | | | | 247 | PA +-------+ BA | ILA | PA +-------+ BA | 248 | +-+ | WSS/ | +-+ | _____ +--+ _____ | +-+ | WSS/ | +-+ | 249 --|-| |-|Filter |-| |-|-()____)-| |-()____)-|-| |-|Filter |-| |-|-- 250 | +-+ | | +-+ | +--+ | +-+ | | +-+ | 251 | +-------+ | optical | +-------+ | 252 | | | | | fiber | | | | | 253 | o o o | | o o o | 254 | transponders | | transponders | 255 +-------------------+ +-------------------+ 256 OTS Link OTS Link 257 <---------> <---------> 258 OMS Link 259 <--------------------------------> 261 PA: Pre-Amplifieror 262 BA: Booster Amplifier 263 ILA: In-Line Amplifier 265 Figure 2: Reference Architecture for Optical Transport Network 267 BA (on the left side ROADM) is the ingress Amplifier and PA (on the 268 right side ROADM is the egress amplifier for the OMS link shown in 269 Figure 2. 271 2.3. OMS Media Links 273 According to [G.872], OMS Media Link represents a media link between 274 two ROADMs. Specifically, it originates at the ROADM's Filter in the 275 source ROADM and terminates at the ROADM's Filter in the destination 276 ROADM. 278 OTS Media Link represents a media link: 280 (i) between ROADM's BA and ILA; 281 (ii) between a pair of ILAs; 282 (iii) between ILA and ROADM's PA. 284 OMS Media link can be decomposed in a sequence of OTS links type (i), 285 (ii), and (iii) as discussed above. OMS Media link would give an 286 abstracted view of impairment data (e.g., power, OSNR, etc.) to the 287 network controller. 289 For the sake of optical impairment evaluation OMS Media link can be 290 also decomposed in a sequence of elements such as BA, fiber section, 291 ILA, concentrated loss and PA. 293 [Editor's note: text below related to [G.807] needs to be revised! 294 [G.807] is now in publication process.] 296 2.3.1. Optical Tributary Signal (OTSi) 298 The OTSi is defined in ITU-T Recommendation G.959.1, section 3.2.4 299 [G.959.1]. The YANG model defined below assumes that a single OTSi 300 consists of a single modulated optical carrier. This single 301 modulated optical carrier conveys digital information. 302 Characteristics of the OTSi signal are modulation scheme (e.g. QPSK, 303 8-QAM, 16-QAM, etc.), baud rate (measure of the symbol rate), pulse 304 shaping (e.g. raised cosine - complying with the Nyquist inter symbol 305 interference criterion), etc. 307 2.3.2. Optical Tributary Signal Group (OTSiG) 309 The definition of the OTSiG is currently being moved from ITU-T 310 Recommendation G.709 [G.709] to the new draft Recommendation G.807 311 (still work in progress) [G.807]. The OTSiG is an electrical signal 312 that is carried by one or more OTSi's. The relationship between the 313 OTSiG and the the OTSi's is described in ITU-T draft Recommendation 314 G.807, section 10.2 [G.807]. The YANG model below supports both 315 cases: the single OTSi case where the OTSiG contains a single OTSi 316 (see ITU-T draft Recommendation G.807, Figure 10-2) and the multiple 317 OTSi case where the OTSiG consists of more than one OTSi (see ITU-T 318 draft Recommendation G.807, Figure 10-3). From a layer 0 topology 319 YANG model perspective, the OTSiG is a logical construct that 320 associates the OTSi's, which belong to the same OTSiG. The typical 321 application of an OTSiG consisting of more than one OTSi is inverse 322 multiplexing. Constraints exist for the OTSi's belonging to the same 323 OTSiG such as: (i) all OTSi's must be co-routed over the same optical 324 fibers and nodes and (ii) the differential delay between the 325 different OTSi's may not exceed a certain limit. Example: a 400Gbps 326 client signal may be carried by 4 OTSi's where each OTSi carries 327 100Gbps of client traffic. 329 OTSiG 330 _________________________/\__________________________ 331 / \ 332 m=7 333 - - - +---------------------------X---------------------------+ - - - 334 / / / | | / / / 335 / / /| OTSi OTSi OTSi OTSi |/ / / 336 / / / | ^ ^ ^ ^ | / / / 337 / / /| | | | | |/ / / 338 / / / | | | | | | / / / 339 / / /| | | | | |/ / / 340 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 341 --+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+--- 342 n = 4 343 K1 K2 K3 K4 345 Figure 3: MC Example containing all 4 OTSi signals of an OTSiG 347 2.3.3. Media Channel (MC) 349 The definition of the MC is currently being moved from ITU-T 350 Recommendation G.872 [G.872] to the new draft Recommendation G.807 351 (still work in progress) [G.807]. Section 3.2.2 defines the term MC 352 and section 7.1.2 provides a more detailed description with some 353 examples. The definition of the MC is very generic (see ITU-T draft 354 Recommendation G.807, Figure 7-1). In the YANG model below, the MC 355 is used with the following semantics: 357 The MC is an end-to-end topological network construct and can be 358 considered as an "optical pipe" with a well-defined frequency slot 359 between one or more optical transmitters each generating an OTSi and 360 the corresponding optical receivers terminating the OTSi's. If the 361 MC carries more than one OTSi, it is assumed that these OTSi's belong 362 to the same OTSiG. 364 m=8 365 +-------------------------------X-------------------------------+ 366 | | | 367 | +----------X----------+ | +----------X----------+ | 368 | | OTSi | | OTSi | | 369 | | ^ | | | ^ | | 370 | | | | | | | | 371 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 372 --+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+- 373 | n=4 | 374 K1 K2 376 <------------------------ Media Channel -----------------------> 378 Figure 4: Figure Caption TBA 380 The frequency slot of the MC is defined by the n value defining the 381 central frequency of the MC and the m value that defines the width of 382 the MC following the flexible grid definition in ITU-T Recommendation 383 G.694.1 [G.694.1]. In this model, the effective frequency slot as 384 defined in ITU-T draft Recommendation G.807 is equal to the frequency 385 slot of this end-to-end MC. It is also assumed that ROADM devices 386 can switch MCs. For various reasons (e.g. differential delay), it 387 is preferred to use a single MC for all OTSi's of the same OTSiG. It 388 may however not always be possible to find a single MC for carrying 389 all OTSi's of an OTSiG due to spectrum occupation along the OTSiG 390 path. 392 2.3.4. Media Channel Group (MCG) 394 The definition of the MCG is currently work in progress in ITU-T and 395 is defined in section 7.1.3 of the new ITU-T draft Recommendation 396 G.807 (still work in progress) [G.807]. The YANG model below assumes 397 that the MCG is a logical grouping of one or more MCs that are used 398 to to carry all OTSi's belonging to the same OTSiG. 400 The MCG can be considered as an association of MCs without defining a 401 hierarchy where each MC is defined by its (n,m) value pair. An MCG 402 consists of more than one MC when no single MC can be found from 403 source to destination that is wide enough to accommodate all OTSi's 404 (modulated carriers) that belong to the same OTSiG. In such a case 405 the set of OTSi's belonging to a single OTSiG have to be split across 406 2 or more MCs. 408 MCG1 = {M1.1, M1.2} 409 __________________________/\________________________ 410 / \ 411 M1.1 M2 M1.2 412 ____________/\____________ _____/\_____ ____/\____ 413 / \/ \/ \ 414 - - - +---------------------------+-------------+-----------+ - - - 415 / / / | | / / / / / / | | / / / 416 / / /| OTSi OTSi OTSi |/ / / / / / /| OTSi |/ / / 417 / / / | ^ ^ ^ | / / / / / / | ^ | / / / 418 / / /| | | | |/ / / / / / /| | |/ / / 419 / / / | | | | | / / / / / / | | | / / / 420 / / /| | | | |/ / / / / / /| | |/ / / 421 -7 -4 -1 0 1 2 3 4 5 6 7 8 ... 14 17 20 422 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 423 n=0 n=17 424 K1 K2 K3 K4 426 Figure 5: Figure Caption TBA 428 The MCG is relevant for path computation because all end-to-end MCs 429 belonging to the same MCG have to be co-routed, i.e., have to follow 430 the same path. Additional constraints may exist (e.g. differential 431 delay). 433 2.4. Amplifiers 435 Optical amplifiers are in charge of amplifying the optical signal in 436 the optical itself without any electrical conversion. There are 437 three main technologies to build amplifiers: Erbium Doped Fiber 438 Amplifier (EDFA), Raman Fiber Amplifier (RFA), and Semiconductor 439 Optical Amplifier (SOA). Nowadays, most of optical networks uses 440 EDFAs. However, RFA has an attractive feature that it works in any 441 wavelength band with a similar or lower noise figures compared to 442 EDFA. On the other hand, RFAs consumes more power and are more 443 expensive than EDFAs. 445 Amplifiers can be classified according to their location in the 446 communication link. There are three basic types of amplifiers: ILA, 447 Pre-Amplifier and Booster. ILA is In-Line Amplifier which is a 448 separate node type while Pre-Amplifier and Booster Amplifier are 449 integral elements of ROADM node. From a data modeling perspective, 450 Pre-Amplifier and Booster Amplifier are internal functions of a ROADM 451 node and as such these elements are hidden within ROADM node. In 452 this document, we would avoid internal node details, but attempt to 453 abstract as much as possible. 455 One modeling consideration of the ROADM internal is to model power 456 parameter through the ROADM, factoring the output power from the Pre- 457 Amplifier minus the ROADM power loss would give the input power to 458 the Booster Amplifier. In other words, Power_in (@ ROADM Booster) = 459 Power_out (@ ROADM Pre-Amplifier) - Power_loss (@ ROADM WSS/Filter). 461 2.5. Transponders 463 A Transponder is the element that sends and receives the optical 464 signal from a fiber. A transponder is typically characterized by its 465 data rate and the maximum distance the signal can travel. Channel 466 frequency, per channel input power, FEC and Modulation are also 467 associated with a transponder. From a path computation point of 468 view, the selection of the compatible source and destination 469 transponders is an important factor for optical signal to traverse 470 through the fiber. There are three main approaches to determine 471 optical signal compatibility. Application Code based on G.698.2 is 472 one approach that only checks the code at both ends of the link. 473 Another approach is organization codes that are specific to an 474 organization or a vendor. The third approach is specify all the 475 relevant parameters explicitly, e.g., FEC type, Modulation type, etc. 477 [Editor's note: The current YANG model described in Section 3 with 478 respect to the relationship between the transponder attributes and 479 the OTSi will need to be investigated in the future revision] 481 2.6. WSS/Filter 483 WSS separates the incoming light input spectrally as well as 484 spatially, then chooses the wavelength that is of interest by 485 deflecting it from the original optical path and then couple it to 486 another optical fibre port. WSS/Filter is internal to ROADM. So 487 this document does not model the inside of ROADM. 489 2.7. Optical Fiber 491 There are various optical fiber types defined by ITU-T. There are 492 several fiber-level parameters that need to be factored in, such as, 493 fiber-type, length, loss coefficient, pmd, connectors (in/out). 495 ITU-T G.652 defines Standard Singlemode Fiber; G.654 Cutoff Shifted 496 Fiber; G.655 Non-Zero Dispersion Shifted Fiber; G.656 Non-Zero 497 Dispersion for Wideband Optical Transport; G.657 Bend-Insensitive 498 Fiber. There may be other fiber-types that need to be considered. 500 2.8. ROADM Node Architectures 502 The ROADM node architectures in today's dense wavelength division 503 multiplexing (DWDM) networks can be categorized as follows: 505 o Integrated ROADM architecture with integrated optical transponders 507 o Integrated ROADM architecture with integrated optical transponders 508 and single channel add/drop ports for remote optical transponders 510 o Disaggregated ROADM architecture where the ROADM is subdivided 511 into degree, add/drop, and optical transponder subsystems handled 512 as separate network elements 514 The TE topology YANG model augmentations including optical 515 impairments for DWDM networks defined below intend to cover all the 3 516 categories of ROADM architectures listed above. In the case of a 517 disaggregated ROADM architecture, it is assumed that optical domain 518 controller already performs some form of abstraction and presents the 519 TE-node representing the disaggregated ROADM in the same way as an 520 integrated ROADM with integrated optical transponders if the optical 521 transponder subsystems and the add/drop subsystems are collocated 522 (short fiber links not imposing significant optical impairments). 524 The different ROADM architectures are briefly described and 525 illustrated in the following subsections. 527 [Editor's note: The modeling of remote optical transponders located 528 for example in the client device with a single channel link between 529 the OT and the add/drop port of the ROADM requires further 530 investigations and will be addressed in a future revision of this 531 document.] 533 2.8.1. Integrated ROADM Architecture with Integrated Optical 534 Transponders 536 Figure 2 and Figure 6 below show the typical architecture of an 537 integrated ROADM node, which contains the optical transponders as an 538 integral part of the ROADM node. Such an integrated ROADM node 539 provides DWDM interfaces as external interfaces for interconnecting 540 the device with its neighboring ROADMs (see OTS link above). The 541 number of these interfaces denote also the degree of the ROADM. A 542 degree 3 ROADM for example has 3 DWDM links that interconnect the 543 ROADM node with 3 neighboring ROADMs. Additionally, the ROADM 544 provides client interfaces for interconnecting the ROADM with client 545 devices such as IP routers or Ethernet switches. These client 546 interfaces are the client interfaces of the integrated optical 547 transponders. 549 . . . . . . . . . . . . . . . . . . 550 +-----.-------------------------------- .-----+ 551 | . ROADM . | 552 | . /| +-----------------+ |\ . | 553 Line | . / |--| |--| \ . | Line 554 WEST | /| . | |--| |--| | . |\ | EAST 555 ------+-/ |-.-| |--| OCX |--| |-.-| \-+----- 556 ------+-\ |-.-| |--| |--| |-.-| /-+----- 557 | \| . | |--| |--| | . |/ | 558 | . \ |--| |--| / . | 559 | . \| +-----------------+ |/ . | 560 | . . | 561 | . +---+ +---+ +---+ +---+ . | 562 | . | O | | O | | O | | O | . | 563 | . | T | | T | | T | | T | . | 564 | . +---+ +---+ +---+ +---+ . | 565 | . | | | | | | | | . | 566 +-----.------+-+---+-+---+-+---+-+------.-----+ 567 . . . .|.| . |.| . |.| . |.|. . . . 568 | | | | | | | | TE Node 569 Client Interfaces 571 Figure 6: ROADM Architectiure with Integrated Transponders 573 2.8.2. Integrated ROADMs with Integrated Optical Transponders and 574 Single Channel Add/Drop Interfaces for Remote Optical 575 Transponders 577 Figure 7 below shows the extreme case where all optical transponders 578 are not integral parts of the ROADM but are separate devices that are 579 interconnected with add/drop ports of the ROADM. If the optical 580 transponders and the ROADM are collocated and if short single channel 581 fiber links are used to interconnect the optical transponders with an 582 add/drop port of the ROADM, the optical domain controller may present 583 these optical transponders in the same way as integrated optical 584 transponders. If, however, the optical impairments of the single 585 channel fiber link between the optical transponder and the add/drop 586 port of the ROADM cannot be neglected, it is necessary to represent 587 the fiber link with its optical impairments in the topology model 588 This also implies that the optical transponders belong to a separate 589 TE node 591 [Editor's note: this requires further study]. 593 . . . . . . . . . . . . . . . . . . 594 . Abstracted ROADM . 595 +-----.-------------------------------- .-----+ 596 | . ROADM . | 597 | . /| +-----------------+ |\ . | 598 Line | . / |--| |--| \ . | Line 599 WEST | /| . | |--| |--| | . |\ | EAST 600 ------+-/ |-.-| |--| OCX |--| |-.-| \-+----- 601 ------+-\ |-.-| |--| |--| |-.-| /-+----- 602 | \| . | |--| |--| | . |/ | 603 | . \ |--| |--| / . | 604 | . \| +-----------------+ |/ . | 605 +-----.---------|----|---|----|---------.-----| 606 Colored OT . +-+ ++ ++ +-+ . 607 line I/F . | | | | . 608 . +---+ +---+ +---+ +---+ . 609 . | O | | O | | O | | O | . 610 . | T | | T | | T | | T | . 611 . +---+ +---+ +---+ +---+ . 612 . . . .|.| . |.| . |.| . |.|. . . . 613 | | | | | | | | TE Node 614 Client Interfaces 616 Figure 7: ROADM Architectiure with Remote Transponders 618 2.8.3. Disaggregated ROADMs Subdivided into Degree, Add/Drop, and 619 Optical Transponder Subsystems 621 Recently, some DWDM network operators started demanding ROADM 622 subsystems from their vendors. An example is the OpenROADM project 623 where multiple operators and vendors are developing related YANG 624 models. The subsystems of a disaggregated ROADM are: single degree 625 subsystems, add/drop subsystems and optical transponder subsystems. 626 These subsystems separate network elements and each network element 627 provides a separate management and control interface. The subsystems 628 are typically interconnected using short fiber patch cables and form 629 together a disaggregated ROADM node. This disaggregated ROADM 630 architecture is depicted in Figure 8 below. 632 As this document defines TE topology YANG model augmentations 633 [I-D.ietf-teas-yang-te-topo] for the TE topology YANG model provided 634 at the north-bound interface of the optical domain controller, it is 635 a valid assumption that the optical domain controller abstracts the 636 subsystems of a disaggregated ROADM and presents the disaggregated 637 ROADM in the same way as an integrated ROADM hiding all the 638 interconnects that are not relevant from an external TE topology 639 view. 641 . . . . . . . . . . . . . . . . . . 642 . Abstracted ROADM . 643 +-----.----------+ +----------.-----+ 644 | Degree 1 | | Degree 2 | 645 Line | . +-----+ | + +-----+ . | Line 646 1 | /| . | W |-|------------|-| W | . |\ | 2 647 -----+-/ |-.--| S ******** ******** S |--.-| \-+----- 648 -----+-\ |-.--| S | | * * | | S |--.-| /-+----- 649 | \| . | |-|-+ * * +-|-| | . |/ | 650 | . +-+-+-+ | | * * | | +-+-+-+ . | 651 +-----.----|-----+ | * * | +-----|----.-----+ 652 . | | * * | | . 653 +-----.----|-----+ | * * | +-----|----.-----+ 654 | Degree 4 | | | * * | | | Degree 3 | 655 Line | . +-----+ | | * * | | +-----+ . | Line 656 4 | /| . | W |-|-|--*--*--+ | | W | . |\ | 3 657 -----+-/ |-.--| S | | +--*--*----|-| S |--.-| \-+----- 658 -----+-\ |-.--| S |-|----*--*----|-| S |--.-| /-+----- 659 | \| . | | | * * | | | . |/ | 660 | . +--*--+ | * * | +--*--+ . | 661 +-----.-----*----+ * * +----*-----.-----+ 662 . * * * * . 663 . +--*---------*--*---------*--+ . 664 . | ADD | . 665 . | DROP | . 666 . +----------------------------+ . 667 Colored OT . | | | | . 668 Line I/F . +---+ +---+ +---+ +---+ . 669 . | O | | O | | O | | O | . 670 . | T | | T | | T | | T | . 671 . +---+ +---+ +---+ +---+ . 672 . . .|.| . |.| . |.| . |.|. . . 673 | | | | | | | | TE Node 674 Client Interfaces 676 Figure 8: Disaggregated ROADM Architecture with Remote Transponders 678 2.8.4. Optical Impairments Imposed by ROADM Nodes 680 When an optical OTSi signal traverses a ROADM node, optical 681 impairments are imposed on the signal by various passive or active 682 optical components inside the ROADM node. Examples of optical 683 impairments are: 685 o Chromatic dispersion (CD) 686 o Polarization mode dispersion (PMD) 687 o Polarization dependent loss (PDL) 688 o Optical amplifier noise due to amplified spontaneous emission 689 (ASE) 690 o In-band cross-talk 691 o Filtering effects (for further study) 693 A ROADM node contains a wavelength selective photonic switching 694 function (WSS)that is capable of switching media channels (MCs) 695 described in Section 2.3.4. These MCs can be established between two 696 line ports of the ROADM or between a line port and an Add/Drop port 697 of the ROADM. The Add/Drop ports of a ROADM are those ports to which 698 optical transponders are connected. Typically, this is a single 699 channel signal (single OTSi), but principally this could also be a 700 group of OTSi signals. The optical impairments associated with these 701 MCs are different and the paths of the MCs inside the ROADM node can 702 be categorized as follows: 704 o Express path: MC path between two line ports of the ROADM 705 (unidirectional) 707 o Add Path: MC path from an Add port to a line port of the ROADM 709 o Drop path: MC path from a line port to a Drop port of the ROADM 711 Due to the symmetrical architecture of the ROADM node, the optical 712 impairments associated with the express path are typically the same 713 between any two line ports of the ROADM whereas the optical 714 impairments for the add and drop paths are different and therefore 715 have to be modeled separately. 717 The optical impairments associated with each of the three types of 718 ROADM-node-internal paths described above are modeled as optical 719 impairment parameter sets. These parameter sets are modeled as an 720 augmentation of the te-node-attributes defined in 721 [I-D.ietf-teas-yang-te-topo]. The te-node-attributes are augmented 722 with a list of roadm-path-impairments for the three ROADM path types 723 distinguished by the impairment-type. Each roadm-path-impairments 724 list entry contains the set of optical impairment parameters for one 725 of the three path types indicated by the impairment-type. For the 726 optical feasibility calculation based on the optical impairments, it 727 is necessary to know whether the optical power of the OTSi stays 728 within a certain power window. This is reflected by some optical 729 power related parameters such as loss parameters or power parameters, 730 which are included in the optical impairment parameter sets (see tree 731 view in Section 3). 733 [I-D.ietf-teas-yang-te-topo] defines a connectivity matrix and a 734 local link connectivity list for the TE node. The connectivity 735 matrix describes the connectivity for the express paths between the 736 different lines of the ROADM and the local link connectivity list 737 describes the connectivity for the Add and Drop paths of the ROADM. 738 These matrices are augmented with a new roadm-path-impairment matrix 739 element, an add-path-impairment, and drop-path-impairment matrix 740 element, respectively, which are defined as a pointer to the 741 corresponding entry in the roadm-path-impairments list (leaf-ref). 743 [Editor's note: this section is still work in progress] 745 3. YANG Model (Tree Structure) 747 module: ietf-optical-impairment-topology 748 augment /nw:networks/nw:network/nw:network-types/tet:te-topology: 749 +--rw optical-impairment-topology! 750 augment /nw:networks/nw:network/nt:link/tet:te/ 751 tet:te-link-attributes: 752 +--ro OMS-attributes 753 +--ro generalized-snr? decimal64 754 +--ro equalization-mode identityref 755 +--ro (power-param)? 756 | +--:(channel-power) 757 | | +--ro nominal-channel-power? decimal64 758 | +--:(power-spectral-density) 759 | +--ro nominal-power-spectral-density? decimal64 760 +--ro media-channel-group* [i] 761 | +--ro i int16 762 | +--ro media-channels* [flexi-n] 763 | +--ro flexi-n uint16 764 | +--ro flexi-m? uint16 765 | +--ro OTSiG-ref? -> /nw:networks/network/node/tet:te/ 766 tunnel-termination-point/OTSiG-element/OTSiG-identifier 767 | +--ro OTSi-ref? -> /nw:networks/network/node/tet:te/ 768 tunnel-termination-point/ 769 OTSiG-element[OTSiG-identifier=current()/../OTSiG-ref]/ 770 OTSiG-container/OTSi/OTSi-carrier-id 771 +--ro OMS-elements* [elt-index] 772 +--ro elt-index uint16 773 +--ro uid? string 774 +--ro type identityref 775 +--ro element 776 +--ro (element)? 777 +--:(amplifier) 778 | +--ro amplifier 779 | +--ro type-variety string 780 | +--ro operational 781 | +--ro actual-gain decimal64 782 | +--ro tilt-target decimal64 783 | +--ro out-voa decimal64 784 | +--ro in-voa decimal64 785 | +--ro (power-param)? 786 | +--:(channel-power) 787 | | +--ro nominal-channel-power? 788 decimal64 789 | +--:(power-spectral-density) 790 | +--ro nominal-power-spectral-density? 791 decimal64 792 +--:(fiber) 793 | +--ro fiber 794 | +--ro type-variety string 795 | +--ro length decimal64 796 | +--ro loss-coef decimal64 797 | +--ro total-loss decimal64 798 | +--ro pmd? decimal64 799 | +--ro conn-in? decimal64 800 | +--ro conn-out? decimal64 801 +--:(concentratedloss) 802 +--ro concentratedloss 803 +--ro loss? decimal64 804 augment /nw:networks/nw:network/nw:node/tet:te/ 805 tet:tunnel-termination-point: 806 +--ro OTSiG-element* [OTSiG-identifier] 807 | +--ro OTSiG-identifier int16 808 | +--ro OTSiG-container 809 | +--ro OTSi* [OTSi-carrier-id] 810 | +--ro OTSi-carrier-id int16 811 | +--ro OTSi-carrier-frequency? decimal64 812 | +--ro OTSi-signal-width? decimal64 813 | +--ro channel-delta-power? decimal64 814 +--ro transponders-list* [transponder-id] 815 +--ro transponder-id uint32 816 +--ro (mode)? 817 | +--:(G.692.2) 818 | | +--ro standard-mode? standard-mode 819 | +--:(organizational-mode) 820 | | +--ro operational-mode? operational-mode 821 | | +--ro organization-identifier? vendor-identifier 822 | +--:(explicit-mode) 823 | +--ro available-modulation-types* identityref 824 | +--ro configured-modulation-type? identityref 825 | +--ro available-baud-rates* uint32 826 | +--ro configured-baud-rate? uint32 827 | +--ro available-FEC-types* identityref 828 | +--ro configured-FEC-type? identityref 829 | +--ro FEC-code-rate? decimal64 830 | +--ro FEC-threshold? decimal64 831 +--ro power? int32 832 +--ro power-min? int32 833 +--ro power-max? int32 834 augment /nw:networks/nw:network/nw:node/tet:te/ 835 tet:tunnel-termination-point: 836 +--ro transponder-list* [carrier-id] 837 +--ro carrier-id uint32 838 augment /nw:networks/nw:network/nw:node/tet:te/ 839 tet:te-node-attributes: 840 +--ro roadm-path-impairments* [roadm-path-impairments-id] 841 +--ro roadm-path-impairments-id uint32 842 +--ro (impairment-type)? 843 +--:(roadm-express-path) 844 | +--ro roadm-express-path 845 | +--ro roadm-pmd? decimal64 846 | +--ro roadm-cd? decimal64 847 | +--ro roadm-pdl? decimal64 848 | +--ro roadm-inband-crosstalk? decimal64 849 | +--ro roadm-maxloss? decimal64 850 +--:(roadm-add-path) 851 | +--ro roadm-add-path 852 | +--ro roadm-pmd? decimal64 853 | +--ro roadm-cd? decimal64 854 | +--ro roadm-pdl? decimal64 855 | +--ro roadm-inband-crosstalk? decimal64 856 | +--ro roadm-maxloss? decimal64 857 | +--ro roadm-pmax? decimal64 858 | +--ro roadm-osnr? decimal64 859 | +--ro roadm-noise-figure? decimal64 860 +--:(roadm-drop-path) 861 +--ro roadm-drop-path 862 +--ro roadm-pmd? decimal64 863 +--ro roadm-cd? decimal64 864 +--ro roadm-pdl? decimal64 865 +--ro roadm-inband-crosstalk? decimal64 866 +--ro roadm-maxloss? decimal64 867 +--ro roadm-minloss? decimal64 868 +--ro roadm-typloss? decimal64 869 +--ro roadm-pmin? decimal64 870 +--ro roadm-pmax? decimal64 871 +--ro roadm-ptyp? decimal64 872 +--ro roadm-osnr? decimal64 873 +--ro roadm-noise-figure? decimal64 874 augment /nw:networks/nw:network/nw:node/tet:te/ 875 tet:information-source-entry/tet:connectivity-matrices: 876 +--ro roadm-path-impairments? -> ../../../ 877 tet:te-node-attributes/roadm-path-impairments/ 878 roadm-path-impairments-id 879 augment /nw:networks/nw:network/nw:node/tet:te/ 880 tet:information-source-entry/tet:connectivity-matrices/ 881 tet:connectivity-matrix: 882 +--ro roadm-path-impairments? -> ../../../../ 883 tet:te-node-attributes/roadm-path-impairments/ 884 roadm-path-impairments-id 885 augment /nw:networks/nw:network/nw:node/tet:te/ 886 tet:te-node-attributes/tet:connectivity-matrices: 887 +--ro roadm-path-impairments? -> ../../roadm-path-impairments/ 888 roadm-path-impairments-id 889 augment /nw:networks/nw:network/nw:node/tet:te/ 890 tet:te-node-attributes/tet:connectivity-matrices/ 891 tet:connectivity-matrix: 892 +--ro roadm-path-impairments? -> ../../../ 893 roadm-path-impairments/roadm-path-impairments-id 894 augment /nw:networks/nw:network/nw:node/tet:te/ 895 tet:tunnel-termination-point/tet:local-link-connectivities: 896 +--ro add-path-impairments? -> ../../../ 897 tet:te-node-attributes/roadm-path-impairments/ 898 roadm-path-impairments-id 899 +--ro drop-path-impairments? -> ../../../ 900 tet:te-node-attributes/roadm-path-impairments/ 901 roadm-path-impairments-id 902 augment /nw:networks/nw:network/nw:node/tet:te/ 903 tet:tunnel-termination-point/tet:local-link-connectivities/ 904 tet:local-link-connectivity: 905 +--ro add-path-impairments? -> ../../../../ 906 tet:te-node-attributes/roadm-path-impairments/ 907 roadm-path-impairments-id 908 +--ro drop-path-impairments? -> ../../../../ 909 tet:te-node-attributes/roadm-path-impairments/ 910 roadm-path-impairments-id 912 4. Optical Impairment Topology YANG Model 914 [Editor's note: YANG code below may have to be updated before 915 submission!] 917 918 module ietf-optical-impairment-topology { 919 yang-version 1.1; 921 namespace "urn:ietf:params:xml" 922 +":ns:yang:ietf-optical-impairment-topology"; 924 prefix "optical-imp-topo"; 926 import ietf-network { 927 prefix "nw"; 929 } 931 import ietf-network-topology { 932 prefix "nt"; 933 } 935 import ietf-te-topology { 936 prefix "tet"; 937 } 939 import ietf-layer0-types { 940 prefix "layer0-types"; 941 } 943 organization 944 "IETF CCAMP Working Group"; 946 contact 947 "Editor: Young Lee 948 Editor: Haomian Zheng 949 Editor: Nicola Sambo 950 Editor: Victor Lopez 951 Editor: Gabriele Galimberti 952 Editor: Giovanni Martinelli 953 Editor: Jean-Luc Auge 954 Editor: Le Rouzic Esther 955 Editor: Julien Meuric 956 Editor: Italo Busi 957 Editor: Dieter Beller 958 Editor: Sergio Belotti 959 Editor: Griseri Enrico 960 Editor: Gert Grammel "; 962 description 963 "This module contains a collection of YANG definitions for 964 impairment-aware optical networks. 966 Copyright (c) 2019 IETF Trust and the persons identified as 967 authors of the code. All rights reserved. 969 Redistribution and use in source and binary forms, with or 970 without modification, is permitted pursuant to, and subject 971 to the license terms contained in, the Simplified BSD 972 License set forth in Section 4.c of the IETF Trust's Legal 973 Provisions Relating to IETF Documents 974 (http://trustee.ietf.org/license-info)."; 976 revision 2020-03-09 { 977 description 978 "Initial Version"; 979 reference 980 "RFC XXXX: A Yang Data Model for Impairment-aware 981 Optical Networks"; 982 } 984 // identity 986 identity modulation { 987 description "base identity for modulation type"; 988 } 990 identity QPSK { 991 base modulation; 992 description 993 "QPSK (Quadrature Phase Shift Keying) modulation"; 994 } 996 identity DP-QPSK { 997 base modulation; 998 description 999 "DP-QPSK (Dual Polarization Quadrature 1000 Phase Shift Keying) modulation"; 1001 } 1002 identity QAM8 { 1003 base modulation; 1004 description 1005 "8QAM (8-State Quadrature Amplitude Modulation) modulation"; 1006 } 1007 identity QAM16 { 1008 base modulation; 1009 description 1010 "QAM16 (Quadrature Amplitude Modulation)"; 1011 } 1012 identity DP-QAM8 { 1013 base modulation; 1014 description 1015 "DP-QAM8 (Dual Polarization Quadrature Amplitude Modulation)"; 1016 } 1017 identity DC-DP-QAM8 { 1018 base modulation; 1019 description 1020 "DC DP-QAM8 (Dual Polarization Quadrature Amplitude Modulation)"; 1021 } 1022 identity DP-QAM16 { 1023 base modulation; 1024 description 1025 "DP-QAM16 (Dual Polarization Quadrature Amplitude Modulation)"; 1026 } 1027 identity DC-DP-QAM16 { 1028 base modulation; 1029 description 1030 "DC DP-QAM16 (Dual Polarization Quadrature 1031 Amplitude Modulation)"; 1032 } 1034 identity FEC { 1035 description 1036 "Enumeration that defines the type of 1037 Forward Error Correction"; 1038 } 1039 identity reed-solomon { 1040 base FEC; 1041 description 1042 "Reed-Solomon error correction"; 1043 } 1044 identity hamming-code { 1045 base FEC; 1046 description 1047 "Hamming Code error correction"; 1048 } 1049 identity golay { 1050 base FEC; 1051 description "Golay error correction"; 1052 } 1054 // typedef 1056 typedef fiber-type { 1057 type enumeration { 1058 enum G.652 { 1059 description "G.652 Standard Singlemode Fiber"; 1060 } 1061 enum G.654 { 1062 description "G.654 Cutoff Shifted Fiber"; 1063 } 1064 enum G.653 { 1065 description "G.653 Dispersion Shifted Fiber"; 1066 } 1067 enum G.655 { 1068 description "G.655 Non-Zero Dispersion Shifted Fiber"; 1069 } 1070 enum G.656 { 1071 description "G.656 Non-Zero Dispersion for Wideband 1072 Optical Transport"; 1074 } 1075 enum G.657 { 1076 description "G.657 Bend-Insensitive Fiber"; 1077 } 1078 } 1079 description 1080 "ITU-T based fiber-types"; 1081 } 1083 /*temporary defined here for disalignment with*/ 1084 /* ietf-layer0-types module*/ 1086 typedef operational-mode { 1087 type string; 1088 description 1089 "Vendor-specific mode that guarantees 1090 interoperability."; 1091 reference "ITU-T G.698.2 (11/2018)"; 1092 } 1094 // temporary defined here for disalignment with 1095 //ietf-layer0-types module 1096 typedef standard-mode { 1097 type string; 1098 description 1099 "ITU-T G.698.2 standard mode that guarantees 1100 interoperability. 1101 It must be an string with the following format: 1102 B-DScW-ytz(v) where all these attributes 1103 are conformant 1104 to the ITU-T recomendation"; 1105 reference "ITU-T G.698.2 (11/2018)"; 1106 } 1108 // temporary defined here for disalignment 1109 //with ietf-layer0-types module 1110 typedef vendor-identifier { 1111 type string; 1112 description 1113 "vendor identifier that uses vendor-specific mode"; 1114 reference 1115 "RFC7581: Routing and Wavelength Assignment Information 1116 Encoding for Wavelength Switched Optical Networks"; 1117 } 1119 // grouping 1121 grouping transponder-attributes { 1122 description "Configuration of an optical transponder"; 1124 leaf-list available-modulation-types { 1125 type identityref { 1126 base modulation; 1127 } 1128 config false; 1129 description 1130 "List of modulation types the OTSi supports"; 1131 } 1133 leaf configured-modulation-type { 1134 type identityref { 1135 base modulation; 1136 } 1137 config false; 1138 description 1139 "Currently configured OTSi modulation type"; 1140 } 1142 leaf-list available-baud-rates { 1143 type uint32; 1144 units Bd; 1145 config false; 1146 description 1147 "list of available baud-rates. 1148 Baud-rate is the unit for 1149 symbol rate or modulation rate 1150 in symbols per second or 1151 pulses per second. 1152 It is the number of distinct symbol 1153 changes (signal events) made to the 1154 transmission medium 1155 per second in a digitally 1156 modulated signal or a line code"; 1157 } 1159 leaf configured-baud-rate { 1160 type uint32; 1161 units Bd; 1162 config false; 1163 description "configured baud-rate"; 1164 } 1166 leaf-list available-FEC-types { 1167 type identityref { 1168 base FEC; 1169 } 1170 config false; 1171 description "List determining all the available FEC"; 1172 } 1174 leaf configured-FEC-type { 1175 type identityref { 1176 base FEC; 1177 } 1178 config false; 1179 description 1180 "FEC type configured for the transponder"; 1181 } 1183 leaf FEC-code-rate { 1184 type decimal64 { 1185 fraction-digits 8; 1186 range "0..max"; 1187 } 1188 config false; 1189 description "FEC-code-rate"; 1190 } 1192 leaf FEC-threshold { 1193 type decimal64 { 1194 fraction-digits 8; 1195 range "0..max"; 1196 } 1197 config false; 1198 description 1199 "Threshold on the BER, for which FEC 1200 is able to correct errors"; 1201 } 1203 } 1205 grouping sliceable-transponder-attributes { 1206 description 1207 "Configuration of a sliceable transponder."; 1208 list transponder-list { 1209 key "carrier-id"; 1210 config false; 1211 description "List of carriers"; 1212 leaf carrier-id { 1213 type uint32; 1214 config false; 1215 description "Identifier of the carrier"; 1216 } 1217 } 1219 } 1221 grouping optical-fiber-data { 1222 description 1223 "optical link (fiber) attributes with impairment data"; 1224 leaf fiber-type { 1225 type fiber-type; 1226 config false; 1227 description "fiber-type"; 1228 } 1230 leaf span-length { 1231 type decimal64 { 1232 fraction-digits 2; 1233 } 1234 units "km"; 1235 config false; 1236 description "the lenght of the fiber span in km"; 1237 } 1239 leaf input-power { 1240 type decimal64 { 1241 fraction-digits 2; 1242 } 1243 units "dBm"; 1244 config false; 1245 description 1246 "Average input power level estimated at the receiver 1247 of the link"; 1248 } 1250 leaf output-power { 1251 type decimal64 { 1252 fraction-digits 2; 1253 } 1254 units "dBm"; 1255 description 1256 "Mean launched power at the transmitter of the link"; 1257 } 1259 leaf pmd { 1260 type decimal64 { 1261 fraction-digits 8; 1262 range "0..max"; 1263 } 1264 units "ps/(km)^0.5"; 1265 config false; 1266 description 1267 "Polarization Mode Dispersion"; 1268 } 1270 leaf cd { 1271 type decimal64 { 1272 fraction-digits 5; 1273 } 1274 units "ps/nm/km"; 1275 config false; 1276 description 1277 "Cromatic Dispersion"; 1278 } 1280 leaf osnr { 1281 type decimal64 { 1282 fraction-digits 5; 1283 } 1284 units "dB"; 1285 config false; 1286 description 1287 "Optical Signal-to-Noise Ratio (OSNR) estimated 1288 at the receiver"; 1289 } 1291 leaf sigma { 1292 type decimal64 { 1293 fraction-digits 5; 1294 } 1295 units "dB"; 1296 config false; 1297 description 1298 "sigma in the Gausian Noise Model"; 1299 } 1300 } 1302 grouping optical-channel-data { 1303 description 1304 "optical impairment data per channel/wavelength"; 1305 leaf bit-rate { 1306 type decimal64 { 1307 fraction-digits 8; 1308 range "0..max"; 1309 } 1310 units "Gbit/s"; 1311 config false; 1312 description 1313 "Gross bit rate"; 1314 } 1315 leaf BER { 1316 type decimal64 { 1317 fraction-digits 18; 1318 range "0..max"; 1319 } 1320 config false; 1321 description 1322 "BER (Bit Error Rate)"; 1323 } 1325 leaf ch-input-power { 1326 type decimal64 { 1327 fraction-digits 2; 1328 } 1329 units "dBm"; 1330 config false; 1331 description 1332 "Per channel average input power level 1333 estimated at the receiver of the link"; 1334 } 1336 leaf ch-pmd { 1337 type decimal64 { 1338 fraction-digits 8; 1339 range "0..max"; 1340 } 1341 units "ps/(km)^0.5"; 1342 config false; 1343 description 1344 "per channel Polarization Mode Dispersion"; 1345 } 1347 leaf ch-cd { 1348 type decimal64 { 1349 fraction-digits 5; 1350 } 1351 units "ps/nm/km"; 1352 config false; 1353 description 1354 "per channel Cromatic Dispersion"; 1355 } 1357 leaf ch-osnr { 1358 type decimal64 { 1359 fraction-digits 5; 1360 } 1361 units "dB"; 1362 config false; 1363 description 1364 "per channel Optical Signal-to-Noise Ratio 1365 (OSNR) estimated at the receiver"; 1366 } 1368 leaf q-factor { 1369 type decimal64 { 1370 fraction-digits 5; 1371 } 1372 units "dB"; 1373 config false; 1374 description 1375 "q-factor estimated at the receiver"; 1376 } 1377 } 1379 grouping standard-mode { 1380 description 1381 "ITU-T G.698.2 standard mode that guarantees interoperability. 1382 It must be an string with the following format: 1383 B-DScW-ytz(v) where all these attributes are conformant 1384 to the ITU-T recomendation"; 1386 leaf standard-mode { 1387 type standard-mode; 1388 config false; 1389 description 1390 "G.698.2 standard mode"; 1391 } 1392 } 1394 grouping organizational-mode { 1395 description 1396 "Transponder operational mode supported by organizations or 1397 vendor"; 1399 leaf operational-mode { 1400 type operational-mode; 1401 config false; 1402 description 1403 "configured organization- or vendor-specific 1404 application identifiers (AI) supported by the transponder"; 1405 } 1407 leaf organization-identifier { 1408 type vendor-identifier; 1409 config false; 1410 description 1411 "organization identifier that uses organizational 1412 mode"; 1414 } 1415 } 1417 /* 1418 * Identities 1419 */ 1420 identity type-element { 1421 description 1422 "Base identity for element type"; 1423 } 1425 identity Fiber { 1426 base type-element; 1427 description 1428 "Fiber element"; 1429 } 1431 identity Roadm { 1432 base type-element; 1433 description 1434 "Roadm element"; 1435 } 1437 identity Edfa { 1438 base type-element; 1439 description 1440 "Edfa element"; 1441 } 1443 identity Concentratedloss { 1444 base type-element; 1445 description 1446 "Concentratedloss element"; 1447 } 1449 identity type-power-mode { 1450 description 1451 "power equalization mode used within the 1452 OMS and its elements"; 1453 } 1455 identity power-spectral-density { 1456 base type-power-mode; 1457 description 1458 "all elements must use power spectral density (W/Hz)"; 1460 } 1462 identity channel-power { 1463 base type-power-mode; 1464 description 1465 "all elements must use power (dBm)"; 1466 } 1468 /* 1469 * Groupings 1470 */ 1471 grouping amplifier-params { 1472 description "describes parameters for an amplifier"; 1473 container amplifier{ 1474 description "amplifier type, operatonal parameters 1475 are described"; 1476 leaf type-variety { 1477 type string ; 1478 mandatory true ; 1479 description 1480 "String identifier of amplifier type referencing 1481 a specification in a separate equipment catalog"; 1482 } 1483 container operational { 1484 description "amplifier operationnal parameters"; 1485 leaf actual-gain { 1486 type decimal64 { 1487 fraction-digits 2; 1488 } 1489 units dB ; 1490 mandatory true ; 1491 description ".."; 1492 } 1493 leaf tilt-target { 1494 type decimal64 { 1495 fraction-digits 2; 1496 } 1497 mandatory true ; 1498 description ".."; 1499 } 1500 leaf out-voa { 1501 type decimal64 { 1502 fraction-digits 2; 1503 } 1504 units dB; 1505 mandatory true; 1506 description ".."; 1507 } 1508 leaf in-voa { 1509 type decimal64 { 1510 fraction-digits 2; 1511 } 1512 units dB; 1513 mandatory true; 1514 description ".."; 1515 } 1516 uses power-param; 1517 } 1518 } 1519 } 1521 grouping fiber-params { 1522 description 1523 "String identifier of fiber type referencing a 1524 specification in a separate equipment catalog"; 1525 container fiber { 1526 description "fiber characteristics"; 1527 leaf type-variety { 1528 type string ; 1529 mandatory true ; 1530 description "fiber type"; 1531 } 1532 leaf length { 1533 type decimal64 { 1534 fraction-digits 2; 1535 } 1536 units km; 1537 mandatory true ; 1538 description "length of fiber"; 1539 } 1540 leaf loss-coef { 1541 type decimal64 { 1542 fraction-digits 2; 1543 } 1544 units dB/km; 1545 mandatory true ; 1546 description "loss coefficient of the fiber"; 1547 } 1548 leaf total-loss { 1549 type decimal64 { 1550 fraction-digits 2; 1551 } 1552 units dB; 1553 mandatory true ; 1554 description 1555 "includes all losses: fiber loss and conn-in and 1556 conn-out losses"; 1557 } 1558 leaf pmd{ 1559 type decimal64 { 1560 fraction-digits 2; 1561 } 1562 units sqrt(ps); 1563 description "pmd of the fiber"; 1564 } 1565 leaf conn-in{ 1566 type decimal64 { 1567 fraction-digits 2; 1568 } 1569 units dB; 1570 description "connector-in"; 1571 } 1572 leaf conn-out{ 1573 type decimal64 { 1574 fraction-digits 2; 1575 } 1576 units dB; 1577 description "connector-out"; 1578 } 1579 } 1580 } 1582 grouping roadm-express-path { 1583 description "roadm express path optical impairments"; 1585 container roadm-express-path { 1586 description "roadm parameters per express path"; 1588 leaf roadm-pmd { 1589 type decimal64 { 1590 fraction-digits 8; 1591 range "0..max"; 1592 } 1593 units "ps/(km)^0.5"; 1594 description 1595 "Polarization Mode Dispersion"; 1596 } 1597 leaf roadm-cd { 1598 type decimal64 { 1599 fraction-digits 5; 1600 } 1601 units "ps/nm"; 1602 description "Chromatic Dispersion"; 1603 } 1604 leaf roadm-pdl { 1605 type decimal64 { 1606 fraction-digits 2; 1607 } 1608 units dB ; 1609 description "Polarization dependent loss"; 1610 } 1611 leaf roadm-inband-crosstalk { 1612 type decimal64 { 1613 fraction-digits 2; 1614 } 1615 units dB; 1616 description 1617 "In-band crosstalk, or coherent crosstalk, can occur in 1618 components that can have multiple same wavelength inputs 1619 with the inputs either routed to different output ports, 1620 or all but 1 blocked"; 1621 } 1622 leaf roadm-maxloss { 1623 type decimal64 { 1624 fraction-digits 2; 1625 } 1626 units dB; 1627 description 1628 "This is the maximum expected add path loss from the 1629 ROADM ingress to the ROADM egress 1630 assuming no additional add path loss is added"; 1631 } 1632 } 1633 } 1635 grouping roadm-add-path { 1636 description "roadm add block path optical impairments"; 1638 container roadm-add-path { 1639 description "roadm optical impairment parameters 1640 per add path"; 1642 leaf roadm-pmd { 1643 type decimal64 { 1644 fraction-digits 8; 1645 range "0..max"; 1646 } 1647 units "ps"; 1648 description 1649 "Polarization Mode Dispersion"; 1651 } 1652 leaf roadm-cd { 1653 type decimal64 { 1654 fraction-digits 5; 1655 } 1656 units "ps/nm"; 1657 description "Cromatic Dispersion"; 1658 } 1659 leaf roadm-pdl { 1660 type decimal64 { 1661 fraction-digits 2; 1662 } 1663 units dB ; 1664 description "Polarization dependent loss"; 1665 } 1666 leaf roadm-inband-crosstalk { 1667 type decimal64 { 1668 fraction-digits 2; 1669 } 1670 units dB ; 1671 description 1672 "In-band crosstalk, or coherent crosstalk, 1673 can occur in components that can have multiple same 1674 wavelength inputs,with the inputs either 1675 routed to different output ports, 1676 or all but 1 blocked. 1677 In the case of add path it is the total 1678 of the add block 1679 + egress WSS crosstalk contributions."; 1680 } 1681 leaf roadm-maxloss { 1682 type decimal64 { 1683 fraction-digits 2; 1684 } 1685 units dB ; 1686 description 1687 "This is the maximum expected add path loss from 1688 the add/drop port input to the ROADM egress, 1689 assuming no additional add path loss is added. 1690 This is used to establish the minimum required 1691 transponder output power required 1692 to hit the ROADM egress target power 1693 levels and preventing 1694 to hit the WSS attenuation limits. 1695 If the add path contains an internal amplifier 1696 this loss value should be based 1697 on worst case expected amplifier gain due to 1698 ripple or gain uncertainty"; 1700 } 1701 leaf roadm-pmax { 1702 type decimal64 { 1703 fraction-digits 2; 1704 } 1705 units dBm ; 1706 description 1707 "This is the maximum (per carrier) power level 1708 permitted at the add block input ports, 1709 that can be handled by the ROADM node. 1710 This may reflect either add amplifier power 1711 contraints or WSS adjustment limits. 1712 Higher power transponders would need to have 1713 their launch power reduced 1714 to this value or lower"; 1715 } 1716 leaf roadm-osnr { 1717 type decimal64 { 1718 fraction-digits 5; 1719 } 1720 units "dB"; 1721 description 1722 "Optical Signal-to-Noise Ratio (OSNR). 1723 If the add path contains the ability to adjust the 1724 carrier power levels into an add path amplifier 1725 (if present) to a target value, 1726 this reflects the OSNR contribution of the 1727 add amplifier assuming this target value is obtained. 1728 The worst case OSNR based on the input power and 1729 NF calculation method, and this value, should be used 1730 (if both are defined)."; 1731 } 1732 leaf roadm-noise-figure { 1733 type decimal64 { 1734 fraction-digits 5; 1735 } 1736 units "dB"; 1737 description 1738 "Noise Figure. If the add path contains an amplifier, 1739 this is the noise figure of that amplifier inferred 1740 to the add port. 1741 This permits add path OSNR calculation based 1742 on the input power levels to the add block 1743 without knowing the ROADM path losses to 1744 the add amplifier."; 1745 } 1746 } 1747 } 1748 grouping roadm-drop-path { 1749 description "roadm drop block path optical impairments"; 1751 container roadm-drop-path { 1752 description "roadm optical impairment parameters 1753 per drop path"; 1755 leaf roadm-pmd { 1756 type decimal64 { 1757 fraction-digits 8; 1758 range "0..max"; 1759 } 1760 units "ps/(km)^0.5"; 1761 description 1762 "Polarization Mode Dispersion"; 1763 } 1764 leaf roadm-cd { 1765 type decimal64 { 1766 fraction-digits 5; 1767 } 1768 units "ps/nm"; 1769 description "Chromatic Dispersion"; 1770 } 1771 leaf roadm-pdl { 1772 type decimal64 { 1773 fraction-digits 2; 1774 } 1775 units dB ; 1776 description "Polarization dependent loss"; 1777 } 1778 leaf roadm-inband-crosstalk { 1779 type decimal64 { 1780 fraction-digits 2; 1781 } 1782 units dB; 1783 description 1784 "In-band crosstalk, or coherent crosstalk, can occur in 1785 components that can have multiple same wavelength 1786 inputs,with the inputs either routed to different 1787 output ports,or all but 1 blocked. 1788 In the case of drop path it is the total 1789 of the ingress 1790 to drop e.g. WSS and drop block crosstalk 1791 contributions."; 1792 } 1793 leaf roadm-maxloss { 1794 type decimal64 { 1795 fraction-digits 2; 1797 } 1798 units dB ; 1799 description 1800 "The net loss from the ROADM input,to the output 1801 of the drop block. 1802 If ROADM ingress to drop path includes an amplifier, 1803 the amplifier gain reduces the net loss. 1804 This is before any additional drop path attenuation 1805 that may be required 1806 due to drop amplifier power contraints. 1807 The max value correspond to worst case expected loss, 1808 including amplifier gain ripple or uncertainty. 1809 It is the maximum output power of the drop 1810 amplifier."; 1811 } 1812 leaf roadm-minloss { 1813 type decimal64 { 1814 fraction-digits 2; 1815 } 1816 units dB ; 1817 description 1818 "The net loss from the ROADM input, to the 1819 output of the drop block. 1820 If this ROADM ingress to drop path includes 1821 an amplifier,the amplifier gain reduces the net loss. 1822 This is before any additional drop path attenuation 1823 that may be required due to drop amplifier power 1824 contraints. 1825 The min value correspond to best case expected loss, 1826 including amplifier gain ripple or uncertainty."; 1827 } 1828 leaf roadm-typloss { 1829 type decimal64 { 1830 fraction-digits 2; 1831 } 1832 units dB ; 1833 description 1834 "The net loss from the ROADM input, 1835 to the output of the drop block. 1836 If this ROADM ingress to drop path 1837 includes an amplifier, 1838 the amplifier gain reduces the net loss. 1839 This is before any additional drop path 1840 attenuation 1841 that may be required due to drop amplifier 1842 power contraints. 1843 The typ value correspond to typical case 1844 expected loss."; 1846 } 1847 leaf roadm-pmin { 1848 type decimal64 { 1849 fraction-digits 2; 1850 } 1851 units dBm ; 1852 description 1853 "If the drop path has additional loss 1854 that is added, for example, 1855 to hit target power levels into a 1856 drop path amplifier, or simply, to reduce the 1857 power of a "strong" carrier 1858 (due to ripple,for example), 1859 then the use of the ROADM input power levels and 1860 the above drop losses is not appropriate. 1861 This parameter corresponds to the min per 1862 carrier power levels 1863 expected at the output of the drop block. 1864 A detail example of the comparison using 1865 these parameters is 1866 detailed in section xxx of the document yyy."; 1867 } 1868 leaf roadm-pmax { 1869 type decimal64 { 1870 fraction-digits 2; 1871 } 1872 units dBm ; 1873 description 1874 "If the drop path has additional loss that is added, 1875 for example, to hit target power levels into a 1876 drop path amplifier,or simply,to reduce the power 1877 of a "strong" carrier(due to ripple,for example), 1878 then the use of the ROADM input power levels and the 1879 above drop losses is not appropriate. 1880 This parameter corresponds to the best case per 1881 carrier power levels expected at the output of the 1882 drop block. 1883 A detail example of the comparison using 1884 these parameters 1885 is detailed in section xxx of the document yyy"; 1886 } 1887 leaf roadm-ptyp { 1888 type decimal64 { 1889 fraction-digits 2; 1890 } 1891 units dBm ; 1892 description 1893 "If the drop path has additional loss that is added, 1894 for example, to hit target power levels into a 1895 drop path amplifier,or simply,to reduce the 1896 power of a "strong" carrier(due to ripple,for example), 1897 then the use of the ROADM input power levels and 1898 the above drop losses is not appropriate. 1899 This parameter corresponds to the typical case 1900 per carrier power levels expected 1901 at the output of the drop block."; 1902 } 1903 leaf roadm-osnr { 1904 type decimal64 { 1905 fraction-digits 5; 1906 } 1907 units "dB"; 1908 description 1909 "Optical Signal-to-Noise Ratio (OSNR). 1910 Expected OSNR contribution of the drop path 1911 amplifier(if present) 1912 for the case of additional drop path loss 1913 (before this amplifier) 1914 in order to hit a target power level (per carrier). 1915 If both, the OSNR based on the ROADM 1916 input power level 1917 (Pcarrier = 1918 Pref+10Log(carrier-baudrate/ref-baud) + delta-power) 1919 and the input inferred NF(NF.drop), 1920 and this OSNR value, are defined, 1921 the minimum value between these two should be used"; 1922 } 1923 leaf roadm-noise-figure { 1924 type decimal64 { 1925 fraction-digits 5; 1926 } 1927 units "dB"; 1928 description 1929 "Drop path Noise Figure. 1930 If the drop path contains an amplifier, 1931 this is the noise figure 1932 of that amplifier, inferred to the 1933 ROADM ingress port. 1934 This permits to determine 1935 amplifier OSNR contribution 1936 without having to specify the 1937 ROADM node's losses to that amplifier. 1938 This applies for the case of no 1939 additional drop path loss, 1940 before the amplifier, in order to reduce the power 1941 of the carriers to a target value"; 1943 } 1944 } 1945 } 1947 grouping concentratedloss-params{ 1948 description "concentrated loss"; 1949 container concentratedloss{ 1950 description "concentrated loss"; 1951 leaf loss { 1952 type decimal64 { 1953 fraction-digits 2; 1954 } 1955 units dB ; 1956 description ".."; 1957 } 1958 } 1959 } 1961 grouping power-param{ 1962 description 1963 "optical power or PSD after the ROADM or after the out-voa"; 1964 choice power-param { 1965 description 1966 "select the mode: channel power or power spectral density"; 1967 case channel-power { 1968 /* when "equalization-mode='channel-power'"; */ 1969 leaf nominal-channel-power{ 1970 type decimal64 { 1971 fraction-digits 1; 1972 } 1973 units dBm ; 1974 description 1975 " Reference channel power after the ROADM or after 1976 the out-voa. "; 1977 } 1978 } 1979 case power-spectral-density{ 1980 /* when "equalization-mode='power-spectral-density'"; */ 1981 leaf nominal-power-spectral-density{ 1982 type decimal64 { 1983 fraction-digits 16; 1984 } 1985 units W/Hz ; 1986 description 1987 " Reference power spectral density after 1988 the ROADM or after the out-voa. 1989 Typical value : 3.9 E-14, resolution 0.1nW/MHz"; 1990 } 1992 } 1993 } 1994 } 1996 grouping oms-general-optical-params { 1997 description "OMS link optical parameters"; 1998 leaf generalized-snr { 1999 type decimal64 { 2000 fraction-digits 5; 2001 } 2002 units "dB@0.1nm"; 2003 description "generalized snr"; 2004 } 2005 leaf equalization-mode{ 2006 type identityref { 2007 base type-power-mode; 2008 } 2009 mandatory true; 2010 description "equalization mode"; 2011 } 2012 uses power-param; 2013 } 2015 grouping OTSiG { 2016 description "OTSiG definition , representing client 2017 digital information stream supported by 1 or more OTSi"; 2019 container OTSiG-container { 2020 config false; 2021 description 2022 "the container contains the related list of OTSi. 2023 The list could also be of only 1 element"; 2024 list OTSi { 2025 key "OTSi-carrier-id"; 2026 description 2027 "list of OTSi's under OTSi-G"; 2028 leaf OTSi-carrier-id { 2029 type int16; 2030 description "OTSi carrier-id"; 2031 } 2032 leaf OTSi-carrier-frequency { 2033 type decimal64 { 2034 fraction-digits 3; 2035 } 2036 units GHz; 2037 config false; 2038 description 2039 "OTSi carrier frequency"; 2041 } 2042 leaf OTSi-signal-width { 2043 type decimal64 { 2044 fraction-digits 3; 2045 } 2046 units GHz; 2047 config false; 2048 description 2049 "OTSi signal width"; 2050 } 2051 leaf channel-delta-power { 2052 type decimal64 { 2053 fraction-digits 2; 2054 } 2055 units dB; 2056 config false; 2057 description 2058 "optional ; delta power to ref channel 2059 input-power applied 2060 to this media channel"; 2061 } 2063 } 2064 } // OTSiG container 2065 } // OTSiG grouping 2067 grouping media-channel-groups { 2068 description "media channel groups"; 2069 list media-channel-group { 2070 key "i"; 2071 description 2072 "list of media channel groups"; 2073 leaf i { 2074 type int16; 2075 description "index of media channel group member"; 2076 } 2078 list media-channels { 2079 key "flexi-n"; 2080 description 2081 "list of media channels represented as (n,m)"; 2082 uses layer0-types:flexi-grid-channel; 2083 leaf OTSiG-ref { 2084 type leafref { 2085 path "/nw:networks/nw:network/nw:node/tet:te" + 2086 "/tet:tunnel-termination-point" + 2087 "/OTSiG-element/OTSiG-identifier" ; 2089 } 2090 description 2091 "Reference to the OTSiG list to get OTSiG 2092 identifier of the 2093 OSiG carried by this media channel 2094 that reports the transient stat"; 2095 } 2096 leaf OTSi-ref { 2097 type leafref { 2098 path "/nw:networks/nw:network/nw:node/tet:te" + 2099 "/tet:tunnel-termination-point/" 2100 +"OTSiG-element[OTSiG-identifier=current()" 2101 +"/../OTSiG-ref]/" 2102 + "OTSiG-container/OTSi/OTSi-carrier-id" ; 2103 } 2104 description 2105 "Reference to the OTSi list supporting the 2106 related OTSiG" ; 2107 } 2109 } // media channels list 2110 } // media-channel-groups list 2111 } // media media-channel-groups grouping 2113 grouping oms-element { 2114 description "OMS description"; 2115 list OMS-elements { 2116 key "elt-index"; 2117 description 2118 "defines the spans and the amplifier blocks of 2119 the amplified lines"; 2120 leaf elt-index { 2121 type uint16; 2122 description 2123 "ordered list of Index of OMS element 2124 (whether it's a Fiber, an EDFA or a 2125 Concentratedloss)"; 2126 } 2127 leaf uid { 2128 type string; 2129 description 2130 "unique id of the element if it exists"; 2131 } 2132 leaf type { 2133 type identityref { 2134 base type-element; 2135 } 2136 mandatory true; 2137 description "element type"; 2138 } 2140 container element { 2141 description "element of the list of elements of the OMS"; 2142 choice element { 2143 description "OMS element type"; 2144 case amplifier { 2145 /* when "type = 'Edfa'"; */ 2146 uses amplifier-params ; 2147 } 2148 case fiber { 2149 /* when "type = 'Fiber'"; */ 2150 uses fiber-params ; 2151 } 2152 case concentratedloss { 2153 /* when "type = 'Concentratedloss'"; */ 2154 uses concentratedloss-params ; 2155 } 2156 } 2157 } 2158 } 2159 } 2161 /* Data nodes */ 2163 augment "/nw:networks/nw:network/nw:network-types" 2164 + "/tet:te-topology" { 2165 description "optical-impairment topology augmented"; 2166 container optical-impairment-topology { 2167 presence "indicates an impairment-aware topology of 2168 optical networks"; 2169 description 2170 "Container to identify impairment-aware topology type"; 2171 } 2172 } 2174 augment "/nw:networks/nw:network/nt:link/tet:te" 2175 + "/tet:te-link-attributes" { 2176 when "/nw:networks/nw:network/nw:network-types" 2177 +"/tet:te-topology/" 2178 +"optical-imp-topo:optical-impairment-topology" { 2179 description 2180 "This augment is only valid for Optical Impairment."; 2181 } 2182 description "Optical Link augmentation for impairment data."; 2183 container OMS-attributes { 2184 config false; 2185 description "OMS attributes"; 2186 uses oms-general-optical-params; 2187 uses media-channel-groups; 2188 uses oms-element; 2189 } 2190 } 2192 augment "/nw:networks/nw:network/nw:node/tet:te" 2193 + "/tet:tunnel-termination-point" { 2194 when "/nw:networks/nw:network/nw:network-types" 2195 +"/tet:te-topology/optical-imp-topo:optical-impairment-topology"{ 2196 description 2197 "This augment is only valid for Impairment with non-sliceable 2198 transponder model"; 2199 } 2200 description 2201 "Tunnel termination point augmentation for non-sliceable 2202 transponder model."; 2204 list OTSiG-element { 2205 key "OTSiG-identifier"; 2206 config false; 2207 description 2208 "the list of possible OTSiG representing client digital 2209 stream"; 2211 leaf OTSiG-identifier { 2212 type int16; 2213 description "index of OTSiG element"; 2214 } 2215 uses OTSiG; 2216 } 2218 list transponders-list { 2219 key "transponder-id"; 2220 config false; 2221 description "list of transponders"; 2222 leaf transponder-id { 2223 type uint32; 2224 description "transponder identifier"; 2225 } 2227 choice mode { 2228 description "standard mode, organizational mode or 2229 explicit mode"; 2231 case G.692.2 { 2232 uses standard-mode; 2234 } 2236 case organizational-mode { 2237 uses organizational-mode; 2238 } 2240 case explicit-mode { 2241 uses transponder-attributes; 2242 } 2243 } 2245 leaf power { 2246 type int32; 2247 units "dBm"; 2248 config false; 2249 description "per channel power"; 2250 } 2252 leaf power-min { 2253 type int32; 2254 units "dBm"; 2255 config false; 2256 description "minimum power of the transponder"; 2257 } 2258 leaf power-max { 2259 type int32; 2260 units "dBm"; 2261 config false; 2262 description "maximum power of the transponder"; 2263 } 2264 } 2265 } 2267 augment "/nw:networks/nw:network/nw:node/tet:te" 2268 + "/tet:tunnel-termination-point" { 2269 when "/nw:networks/nw:network/nw:network-types" 2270 +"/tet:te-topology/" 2271 + "optical-imp-topo:optical-impairment-topology" { 2272 description 2273 "This augment is only valid for optical impairment 2274 with sliceable transponder model"; 2275 } 2276 description 2277 "Tunnel termination point augmentation for sliceable 2278 transponder model."; 2279 uses sliceable-transponder-attributes; 2280 } 2281 augment "/nw:networks/nw:network/nw:node/tet:te" 2282 + "/tet:te-node-attributes" { 2283 when "/nw:networks/nw:network/nw:network-types" 2284 + "/tet:te-topology" 2285 + "/optical-imp-topo:optical-impairment-topology" { 2287 description 2288 "This augment is only valid for Optical Impairment 2289 topology"; 2290 } 2291 description 2292 "node attributes augmentantion for optical-impairment ROADM 2293 node"; 2295 list roadm-path-impairments { 2296 key "roadm-path-impairments-id"; 2297 config false; 2298 description "list of set of optical impairments related 2299 to ROADM "; 2301 leaf roadm-path-impairments-id { 2302 type uint32; 2303 description "index of the ROADM path-impairment list"; 2304 } 2305 choice impairment-type { 2306 description "type path impairment"; 2307 case roadm-express-path { 2308 uses roadm-express-path; 2309 } 2310 case roadm-add-path { 2311 uses roadm-add-path; 2312 } 2313 case roadm-drop-path { 2314 uses roadm-drop-path; 2315 } 2316 } 2317 } // list path impairments 2318 } // augmentation for optical-impairment ROADM 2320 augment "/nw:networks/nw:network/nw:node/tet:te/" 2321 + "tet:information-source-entry/tet:connectivity-matrices"{ 2322 when "/nw:networks/nw:network/nw:network-types" 2323 + "/tet:te-topology/" 2324 + "optical-imp-topo:optical-impairment-topology" { 2325 description 2326 "This augment is only valid for Optical Impairment 2327 topology "; 2328 } 2329 description 2330 "Augment default TE node connectivity matrix information 2331 source."; 2333 leaf roadm-path-impairments { 2334 type leafref { 2335 path "../../../tet:te-node-attributes/" 2336 + "roadm-path-impairments/roadm-path-impairments-id"; 2337 } 2338 description "pointer to the list set of ROADM optical 2339 impairments"; 2340 } 2341 } // augmentation connectivity-matrices information-source 2343 augment "/nw:networks/nw:network/nw:node/tet:te/" 2344 + "tet:information-source-entry/tet:connectivity-matrices/" 2345 + "tet:connectivity-matrix" { 2346 when "/nw:networks/nw:network/nw:network-types" 2347 + "/tet:te-topology/" 2348 + "optical-imp-topo:optical-impairment-topology" { 2349 description 2350 "This augment is only valid for Optical Impairment 2351 topology "; 2352 } 2354 description 2355 "Augment TE node connectivity matrix entry information 2356 source."; 2358 leaf roadm-path-impairments { 2359 type leafref { 2360 path "../../../../tet:te-node-attributes/" 2361 + "roadm-path-impairments/roadm-path-impairments-id"; 2362 } 2363 description "pointer to the list set of ROADM optical 2364 impairments"; 2365 } 2366 } // augmentation connectivity-matrix information-source 2368 augment "/nw:networks/nw:network/nw:node/tet:te/" 2369 + "tet:te-node-attributes/tet:connectivity-matrices" { 2370 when "/nw:networks/nw:network/nw:network-types" 2371 + "/tet:te-topology/" 2372 + "optical-imp-topo:optical-impairment-topology" { 2373 description 2374 "This augment is only valid for Optical Impairment 2375 topology "; 2376 } 2377 description 2378 "Augment default TE node connectivity matrix."; 2379 leaf roadm-path-impairments { 2380 type leafref { 2381 path "../../roadm-path-impairments/" 2382 + "roadm-path-impairments-id"; 2383 } 2384 config false; /*the identifier in the list */ 2385 /*"roadm-path-impairments" of ROADM optical impairment*/ 2386 /*is read-only as the rest of attributes*/ 2387 description "pointer to the list set of ROADM optical 2388 impairments"; 2389 } 2390 } // augmentation connectivity-matrices 2392 augment "/nw:networks/nw:network/nw:node/tet:te/" 2393 + "tet:te-node-attributes/" 2394 + "tet:connectivity-matrices/tet:connectivity-matrix" { 2395 when "/nw:networks/nw:network/nw:network-types" 2396 + "/tet:te-topology/" 2397 + "optical-imp-topo:optical-impairment-topology" { 2398 description 2399 "This augment is only valid for 2400 Optical Impairment topology "; 2401 } 2403 description 2404 "Augment TE node connectivity matrix entry."; 2406 leaf roadm-path-impairments { 2407 type leafref { 2408 path "../../../roadm-path-impairments/" 2409 + "roadm-path-impairments-id"; 2410 } 2411 config false; 2412 description "pointer to the list set of ROADM optical 2413 impairments"; 2414 } 2415 } // augmentation connectivity-matrix 2417 augment "/nw:networks/nw:network/nw:node/tet:te/" 2418 + "tet:tunnel-termination-point/" 2419 + "tet:local-link-connectivities" { 2421 when "/nw:networks/nw:network/nw:network-types" 2422 + "/tet:te-topology/" 2423 + "optical-imp-topo:optical-impairment-topology" { 2424 description 2425 "This augment is only valid for Optical Impairment topology "; 2426 } 2428 description 2429 "Augment default TTP LLC."; 2430 leaf add-path-impairments { 2431 type leafref { 2432 path "../../../tet:te-node-attributes/" 2433 + "roadm-path-impairments/roadm-path-impairments-id" ; 2434 } 2435 config false; 2436 description "pointer to the list set of ROADM optical 2437 impairments"; 2438 } 2439 leaf drop-path-impairments { 2440 type leafref { 2441 path "../../../tet:te-node-attributes/" 2442 + "roadm-path-impairments/roadm-path-impairments-id" ; 2443 } 2444 config false; 2445 description "pointer to the list set of ROADM 2446 optical impairments"; 2447 } 2448 } // augmentation local-link-connectivities 2450 augment "/nw:networks/nw:network/nw:node/tet:te/" 2451 + "tet:tunnel-termination-point/" 2452 + "tet:local-link-connectivities/" 2453 + "tet:local-link-connectivity" { 2455 when "/nw:networks/nw:network/nw:network-types" 2456 + "/tet:te-topology/" 2457 + "optical-imp-topo:optical-impairment-topology" { 2458 description 2459 "This augment is only valid for 2460 Optical Impairment topology "; 2461 } 2463 description 2464 "Augment TTP LLC entry."; 2465 leaf add-path-impairments { 2466 type leafref { 2467 path "../../../../tet:te-node-attributes/" 2468 + "roadm-path-impairments/roadm-path-impairments-id" ; 2469 } 2470 config false; 2471 description "pointer to the list set of ROADM optical 2472 impairments"; 2474 } 2475 leaf drop-path-impairments { 2476 type leafref { 2477 path "../../../../tet:te-node-attributes/" 2478 + "roadm-path-impairments/roadm-path-impairments-id" ; 2479 } 2480 config false; 2481 description "pointer to the list set of ROADM optical 2482 impairments"; 2483 } 2484 } // augmentation local-link-connectivity 2485 } 2487 2489 5. Security Considerations 2491 The configuration, state, and action data defined in this document 2492 are designed to be accessed via a management protocol with a secure 2493 transport layer, such as NETCONF [RFC6241]. The NETCONF access 2494 control model [RFC8341] provides the means to restrict access for 2495 particular NETCONF users to a preconfigured subset of all available 2496 NETCONF protocol operations and content. 2498 A number of configuration data nodes defined in this document are 2499 read-only; however, these data nodes may be considered sensitive or 2500 vulnerable in some network environments (TBD). 2502 6. IANA Considerations 2504 This document registers the following namespace URIs in the IETF XML 2505 registry [RFC3688]: 2507 -------------------------------------------------------------------- 2508 URI: urn:ietf:params:xml:ns:yang:ietf-optical-impairment-topology 2509 Registrant Contact: The IESG. 2510 XML: N/A, the requested URI is an XML namespace. 2511 -------------------------------------------------------------------- 2513 This document registers the following YANG modules in the YANG Module 2514 Names registry [RFC7950]: 2516 -------------------------------------------------------------------- 2517 name: ietf-optical-impairment-topology 2518 namespace: urn:ietf:params:xml:ns:yang:ietf-optical-impairment- 2519 topology 2520 prefix: optical-imp-topo 2521 reference: RFC XXXX (TDB) 2522 -------------------------------------------------------------------- 2524 7. Acknowledgments 2526 We thank Daniele Ceccarelli and Oscar G. De Dios for useful 2527 discussions and motivation for this work. 2529 8. References 2531 8.1. Normative References 2533 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", 2534 RFC 7950, DOI 10.17487/RFC7950, August 2016, 2535 . 2537 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF 2538 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017, 2539 . 2541 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration 2542 Access Control Model", STD 91, RFC 8341, 2543 DOI 10.17487/RFC8341, March 2018, 2544 . 2546 8.2. Informative References 2548 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., 2549 and A. Bierman, Ed., "Network Configuration Protocol 2550 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, 2551 . 2553 [RFC6566] Lee, Y., Ed., Bernstein, G., Ed., Li, D., and G. 2554 Martinelli, "A Framework for the Control of Wavelength 2555 Switched Optical Networks (WSONs) with Impairments", 2556 RFC 6566, DOI 10.17487/RFC6566, March 2012, 2557 . 2559 [RFC7446] Lee, Y., Ed., Bernstein, G., Ed., Li, D., and W. Imajuku, 2560 "Routing and Wavelength Assignment Information Model for 2561 Wavelength Switched Optical Networks", RFC 7446, 2562 DOI 10.17487/RFC7446, February 2015, 2563 . 2565 [RFC7579] Bernstein, G., Ed., Lee, Y., Ed., Li, D., Imajuku, W., and 2566 J. Han, "General Network Element Constraint Encoding for 2567 GMPLS-Controlled Networks", RFC 7579, 2568 DOI 10.17487/RFC7579, June 2015, 2569 . 2571 [RFC7581] Bernstein, G., Ed., Lee, Y., Ed., Li, D., Imajuku, W., and 2572 J. Han, "Routing and Wavelength Assignment Information 2573 Encoding for Wavelength Switched Optical Networks", 2574 RFC 7581, DOI 10.17487/RFC7581, June 2015, 2575 . 2577 [RFC7698] Gonzalez de Dios, O., Ed., Casellas, R., Ed., Zhang, F., 2578 Fu, X., Ceccarelli, D., and I. Hussain, "Framework and 2579 Requirements for GMPLS-Based Control of Flexi-Grid Dense 2580 Wavelength Division Multiplexing (DWDM) Networks", 2581 RFC 7698, DOI 10.17487/RFC7698, November 2015, 2582 . 2584 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", 2585 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018, 2586 . 2588 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K., 2589 and R. Wilton, "Network Management Datastore Architecture 2590 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018, 2591 . 2593 [RFC8345] Clemm, A., Medved, J., Varga, R., Bahadur, N., 2594 Ananthakrishnan, H., and X. Liu, "A YANG Data Model for 2595 Network Topologies", RFC 8345, DOI 10.17487/RFC8345, March 2596 2018, . 2598 [RFC8453] Ceccarelli, D., Ed. and Y. Lee, Ed., "Framework for 2599 Abstraction and Control of TE Networks (ACTN)", RFC 8453, 2600 DOI 10.17487/RFC8453, August 2018, 2601 . 2603 [I-D.ietf-teas-yang-te-topo] 2604 Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and 2605 O. Dios, "YANG Data Model for Traffic Engineering (TE) 2606 Topologies", draft-ietf-teas-yang-te-topo-22 (work in 2607 progress), June 2019. 2609 [I-D.ietf-ccamp-wson-yang] 2610 Zheng, H., Lee, Y., Guo, A., Lopezalvarez, V., and D. 2611 King, "A YANG Data Model for WSON (Wavelength Switched 2612 Optical Networks)", draft-ietf-ccamp-wson-yang-25 (work in 2613 progress), May 2020. 2615 [I-D.ietf-ccamp-layer0-types] 2616 Zheng, H., Lee, Y., Guo, A., Lopezalvarez, V., and D. 2617 King, "A YANG Data Model for Layer 0 Types", draft-ietf- 2618 ccamp-layer0-types-06 (work in progress), May 2020. 2620 [I-D.ietf-ccamp-dwdm-if-param-yang] 2621 Galimberti, G., Kunze, R., Burk, A., Hiremagalur, D., and 2622 G. Grammel, "A YANG model to manage the optical interface 2623 parameters for an external transponder in a WDM network", 2624 draft-ietf-ccamp-dwdm-if-param-yang-04 (work in progress), 2625 May 2020. 2627 [G.807] "Generic functional architecture of the optical media 2628 network", ITU-T Recommendation G.807 - in publication 2629 process, February 2020. 2631 [G.709] "Interfaces for the Optical Transport Network (OTN)", 2632 ITU-T Recommendation G.709, June 2016. 2634 [G.694.1] "Spectral grids for WDM applications: DWDM frequency 2635 grid", ITU-T Recommendation G.694.1, February 2012. 2637 [G.959.1] "Optical transport network physical layer interfaces", 2638 ITU-T Recommendation G.959.1, February 2012. 2640 [G.872] "Architecture of optical transport networks", 2641 ITU-T Recommendation G.872, January 2017. 2643 Appendix A. Contributors 2645 Aihua Guo 2646 Huawei Technologies 2648 Email: aguo@futurewei.com 2650 Jonas Martensson 2651 RISE 2653 Email: jonas.martensson@ri.se 2655 Appendix B. Additional Authors 2657 Haomian Zheng 2658 Huawei Technologies 2660 Email: zhenghaomian@huawei.com 2662 Italo Busi 2663 Huawei Technologies 2665 Email: Italo.Busi@huawei.com 2667 Nicola Sambo 2668 Scuola Superiore Sant'Anna 2670 Email: nicosambo@gmail.com 2672 Giovanni Martinelli 2673 Cisco 2675 Email: giomarti@cisco.com 2677 Esther Le Rouzic 2678 Orange 2680 Email: esther.lerouzic@orange.com 2682 Julien Meuric 2683 Orange 2685 Email: julien.meuric@orange.com 2687 Sergio Belotti 2688 Nokia 2690 Email: Sergio.belotti@nokia.com 2692 Griseri Enrico 2693 Nokia 2695 Email: Enrico.Griseri@nokia.com 2696 Gert Grammel 2697 Juniper 2699 Email: ggrammel@juniper.net 2701 Authors' Addresses 2703 Young Lee 2704 SKKU (Sung Kyun Kwan University) 2706 Email: younglee.tx@gmail.com 2708 Jean-Luc Auge 2709 Orange 2711 Email: jeanluc.auge@orange.com 2713 Victor Lopez 2714 Telefonica 2716 Email: victor.lopezalvarez@telefonica.com 2718 G. Galimberti 2719 Cisco 2721 Email: ggalimbe@cisco.com 2723 Dieter Beller 2724 Nokia 2726 Email: Dieter.Beller@nokia.com