idnits 2.17.1 draft-ietf-ccamp-optical-impairment-topology-yang-05.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- ** There is 1 instance of too long lines in the document, the longest one being 8 characters in excess of 72. ** The document seems to lack a both a reference to RFC 2119 and the recommended RFC 2119 boilerplate, even if it appears to use RFC 2119 keywords. RFC 2119 keyword, line 576: '...ting. Each mode MUST follow only one ...' Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year == Line 916 has weird spacing: '...t-index uin...' == Line 923 has weird spacing: '...variety str...' == Line 942 has weird spacing: '...variety str...' == Line 955 has weird spacing: '...roup-id int...' == Line 966 has weird spacing: '...nder-id uin...' == (2 more instances...) -- The document date (November 2, 2020) is 1271 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Missing Reference: 'RFCXXXX' is mentioned on line 178, but not defined == Missing Reference: 'RFC3688' is mentioned on line 2610, but not defined == Unused Reference: 'I-D.ietf-ccamp-wson-yang' is defined on line 2714, but no explicit reference was found in the text == Unused Reference: 'I-D.ietf-ccamp-layer0-types' is defined on line 2720, but no explicit reference was found in the text == Outdated reference: A later version (-28) exists of draft-ietf-ccamp-wson-yang-27 == Outdated reference: A later version (-09) exists of draft-ietf-ccamp-layer0-types-08 == Outdated reference: A later version (-10) exists of draft-ietf-ccamp-dwdm-if-param-yang-04 Summary: 2 errors (**), 0 flaws (~~), 14 warnings (==), 1 comment (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 CCAMP Working Group Y. Lee 3 Internet-Draft SKKU (Sung Kyun Kwan University) 4 Intended status: Standards Track JL. Auge 5 Expires: May 6, 2021 Orange 6 V. Lopez 7 Telefonica 8 G. Galimberti 9 Cisco 10 D. Beller 11 Nokia 12 November 2, 2020 14 A Yang Data Model for Optical Impairment-aware Topology 15 draft-ietf-ccamp-optical-impairment-topology-yang-05 17 Abstract 19 In order to provision an optical connection through optical networks, 20 a combination of path continuity, resource availability, and 21 impairment constraints must be met to determine viable and optimal 22 paths through the network. The determination of appropriate paths is 23 known as Impairment-Aware Routing and Wavelength Assignment (IA-RWA) 24 for WSON, while it is known as Impairment-Aware Routing and Spectrum 25 Assigment (IA-RSA) for SSON. 27 This document provides a YANG data model for the impairment-aware TE 28 topology in optical networks. 30 Status of This Memo 32 This Internet-Draft is submitted in full conformance with the 33 provisions of BCP 78 and BCP 79. 35 Internet-Drafts are working documents of the Internet Engineering 36 Task Force (IETF). Note that other groups may also distribute 37 working documents as Internet-Drafts. The list of current Internet- 38 Drafts is at https://datatracker.ietf.org/drafts/current/. 40 Internet-Drafts are draft documents valid for a maximum of six months 41 and may be updated, replaced, or obsoleted by other documents at any 42 time. It is inappropriate to use Internet-Drafts as reference 43 material or to cite them other than as "work in progress." 45 This Internet-Draft will expire on May 6, 2021. 47 Copyright Notice 49 Copyright (c) 2020 IETF Trust and the persons identified as the 50 document authors. All rights reserved. 52 This document is subject to BCP 78 and the IETF Trust's Legal 53 Provisions Relating to IETF Documents 54 (https://trustee.ietf.org/license-info) in effect on the date of 55 publication of this document. Please review these documents 56 carefully, as they describe your rights and restrictions with respect 57 to this document. Code Components extracted from this document must 58 include Simplified BSD License text as described in Section 4.e of 59 the Trust Legal Provisions and are provided without warranty as 60 described in the Simplified BSD License. 62 Table of Contents 64 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 65 1.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 4 66 1.2. Tree Diagram . . . . . . . . . . . . . . . . . . . . . . 4 67 1.3. Prefixes in Data Node Names . . . . . . . . . . . . . . . 4 68 2. Reference Architecture . . . . . . . . . . . . . . . . . . . 5 69 2.1. Control Plane Architecture . . . . . . . . . . . . . . . 5 70 2.2. Transport Data Plane . . . . . . . . . . . . . . . . . . 6 71 2.3. OMS Media Links . . . . . . . . . . . . . . . . . . . . . 7 72 2.3.1. Optical Tributary Signal (OTSi) . . . . . . . . . . . 8 73 2.3.2. Optical Tributary Signal Group (OTSiG) . . . . . . . 8 74 2.3.3. Media Channel (MC) . . . . . . . . . . . . . . . . . 9 75 2.3.4. Media Channel Group (MCG) . . . . . . . . . . . . . . 10 76 2.4. Amplifiers . . . . . . . . . . . . . . . . . . . . . . . 11 77 2.5. Transponders . . . . . . . . . . . . . . . . . . . . . . 12 78 2.5.1. Application Codes . . . . . . . . . . . . . . . . . . 12 79 2.5.2. Organizational Modes . . . . . . . . . . . . . . . . 13 80 2.5.3. Explicit Modes . . . . . . . . . . . . . . . . . . . 14 81 2.5.4. Transponder Capabilities and Current Configuration . 14 82 2.6. WSS/Filter . . . . . . . . . . . . . . . . . . . . . . . 15 83 2.7. Optical Fiber . . . . . . . . . . . . . . . . . . . . . . 15 84 2.8. ROADM Node Architectures . . . . . . . . . . . . . . . . 16 85 2.8.1. Integrated ROADM Architecture with Integrated Optical 86 Transponders . . . . . . . . . . . . . . . . . . . . 16 87 2.8.2. Integrated ROADMs with Integrated Optical 88 Transponders and Single Channel Add/Drop Interfaces 89 for Remote Optical Transponders . . . . . . . . . . . 17 90 2.8.3. Disaggregated ROADMs Subdivided into Degree, 91 Add/Drop, and Optical Transponder Subsystems . . . . 18 92 2.8.4. Optical Impairments Imposed by ROADM Nodes . . . . . 19 93 3. YANG Model (Tree Structure) . . . . . . . . . . . . . . . . . 21 94 4. Optical Impairment Topology YANG Model . . . . . . . . . . . 25 95 5. Security Considerations . . . . . . . . . . . . . . . . . . . 56 96 6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 56 97 7. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . 57 98 8. References . . . . . . . . . . . . . . . . . . . . . . . . . 57 99 8.1. Normative References . . . . . . . . . . . . . . . . . . 57 100 8.2. Informative References . . . . . . . . . . . . . . . . . 57 101 Appendix A. Contributors . . . . . . . . . . . . . . . . . . . . 60 102 Appendix B. Additional Authors . . . . . . . . . . . . . . . . . 60 103 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 61 105 1. Introduction 107 In order to provision an optical connection (an optical path) through 108 a wavelength switched optical networks (WSONs) or spectrum switched 109 optical networks (SSONs), a combination of path continuity, resource 110 availability, and impairment constraints must be met to determine 111 viable and optimal paths through the network. The determination of 112 appropriate paths is known as Impairment-Aware Routing and Wavelength 113 Assignment (IA-RWA) [RFC6566] for WSON, while it is known as IA- 114 Routing and Spectrum Assigment (IA-RSA) for SSON. 116 This document provides a YANG data model for the impairment-aware 117 Traffic Engineering (TE) topology in WSONs and SSONs. The YANG model 118 described in this document is a WSON/SSON technology-specific Yang 119 model based on the information model developed in [RFC7446] and the 120 two encoding documents [RFC7581] and [RFC7579] that developed 121 protocol independent encodings based on [RFC7446]. 123 The intent of this document is to provide a Yang data model, which 124 can be utilized by a Multi-Domain Service Coordinator (MDSC) to 125 collect states of WSON impairment data from the Transport PNCs to 126 enable impairment-aware optical path computation according to the 127 ACTN Architecture [RFC8453]. The communication between controllers 128 is done via a NETCONF [RFC8341] or a RESTCONF [RFC8040]. 129 Similarly,this model can also be exported by the MDSC to a Customer 130 Network Controller (CNC), which can run an offline planning process 131 to map latter the services in the network. 133 This document augments the generic TE topology draft 134 [I-D.ietf-teas-yang-te-topo] where possible. 136 This document defines one YANG module: ietf-optical-impairment- 137 topology (Section 3) according to the new Network Management 138 Datastore Architecture [RFC8342]. 140 1.1. Terminology 142 Refer to [RFC6566], [RFC7698], and [G.807] for the key terms used in 143 this document. 145 The following terms are defined in [RFC7950] and are not redefined 146 here: 148 o client 149 o server 150 o augment 151 o data model 152 o data node 154 The following terms are defined in [RFC6241] and are not redefined 155 here: 157 o configuration data 158 o state data 160 The terminology for describing YANG data models is found in 161 [RFC7950]. 163 1.2. Tree Diagram 165 A simplified graphical representation of the data model is used in 166 Section 2 of this this document. The meaning of the symbols in these 167 diagrams is defined in [RFC8340]. 169 1.3. Prefixes in Data Node Names 171 In this document, names of data nodes and other data model objects 172 are prefixed using the standard prefix associated with the 173 corresponding YANG imported modules, as shown in Table 1. 175 +--------------+--------------------------+-------------------------+ 176 | Prefix | YANG module | Reference | 177 +--------------+--------------------------+-------------------------+ 178 | optical-imp- | ietf-optical-impairment- | [RFCXXXX] | 179 | topo | topology | | 180 | layer0-types | ietf-layer0-types | [I-D.ietf-ccamp-layer0- | 181 | | | types] | 182 | nw | ietf-network | [RFC8345] | 183 | nt | ietf-network-topology | [RFC8345] | 184 | tet | ietf-te-topology | [I-D.ietf-teas-yang-te- | 185 | | | topo] | 186 +--------------+--------------------------+-------------------------+ 188 Table 1: Prefixes and corresponding YANG modules 190 [Editor's note: The RFC Editor will replace XXXX with the number 191 assigned to the RFC once this draft becomes an RFC.] 193 2. Reference Architecture 195 2.1. Control Plane Architecture 197 Figure 1 shows the control plane architecture. 199 +--------+ 200 | MDSC | 201 +--------+ 202 Scope of this ID -------> || 203 | || 204 | +------------------------+ 205 | | OPTICAL | 206 +---------+ | | DOMAIN | +---------+ 207 | Device | | | CONTROLLER | | Device | 208 | config. | | +------------------------+ | config. | 209 +---------+ v // || \\ +---------+ 210 ______|______ // || \\ ______|______ 211 / OT \ // || \\ / OT \ 212 | +--------+ |// __--__ \\| +--------+ | 213 | |Vend. A |--|----+ ( ) +----|--| Vend. A| | 214 | +--------+ | | ~-( )-~ | | +--------+ | 215 | +--------+ | +---/ \---+ | +--------+ | 216 | |Vend. B |--|--+ / \ +--|--| Vend. B| | 217 | +--------+ | +---( OLS Segment )---+ | +--------+ | 218 | +--------+ | +---( )---+ | +--------+ | 219 | |Vend. C |--|--+ \ / +--|--| Vend. C| | 220 | +--------+ | +---\ /---+ | +--------+ | 221 | +--------+ | | ~-( )-~ | | +--------+ | 222 | |Vend. D |--|----+ (__ __) +----|--| Vend. D| | 223 | +--------+ | -- | +--------+ | 224 \_____________/ \_____________/ 225 ^ ^ 226 | | 227 | | 228 Scope of [I-D.ietf-ccamp-dwdm-if-param-yang] 230 Figure 1: Scope of draft-ietf-ccamp-dwdm-if-param-yang 232 The models developed in this document is an abstracted Yang model 233 that may be used in the interfaces between the MDSC and the Optical 234 Domain Controller (aka MPI) and between the Optical Domain Controller 235 and the Optical Device (aka SBI) in Figure 1. It is not intended to 236 support a detailed low-level DWDM interface model. DWDM interface 237 model is supported by the models presented in 238 [I-D.ietf-ccamp-dwdm-if-param-yang]. 240 2.2. Transport Data Plane 242 This section provides the description of the reference optical 243 network architecture and its relevant components to support optical 244 impairment-aware path computation. 246 Figure 2 shows the reference architecture. 248 +-------------------+ +-------------------+ 249 | ROADM Node | | ROADM Node | 250 | | | | 251 | PA +-------+ BA | ILA | PA +-------+ BA | 252 | +-+ | WSS/ | +-+ | _____ +--+ _____ | +-+ | WSS/ | +-+ | 253 --|-| |-|Filter |-| |-|-()____)-| |-()____)-|-| |-|Filter |-| |-|-- 254 | +-+ | | +-+ | +--+ | +-+ | | +-+ | 255 | +-------+ | optical | +-------+ | 256 | | | | | fiber | | | | | 257 | o o o | | o o o | 258 | transponders | | transponders | 259 +-------------------+ +-------------------+ 260 OTS Link OTS Link 261 <---------> <---------> 262 OMS Link 263 <--------------------------------> 265 PA: Pre-Amplifieror 266 BA: Booster Amplifier 267 ILA: In-Line Amplifier 269 Figure 2: Reference Architecture for Optical Transport Network 271 BA (on the left side ROADM) is the ingress Amplifier and PA (on the 272 right side ROADM is the egress amplifier for the OMS link shown in 273 Figure 2. 275 2.3. OMS Media Links 277 According to [G.872], OMS Media Link represents a media link between 278 two ROADMs. Specifically, it originates at the ROADM's Filter in the 279 source ROADM and terminates at the ROADM's Filter in the destination 280 ROADM. 282 OTS Media Link represents a media link: 284 (i) between ROADM's BA and ILA; 285 (ii) between a pair of ILAs; 286 (iii) between ILA and ROADM's PA. 288 OMS Media link can be decomposed in a sequence of OTS links type (i), 289 (ii), and (iii) as discussed above. OMS Media link would give an 290 abstracted view of impairment data (e.g., power, OSNR, etc.) to the 291 network controller. 293 For the sake of optical impairment evaluation OMS Media link can be 294 also decomposed in a sequence of elements such as BA, fiber section, 295 ILA, concentrated loss and PA. 297 [Editor's note: text below related to [G.807] needs to be revised! 298 [G.807] is now in publication process.] 300 2.3.1. Optical Tributary Signal (OTSi) 302 The OTSi is defined in ITU-T Recommendation G.959.1, section 3.2.4 303 [G.959.1]. The YANG model defined below assumes that a single OTSi 304 consists of a single modulated optical carrier. This single 305 modulated optical carrier conveys digital information. 306 Characteristics of the OTSi signal are modulation scheme (e.g. QPSK, 307 8-QAM, 16-QAM, etc.), baud rate (measure of the symbol rate), pulse 308 shaping (e.g. raised cosine - complying with the Nyquist inter symbol 309 interference criterion), etc. 311 2.3.2. Optical Tributary Signal Group (OTSiG) 313 The definition of the OTSiG is currently being moved from ITU-T 314 Recommendation G.709 [G.709] to the new draft Recommendation G.807 315 (still work in progress) [G.807]. The OTSiG is an electrical signal 316 that is carried by one or more OTSi's. The relationship between the 317 OTSiG and the the OTSi's is described in ITU-T draft Recommendation 318 G.807, section 10.2 [G.807]. The YANG model below supports both 319 cases: the single OTSi case where the OTSiG contains a single OTSi 320 (see ITU-T draft Recommendation G.807, Figure 10-2) and the multiple 321 OTSi case where the OTSiG consists of more than one OTSi (see ITU-T 322 draft Recommendation G.807, Figure 10-3). From a layer 0 topology 323 YANG model perspective, the OTSiG is a logical construct that 324 associates the OTSi's, which belong to the same OTSiG. The typical 325 application of an OTSiG consisting of more than one OTSi is inverse 326 multiplexing. Constraints exist for the OTSi's belonging to the same 327 OTSiG such as: (i) all OTSi's must be co-routed over the same optical 328 fibers and nodes and (ii) the differential delay between the 329 different OTSi's may not exceed a certain limit. Example: a 400Gbps 330 client signal may be carried by 4 OTSi's where each OTSi carries 331 100Gbps of client traffic. 333 OTSiG 334 _________________________/\__________________________ 335 / \ 336 m=7 337 - - - +---------------------------X---------------------------+ - - - 338 / / / | | / / / 339 / / /| OTSi OTSi OTSi OTSi |/ / / 340 / / / | ^ ^ ^ ^ | / / / 341 / / /| | | | | |/ / / 342 / / / | | | | | | / / / 343 / / /| | | | | |/ / / 344 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 345 --+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+--- 346 n = 4 347 K1 K2 K3 K4 349 Figure 3: MC Example containing all 4 OTSi signals of an OTSiG 351 2.3.3. Media Channel (MC) 353 The definition of the MC is currently being moved from ITU-T 354 Recommendation G.872 [G.872] to the new draft Recommendation G.807 355 (still work in progress) [G.807]. Section 3.2.2 defines the term MC 356 and section 7.1.2 provides a more detailed description with some 357 examples. The definition of the MC is very generic (see ITU-T draft 358 Recommendation G.807, Figure 7-1). In the YANG model below, the MC 359 is used with the following semantics: 361 The MC is an end-to-end topological network construct and can be 362 considered as an "optical pipe" with a well-defined frequency slot 363 between one or more optical transmitters each generating an OTSi and 364 the corresponding optical receivers terminating the OTSi's. If the 365 MC carries more than one OTSi, it is assumed that these OTSi's belong 366 to the same OTSiG. 368 m=8 369 +-------------------------------X-------------------------------+ 370 | | | 371 | +----------X----------+ | +----------X----------+ | 372 | | OTSi | | OTSi | | 373 | | ^ | | | ^ | | 374 | | | | | | | | 375 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 376 --+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+- 377 | n=4 | 378 K1 K2 380 <------------------------ Media Channel -----------------------> 382 Figure 4: Figure Caption TBA 384 The frequency slot of the MC is defined by the n value defining the 385 central frequency of the MC and the m value that defines the width of 386 the MC following the flexible grid definition in ITU-T Recommendation 387 G.694.1 [G.694.1]. In this model, the effective frequency slot as 388 defined in ITU-T draft Recommendation G.807 is equal to the frequency 389 slot of this end-to-end MC. It is also assumed that ROADM devices 390 can switch MCs. For various reasons (e.g. differential delay), it 391 is preferred to use a single MC for all OTSi's of the same OTSiG. It 392 may however not always be possible to find a single MC for carrying 393 all OTSi's of an OTSiG due to spectrum occupation along the OTSiG 394 path. 396 2.3.4. Media Channel Group (MCG) 398 The definition of the MCG is currently work in progress in ITU-T and 399 is defined in section 7.1.3 of the new ITU-T draft Recommendation 400 G.807 (still work in progress) [G.807]. The YANG model below assumes 401 that the MCG is a logical grouping of one or more MCs that are used 402 to to carry all OTSi's belonging to the same OTSiG. 404 The MCG can be considered as an association of MCs without defining a 405 hierarchy where each MC is defined by its (n,m) value pair. An MCG 406 consists of more than one MC when no single MC can be found from 407 source to destination that is wide enough to accommodate all OTSi's 408 (modulated carriers) that belong to the same OTSiG. In such a case 409 the set of OTSi's belonging to a single OTSiG have to be split across 410 2 or more MCs. 412 MCG1 = {M1.1, M1.2} 413 __________________________/\________________________ 414 / \ 415 M1.1 M2 M1.2 416 ____________/\____________ _____/\_____ ____/\____ 417 / \/ \/ \ 418 - - - +---------------------------+-------------+-----------+ - - - 419 / / / | | / / / / / / | | / / / 420 / / /| OTSi OTSi OTSi |/ / / / / / /| OTSi |/ / / 421 / / / | ^ ^ ^ | / / / / / / | ^ | / / / 422 / / /| | | | |/ / / / / / /| | |/ / / 423 / / / | | | | | / / / / / / | | | / / / 424 / / /| | | | |/ / / / / / /| | |/ / / 425 -7 -4 -1 0 1 2 3 4 5 6 7 8 ... 14 17 20 426 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 427 n=0 n=17 428 K1 K2 K3 K4 430 Figure 5: Figure Caption TBA 432 The MCG is relevant for path computation because all end-to-end MCs 433 belonging to the same MCG have to be co-routed, i.e., have to follow 434 the same path. Additional constraints may exist (e.g. differential 435 delay). 437 2.4. Amplifiers 439 Optical amplifiers are in charge of amplifying the optical signal in 440 the optical itself without any electrical conversion. There are 441 three main technologies to build amplifiers: Erbium Doped Fiber 442 Amplifier (EDFA), Raman Fiber Amplifier (RFA), and Semiconductor 443 Optical Amplifier (SOA). Nowadays, most of optical networks uses 444 EDFAs. However, RFA has an attractive feature that it works in any 445 wavelength band with a similar or lower noise figures compared to 446 EDFA. On the other hand, RFAs consumes more power and are more 447 expensive than EDFAs. 449 Amplifiers can be classified according to their location in the 450 communication link. There are three basic types of amplifiers: ILA, 451 Pre-Amplifier and Booster. ILA is In-Line Amplifier which is a 452 separate node type while Pre-Amplifier and Booster Amplifier are 453 integral elements of ROADM node. From a data modeling perspective, 454 Pre-Amplifier and Booster Amplifier are internal functions of a ROADM 455 node and as such these elements are hidden within ROADM node. In 456 this document, we would avoid internal node details, but attempt to 457 abstract as much as possible. 459 One modeling consideration of the ROADM internal is to model power 460 parameter through the ROADM, factoring the output power from the Pre- 461 Amplifier minus the ROADM power loss would give the input power to 462 the Booster Amplifier. In other words, Power_in (@ ROADM Booster) = 463 Power_out (@ ROADM Pre-Amplifier) - Power_loss (@ ROADM WSS/Filter). 465 2.5. Transponders 467 [Editor's note: The relationship between the transponder and the OTSi 468 in the YANG model described in Section 3 needs further clarification 469 and refinement.] 471 A Transponder is the element that sends and receives the optical 472 signal from a DWDM network. A transponder can comprise one or more 473 transceivers. A transceiver can be seen as a pair of transmitter and 474 receiver, as defined in ITU-T Recommendation G.698.2 [G.698.2]. 476 A transponder is typically characterized by its data/symbol rate and 477 the maximum distance the signal can travel. Other transponder 478 properties are: carrier frequency for the optical channels, output 479 power per channel, measured input power, modulation scheme, FEC, etc. 481 From a path computation perspective, the selection of the compatible 482 configuration of the source and the destination transceivers is an 483 important factor for optical signals to traverse through the DWDM 484 network. 486 The YANG model defines three different approaches to describe the 487 transceiver capabilities (called "modes") that are needed to 488 determine optical signal compatibility: 490 o Application Codes as defined in ITU-T Recommendation G.698.2 491 [G.698.2] 492 o Organizational Modes 493 o Explicit Modes 495 2.5.1. Application Codes 497 An application code represents a standard ITU-T G.698.2 optical 498 interface specification towards the realization of transversely 499 compatible DWDM systems. Two transceivers supporting the same 500 application code and a line system matching the constraints, defined 501 in ITU-T G.698.2, for that application code will interoperate. 503 2.5.2. Organizational Modes 505 Organizations like operator groups, industry fora, or equipment 506 vendors can define organizational modes, which will allow these 507 organizations to make use of advanced transceiver capabilities going 508 beyond existing standardized application codes. Such an 509 organizational mode is identified by the organization-identifier 510 attribute defining the scope and an operational-mode that is 511 meaningful within the scope of the organization. Hence, the two 512 attributes must always be considered together. Two transceivers are 513 inter-operable, if they have at least one (organization-identifier, 514 operational-mode) pair in common and if the supported carrier 515 frequency and power attributes have a matching range. This is a 516 necessary condition for path computation in the context of 517 organizational modes. An operational mode is a transceiver preset (a 518 configuration with well-defined parameter values) subsuming several 519 transceiver properties including: 521 o FEC type 522 o Modulation scheme 523 o Encoding (mapping of bit patterns to symbols in the constellation 524 diagram) 525 o Baud rate (symbol rate) 526 o Carrier bandwidth (typically measured in GHz) 528 The major reason for these transceiver presets is the fact that the 529 attribute values typically cannot be configured independently and are 530 therefore advertised as supported operational mode capabilities. It 531 is the responsibility of the organization to assign operational modes 532 and to ensure that operational modes are unique and not ambiguous 533 within the scope of the organization. 535 In addition to the transceiver properties subsumed by the operational 536 mode, optical power and carrier frequency related properties are 537 modeled separately, i.e., outside of the operational mode. This 538 modeling approach allows transponders using different transceiver 539 variants (e.g. optical modules) with slightly different power and/or 540 frequency range properties to interoperate without defining separate 541 operational modes. Different optical modules (pluggables) from 542 different suppliers typically have slightly different input and 543 output power ranges or may have slightly different carrier frequency 544 tuning ranges. 546 The received channel power and the received total power are two 547 parameters that can be measured by the receiver and can be provided 548 by the transceiver in order to allow a controller to determine the 549 expected performance of the end-to-end service taking into account 550 the optical impairments along the path. 552 2.5.3. Explicit Modes 554 The explicit mode allows to encode, explicitly, any subset of 555 parameters e.g., FEC type, Modulation type, etc, to enable a 556 controller entity to check for interoperability by means outside of 557 this draft. It shall be noted that using the explicit encoding does 558 not guarantee interoperability between two transceivers even in case 559 of identical parameter definitions. The explicit mode shall 560 therefore be used with care, but it could be useful when no common 561 Application Codes or Organizational Modes exist or the constraints of 562 common Application Codes or Organizational Modes cannot be met by the 563 line system. 565 2.5.4. Transponder Capabilities and Current Configuration 567 The YANG model described in Section 3 defines the optical transceiver 568 properties. They are divided between: 570 a. Optical transceiver capabilities, describing how it can be 571 configured 572 b. Current transceiver setting, indicating how it is currently 573 configured 575 The transceiver capabilities are described by the set of modes the 576 transceiver is supporting. Each mode MUST follow only one of the 577 three mode options defined above (choice in the YANG model). The 578 YANG model allows to describe the transceiver capabilities by mixing 579 different modes. A transceiver may support some ITU-T application 580 codes and in addition some organizational or explicit modes. 582 A transceiver mode description comprises the following properties: 584 o Supported transmitter tuning range with min/max nominal carrier 585 frequency [f_tx_min, f_tx_max] 586 o Supported transmitter tunability grid, the distance between two 587 adjacent carrier frequencies (in GHz) 588 o Supported transmitter power range [p_tx-min, p_tx_max] 589 o Supported receiver channel power range [p_rx-min, p_rx_max] 590 o Supported maximum total power, rx power for all channels fed into 591 the receiver 593 These optical transceiver properties are explicitly defined in the 594 model for explicit and organizational modes, while they are 595 implicitly defined for the application codes (see ITU-T G698.2 596 [G.698.2]). 598 The set of optical impairment limits, e.g., min OSNR, max PMD, max 599 CD, max PDL, Q-factor limit, are explicitly defined for the explicit 600 modes while they are defined implicitly for the application codes and 601 organizational modes. 603 It is possible that the set of parameter values defined for an 604 explicit mode may also be represented in form of an organizational 605 mode or one or more application codes. The "supported-mode" 606 container may provide two different lists with pointers to 607 application codes and organizational modes, respectively. 609 The current transponder configuration describes the properties of the 610 OTSi transmitted or received by the transceiver attached to a 611 specific transponder port. 613 Each OTSi has the following three pointer attributes modeled as 614 leafrefs: 616 o Pointer to the transponder instance containing the transceiver 617 terminating the OTSi 618 o Pointer to the transceiver instance terminating the OTSi 619 o Pointer to the currently configured transceiver mode 621 Additionally, the OTSi is described by the following frequency and 622 optical power related attributes: 624 o current carrier-frequency 625 o currently transmitted channel power 626 o currently received channel power 627 o currently received total power 629 2.6. WSS/Filter 631 WSS separates the incoming light input spectrally as well as 632 spatially, then chooses the wavelength that is of interest by 633 deflecting it from the original optical path and then couple it to 634 another optical fibre port. WSS/Filter is internal to ROADM. So 635 this document does not model the inside of ROADM. 637 2.7. Optical Fiber 639 There are various optical fiber types defined by ITU-T. There are 640 several fiber-level parameters that need to be factored in, such as, 641 fiber-type, length, loss coefficient, pmd, connectors (in/out). 643 ITU-T G.652 defines Standard Singlemode Fiber; G.654 Cutoff Shifted 644 Fiber; G.655 Non-Zero Dispersion Shifted Fiber; G.656 Non-Zero 645 Dispersion for Wideband Optical Transport; G.657 Bend-Insensitive 646 Fiber. There may be other fiber-types that need to be considered. 648 2.8. ROADM Node Architectures 650 The ROADM node architectures in today's dense wavelength division 651 multiplexing (DWDM) networks can be categorized as follows: 653 o Integrated ROADM architecture with integrated optical transponders 655 o Integrated ROADM architecture with integrated optical transponders 656 and single channel add/drop ports for remote optical transponders 658 o Disaggregated ROADM architecture where the ROADM is subdivided 659 into degree, add/drop, and optical transponder subsystems handled 660 as separate network elements 662 The TE topology YANG model augmentations including optical 663 impairments for DWDM networks defined below intend to cover all the 3 664 categories of ROADM architectures listed above. In the case of a 665 disaggregated ROADM architecture, it is assumed that optical domain 666 controller already performs some form of abstraction and presents the 667 TE-node representing the disaggregated ROADM in the same way as an 668 integrated ROADM with integrated optical transponders if the optical 669 transponder subsystems and the add/drop subsystems are collocated 670 (short fiber links not imposing significant optical impairments). 672 The different ROADM architectures are briefly described and 673 illustrated in the following subsections. 675 [Editor's note: The modeling of remote optical transponders located 676 for example in the client device with a single channel link between 677 the OT and the add/drop port of the ROADM requires further 678 investigations and will be addressed in a future revision of this 679 document.] 681 2.8.1. Integrated ROADM Architecture with Integrated Optical 682 Transponders 684 Figure 2 and Figure 6 below show the typical architecture of an 685 integrated ROADM node, which contains the optical transponders as an 686 integral part of the ROADM node. Such an integrated ROADM node 687 provides DWDM interfaces as external interfaces for interconnecting 688 the device with its neighboring ROADMs (see OTS link above). The 689 number of these interfaces denote also the degree of the ROADM. A 690 degree 3 ROADM for example has 3 DWDM links that interconnect the 691 ROADM node with 3 neighboring ROADMs. Additionally, the ROADM 692 provides client interfaces for interconnecting the ROADM with client 693 devices such as IP routers or Ethernet switches. These client 694 interfaces are the client interfaces of the integrated optical 695 transponders. 697 . . . . . . . . . . . . . . . . . . 698 +-----.-------------------------------- .-----+ 699 | . ROADM . | 700 | . /| +-----------------+ |\ . | 701 Line | . / |--| |--| \ . | Line 702 WEST | /| . | |--| |--| | . |\ | EAST 703 ------+-/ |-.-| |--| OCX |--| |-.-| \-+----- 704 ------+-\ |-.-| |--| |--| |-.-| /-+----- 705 | \| . | |--| |--| | . |/ | 706 | . \ |--| |--| / . | 707 | . \| +-----------------+ |/ . | 708 | . . | 709 | . +---+ +---+ +---+ +---+ . | 710 | . | O | | O | | O | | O | . | 711 | . | T | | T | | T | | T | . | 712 | . +---+ +---+ +---+ +---+ . | 713 | . | | | | | | | | . | 714 +-----.------+-+---+-+---+-+---+-+------.-----+ 715 . . . .|.| . |.| . |.| . |.|. . . . 716 | | | | | | | | TE Node 717 Client Interfaces 719 Figure 6: ROADM Architectiure with Integrated Transponders 721 2.8.2. Integrated ROADMs with Integrated Optical Transponders and 722 Single Channel Add/Drop Interfaces for Remote Optical 723 Transponders 725 Figure 7 below shows the extreme case where all optical transponders 726 are not integral parts of the ROADM but are separate devices that are 727 interconnected with add/drop ports of the ROADM. If the optical 728 transponders and the ROADM are collocated and if short single channel 729 fiber links are used to interconnect the optical transponders with an 730 add/drop port of the ROADM, the optical domain controller may present 731 these optical transponders in the same way as integrated optical 732 transponders. If, however, the optical impairments of the single 733 channel fiber link between the optical transponder and the add/drop 734 port of the ROADM cannot be neglected, it is necessary to represent 735 the fiber link with its optical impairments in the topology model 736 This also implies that the optical transponders belong to a separate 737 TE node 739 [Editor's note: this requires further study]. 741 . . . . . . . . . . . . . . . . . . 742 . Abstracted ROADM . 743 +-----.-------------------------------- .-----+ 744 | . ROADM . | 745 | . /| +-----------------+ |\ . | 746 Line | . / |--| |--| \ . | Line 747 WEST | /| . | |--| |--| | . |\ | EAST 748 ------+-/ |-.-| |--| OCX |--| |-.-| \-+----- 749 ------+-\ |-.-| |--| |--| |-.-| /-+----- 750 | \| . | |--| |--| | . |/ | 751 | . \ |--| |--| / . | 752 | . \| +-----------------+ |/ . | 753 +-----.---------|----|---|----|---------.-----| 754 Colored OT . +-+ ++ ++ +-+ . 755 line I/F . | | | | . 756 . +---+ +---+ +---+ +---+ . 757 . | O | | O | | O | | O | . 758 . | T | | T | | T | | T | . 759 . +---+ +---+ +---+ +---+ . 760 . . . .|.| . |.| . |.| . |.|. . . . 761 | | | | | | | | TE Node 762 Client Interfaces 764 Figure 7: ROADM Architectiure with Remote Transponders 766 2.8.3. Disaggregated ROADMs Subdivided into Degree, Add/Drop, and 767 Optical Transponder Subsystems 769 Recently, some DWDM network operators started demanding ROADM 770 subsystems from their vendors. An example is the OpenROADM project 771 where multiple operators and vendors are developing related YANG 772 models. The subsystems of a disaggregated ROADM are: single degree 773 subsystems, add/drop subsystems and optical transponder subsystems. 774 These subsystems separate network elements and each network element 775 provides a separate management and control interface. The subsystems 776 are typically interconnected using short fiber patch cables and form 777 together a disaggregated ROADM node. This disaggregated ROADM 778 architecture is depicted in Figure 8 below. 780 As this document defines TE topology YANG model augmentations 781 [I-D.ietf-teas-yang-te-topo] for the TE topology YANG model provided 782 at the north-bound interface of the optical domain controller, it is 783 a valid assumption that the optical domain controller abstracts the 784 subsystems of a disaggregated ROADM and presents the disaggregated 785 ROADM in the same way as an integrated ROADM hiding all the 786 interconnects that are not relevant from an external TE topology 787 view. 789 . . . . . . . . . . . . . . . . . . 790 . Abstracted ROADM . 791 +-----.----------+ +----------.-----+ 792 | Degree 1 | | Degree 2 | 793 Line | . +-----+ | + +-----+ . | Line 794 1 | /| . | W |-|------------|-| W | . |\ | 2 795 -----+-/ |-.--| S ******** ******** S |--.-| \-+----- 796 -----+-\ |-.--| S | | * * | | S |--.-| /-+----- 797 | \| . | |-|-+ * * +-|-| | . |/ | 798 | . +-+-+-+ | | * * | | +-+-+-+ . | 799 +-----.----|-----+ | * * | +-----|----.-----+ 800 . | | * * | | . 801 +-----.----|-----+ | * * | +-----|----.-----+ 802 | Degree 4 | | | * * | | | Degree 3 | 803 Line | . +-----+ | | * * | | +-----+ . | Line 804 4 | /| . | W |-|-|--*--*--+ | | W | . |\ | 3 805 -----+-/ |-.--| S | | +--*--*----|-| S |--.-| \-+----- 806 -----+-\ |-.--| S |-|----*--*----|-| S |--.-| /-+----- 807 | \| . | | | * * | | | . |/ | 808 | . +--*--+ | * * | +--*--+ . | 809 +-----.-----*----+ * * +----*-----.-----+ 810 . * * * * . 811 . +--*---------*--*---------*--+ . 812 . | ADD | . 813 . | DROP | . 814 . +----------------------------+ . 815 Colored OT . | | | | . 816 Line I/F . +---+ +---+ +---+ +---+ . 817 . | O | | O | | O | | O | . 818 . | T | | T | | T | | T | . 819 . +---+ +---+ +---+ +---+ . 820 . . .|.| . |.| . |.| . |.|. . . 821 | | | | | | | | TE Node 822 Client Interfaces 824 Figure 8: Disaggregated ROADM Architecture with Remote Transponders 826 2.8.4. Optical Impairments Imposed by ROADM Nodes 828 When an optical OTSi signal traverses a ROADM node, optical 829 impairments are imposed on the signal by various passive or active 830 optical components inside the ROADM node. Examples of optical 831 impairments are: 833 o Chromatic dispersion (CD) 834 o Polarization mode dispersion (PMD) 835 o Polarization dependent loss (PDL) 836 o Optical amplifier noise due to amplified spontaneous emission 837 (ASE) 838 o In-band cross-talk 839 o Filtering effects (for further study) 841 A ROADM node contains a wavelength selective photonic switching 842 function (WSS)that is capable of switching media channels (MCs) 843 described in Section 2.3.4. These MCs can be established between two 844 line ports of the ROADM or between a line port and an Add/Drop port 845 of the ROADM. The Add/Drop ports of a ROADM are those ports to which 846 optical transponders are connected. Typically, this is a single 847 channel signal (single OTSi), but principally this could also be a 848 group of OTSi signals. The optical impairments associated with these 849 MCs are different and the paths of the MCs inside the ROADM node can 850 be categorized as follows: 852 o Express path: MC path between two line ports of the ROADM 853 (unidirectional) 855 o Add Path: MC path from an Add port to a line port of the ROADM 857 o Drop path: MC path from a line port to a Drop port of the ROADM 859 Due to the symmetrical architecture of the ROADM node, the optical 860 impairments associated with the express path are typically the same 861 between any two line ports of the ROADM whereas the optical 862 impairments for the add and drop paths are different and therefore 863 have to be modeled separately. 865 The optical impairments associated with each of the three types of 866 ROADM-node-internal paths described above are modeled as optical 867 impairment parameter sets. These parameter sets are modeled as an 868 augmentation of the te-node-attributes defined in 869 [I-D.ietf-teas-yang-te-topo]. The te-node-attributes are augmented 870 with a list of roadm-path-impairments for the three ROADM path types 871 distinguished by the impairment-type. Each roadm-path-impairments 872 list entry contains the set of optical impairment parameters for one 873 of the three path types indicated by the impairment-type. For the 874 optical feasibility calculation based on the optical impairments, it 875 is necessary to know whether the optical power of the OTSi stays 876 within a certain power window. This is reflected by some optical 877 power related parameters such as loss parameters or power parameters, 878 which are included in the optical impairment parameter sets (see tree 879 view in Section 3). 881 [I-D.ietf-teas-yang-te-topo] defines a connectivity matrix and a 882 local link connectivity list for the TE node. The connectivity 883 matrix describes the connectivity for the express paths between the 884 different lines of the ROADM and the local link connectivity list 885 describes the connectivity for the Add and Drop paths of the ROADM. 886 These matrices are augmented with a new roadm-path-impairment matrix 887 element, an add-path-impairment, and drop-path-impairment matrix 888 element, respectively, which are defined as a pointer to the 889 corresponding entry in the roadm-path-impairments list (leaf-ref). 891 [Editor's note: this section is still work in progress] 893 3. YANG Model (Tree Structure) 895 module: ietf-optical-impairment-topology 896 augment /nw:networks/nw:network/nw:network-types/tet:te-topology: 897 +--rw optical-impairment-topology! 898 augment /nw:networks/nw:network/nt:link/tet:te 899 /tet:te-link-attributes: 900 +--ro OMS-attributes 901 +--ro generalized-snr? l0-types-ext:snr 902 +--ro equalization-mode identityref 903 +--ro (power-param)? 904 | +--:(channel-power) 905 | | +--ro nominal-channel-power? decimal64 906 | +--:(power-spectral-density) 907 | +--ro nominal-power-spectral-density? decimal64 908 +--ro media-channel-group* [i] 909 | +--ro i int16 910 | +--ro media-channels* [flexi-n] 911 | +--ro flexi-n l0-types:flexi-n 912 | +--ro flexi-m? l0-types:flexi-m 913 | +--ro OTSiG-ref? leafref 914 | +--ro OTSi-ref? leafref 915 +--ro OMS-elements* [elt-index] 916 +--ro elt-index uint16 917 +--ro uid? string 918 +--ro type identityref 919 +--ro element 920 +--ro (element)? 921 +--:(amplifier) 922 | +--ro amplifier 923 | +--ro type-variety string 924 | +--ro operational 925 | +--ro actual-gain 926 | | decimal64 927 | +--ro tilt-target 928 | | decimal64 929 | +--ro out-voa 930 | | decimal64 931 | +--ro in-voa 932 | | decimal64 933 | +--ro (power-param)? 934 | +--:(channel-power) 935 | | +--ro nominal-channel-power? 936 | | decimal64 937 | +--:(power-spectral-density) 938 | +--ro nominal-power-spectral-density? 939 | decimal64 940 +--:(fiber) 941 | +--ro fiber 942 | +--ro type-variety string 943 | +--ro length decimal64 944 | +--ro loss-coef decimal64 945 | +--ro total-loss decimal64 946 | +--ro pmd? decimal64 947 | +--ro conn-in? decimal64 948 | +--ro conn-out? decimal64 949 +--:(concentratedloss) 950 +--ro concentratedloss 951 +--ro loss? decimal64 952 augment /nw:networks/nw:network/nw:node/tet:te 953 /tet:tunnel-termination-point: 954 +--ro otsi-group* [otsi-group-id] 955 | +--ro otsi-group-id int16 956 | +--ro otsi* [otsi-carrier-id] 957 | +--ro otsi-carrier-id int16 958 | +--ro transponder-ref? leafref 959 | +--ro transceiver-ref? leafref 960 | +--ro configured-mode? leafref 961 | +--ro OTSi-carrier-frequency? frequency-thz 962 | +--ro tx-channel-power? dbm-t 963 | +--ro rx-channel-power? dbm-t 964 | +--ro rx-total-power? dbm-t 965 +--ro transponder* [transponder-id] 966 +--ro transponder-id uint32 967 +--ro transceiver* [transceiver-id] 968 +--ro transceiver-id uint32 969 +--ro supported-modes 970 +--ro supported-mode* [mode-id] 971 +--ro mode-id string 972 +--ro (mode) 973 +--:(G.698.2) 974 | +--ro standard-mode? standard-mode 975 +--:(organizational-mode) 976 | +--ro organizational-mode 977 | +--ro operational-mode? 978 | | operational-mode 979 | +--ro organization-identifier? 980 | | organization-identifier 981 | +--ro min-central-frequency? 982 | | frequency-thz 983 | +--ro max-central-frequency? 984 | | frequency-thz 985 | +--ro minimum-channel-spacing? 986 | | frequency-ghz 987 | +--ro tx-channel-power-min? dbm-t 988 | +--ro tx-channel-power-max? dbm-t 989 | +--ro rx-channel-power-min? dbm-t 990 | +--ro rx-channel-power-max? dbm-t 991 | +--ro rx-total-power-max? dbm-t 992 +--:(explicit-mode) 993 +--ro explicit-mode 994 +--ro supported-modes 995 | +--ro supported-application-codes* 996 | | -> ../../mode-id 997 | +--ro supported-organizational-modes* 998 | -> ../../mode-id 999 +--ro line-coding-bitrate? 1000 | identityref 1001 +--ro max-polarization-mode-dispersion? 1002 | decimal64 1003 +--ro max-chromatic-dispersion? 1004 | decimal64 1005 +--ro chromatic-and-polarization-dispersion-penalty* [] 1006 | +--ro chromatic-dispersion 1007 | | decimal64 1008 | +--ro polarization-mode-dispersion 1009 | | decimal64 1010 | +--ro penalty 1011 | decimal64 1012 +--ro max-diff-group-delay? 1013 | int32 1014 +--ro max-polarization-dependent-loss? 1015 | decimal64 1016 +--ro available-modulation-type? 1017 | identityref 1018 +--ro OTSi-carrier-bandwidth? 1019 | frequency-ghz 1020 +--ro min-OSNR? 1021 | snr 1022 +--ro min-Q-factor? 1023 | int32 1024 +--ro available-baud-rate? 1025 | uint32 1026 +--ro available-FEC-type? 1027 | identityref 1028 +--ro FEC-code-rate? 1029 | decimal64 1030 +--ro FEC-threshold? 1031 | decimal64 1032 +--ro min-central-frequency? 1033 | frequency-thz 1034 +--ro max-central-frequency? 1035 | frequency-thz 1036 +--ro minimum-channel-spacing? 1037 | frequency-ghz 1038 +--ro tx-channel-power-min? 1039 | dbm-t 1040 +--ro tx-channel-power-max? 1041 | dbm-t 1042 +--ro rx-channel-power-min? 1043 | dbm-t 1044 +--ro rx-channel-power-max? 1045 | dbm-t 1046 +--ro rx-total-power-max? 1047 dbm-t 1048 augment /nw:networks/nw:network/nw:node/tet:te 1049 /tet:tunnel-termination-point: 1050 +--ro sliceable-transponder-list* [carrier-id] 1051 +--ro carrier-id uint32 1052 augment /nw:networks/nw:network/nw:node/tet:te 1053 /tet:te-node-attributes: 1054 +--ro roadm-path-impairments* [roadm-path-impairments-id] 1055 +--ro roadm-path-impairments-id uint32 1056 +--ro (impairment-type)? 1057 +--:(roadm-express-path) 1058 | +--ro roadm-express-path 1059 | +--ro roadm-pmd? decimal64 1060 | +--ro roadm-cd? decimal64 1061 | +--ro roadm-pdl? decimal64 1062 | +--ro roadm-inband-crosstalk? decimal64 1063 | +--ro roadm-maxloss? decimal64 1064 +--:(roadm-add-path) 1065 | +--ro roadm-add-path 1066 | +--ro roadm-pmd? decimal64 1067 | +--ro roadm-cd? decimal64 1068 | +--ro roadm-pdl? decimal64 1069 | +--ro roadm-inband-crosstalk? decimal64 1070 | +--ro roadm-maxloss? decimal64 1071 | +--ro roadm-pmax? decimal64 1072 | +--ro roadm-osnr? l0-types-ext:snr 1073 | +--ro roadm-noise-figure? decimal64 1074 +--:(roadm-drop-path) 1075 +--ro roadm-drop-path 1076 +--ro roadm-pmd? decimal64 1077 +--ro roadm-cd? decimal64 1078 +--ro roadm-pdl? decimal64 1079 +--ro roadm-inband-crosstalk? decimal64 1080 +--ro roadm-maxloss? decimal64 1081 +--ro roadm-minloss? decimal64 1082 +--ro roadm-typloss? decimal64 1083 +--ro roadm-pmin? decimal64 1084 +--ro roadm-pmax? decimal64 1085 +--ro roadm-ptyp? decimal64 1086 +--ro roadm-osnr? l0-types-ext:snr 1087 +--ro roadm-noise-figure? decimal64 1088 augment /nw:networks/nw:network/nw:node/tet:te 1089 /tet:information-source-entry/tet:connectivity-matrices: 1090 +--ro roadm-path-impairments? leafref 1091 augment /nw:networks/nw:network/nw:node/tet:te 1092 /tet:information-source-entry/tet:connectivity-matrices 1093 /tet:connectivity-matrix: 1094 +--ro roadm-path-impairments? leafref 1095 augment /nw:networks/nw:network/nw:node/tet:te 1096 /tet:te-node-attributes/tet:connectivity-matrices: 1097 +--ro roadm-path-impairments? 1098 -> ../../roadm-path-impairments/roadm-path-impairments-id 1099 augment /nw:networks/nw:network/nw:node/tet:te 1100 /tet:te-node-attributes/tet:connectivity-matrices 1101 /tet:connectivity-matrix: 1102 +--ro roadm-path-impairments? leafref 1103 augment /nw:networks/nw:network/nw:node/tet:te 1104 /tet:tunnel-termination-point 1105 /tet:local-link-connectivities: 1106 +--ro add-path-impairments? leafref 1107 +--ro drop-path-impairments? leafref 1108 augment /nw:networks/nw:network/nw:node/tet:te 1109 /tet:tunnel-termination-point 1110 /tet:local-link-connectivities 1111 /tet:local-link-connectivity: 1112 +--ro add-path-impairments? leafref 1113 +--ro drop-path-impairments? leafref 1115 4. Optical Impairment Topology YANG Model 1117 [Editor's note: YANG code below may have to be updated before 1118 submission!] 1120 1121 module ietf-optical-impairment-topology { 1122 yang-version 1.1; 1123 namespace "urn:ietf:params:xml" 1124 +":ns:yang:ietf-optical-impairment-topology"; 1126 prefix "optical-imp-topo"; 1128 import ietf-network { 1129 prefix "nw"; 1130 } 1132 import ietf-network-topology { 1133 prefix "nt"; 1134 } 1136 import ietf-te-topology { 1137 prefix "tet"; 1138 } 1140 import ietf-layer0-types { 1141 prefix "l0-types"; 1142 } 1144 import ietf-layer0-types-ext { 1145 prefix "l0-types-ext"; 1146 } 1148 organization 1149 "IETF CCAMP Working Group"; 1151 contact 1152 "Editor: Young Lee 1153 Editor: Haomian Zheng 1154 Editor: Nicola Sambo 1155 Editor: Victor Lopez 1156 Editor: Gabriele Galimberti 1157 Editor: Giovanni Martinelli 1158 Editor: Jean-Luc Auge 1159 Editor: Le Rouzic Esther 1160 Editor: Julien Meuric 1161 Editor: Italo Busi 1162 Editor: Dieter Beller 1163 Editor: Sergio Belotti 1164 Editor: Griseri Enrico 1165 Editor: Gert Grammel "; 1167 description 1168 "This module contains a collection of YANG definitions for 1169 impairment-aware optical networks. 1171 Copyright (c) 2019 IETF Trust and the persons identified as 1172 authors of the code. All rights reserved. 1174 Redistribution and use in source and binary forms, with or 1175 without modification, is permitted pursuant to, and subject 1176 to the license terms contained in, the Simplified BSD 1177 License set forth in Section 4.c of the IETF Trust's Legal 1178 Provisions Relating to IETF Documents 1179 (http://trustee.ietf.org/license-info). 1180 This version of this YANG module is part of RFC XXXX; see 1181 the RFC itself for full legal notices."; 1183 // RFC Ed.: replace XXXX with actual RFC number and remove 1184 // this note 1186 // replace the revision date with the module publication date 1187 // the format is (year-month-day) 1189 revision 2020-10-13 { 1190 description 1191 "Initial Version"; 1192 reference 1193 "RFC XXXX: A Yang Data Model for Impairment-aware 1194 Optical Networks"; 1195 } 1197 // identity 1199 identity modulation { 1200 description "base identity for modulation type"; 1201 } 1203 identity QPSK { 1204 base modulation; 1205 description 1206 "QPSK (Quadrature Phase Shift Keying) modulation"; 1207 } 1209 identity DP-QPSK { 1210 base modulation; 1211 description 1212 "DP-QPSK (Dual Polarization Quadrature 1213 Phase Shift Keying) modulation"; 1214 } 1215 identity QAM8 { 1216 base modulation; 1217 description 1218 "8QAM (8-State Quadrature Amplitude Modulation) modulation"; 1219 } 1220 identity QAM16 { 1221 base modulation; 1222 description 1223 "QAM16 (Quadrature Amplitude Modulation)"; 1224 } 1225 identity DP-QAM8 { 1226 base modulation; 1227 description 1228 "DP-QAM8 (Dual Polarization Quadrature Amplitude Modulation)"; 1229 } 1230 identity DC-DP-QAM8 { 1231 base modulation; 1232 description 1233 "DC DP-QAM8 (Dual Polarization Quadrature Amplitude Modulation)"; 1234 } 1235 identity DP-QAM16 { 1236 base modulation; 1237 description 1238 "DP-QAM16 (Dual Polarization Quadrature Amplitude Modulation)"; 1239 } 1240 identity DC-DP-QAM16 { 1241 base modulation; 1242 description 1243 "DC DP-QAM16 (Dual Polarization Quadrature 1244 Amplitude Modulation)"; 1245 } 1247 identity FEC { 1248 description 1249 "Enumeration that defines the type of 1250 Forward Error Correction"; 1251 } 1252 identity reed-solomon { 1253 base FEC; 1254 description 1255 "Reed-Solomon error correction"; 1256 } 1257 identity hamming-code { 1258 base FEC; 1259 description 1260 "Hamming Code error correction"; 1261 } 1262 identity golay { 1263 base FEC; 1264 description "Golay error correction"; 1265 } 1266 // typedef 1268 typedef fiber-type { 1269 type enumeration { 1270 enum G.652 { 1271 description "G.652 Standard Singlemode Fiber"; 1272 } 1273 enum G.654 { 1274 description "G.654 Cutoff Shifted Fiber"; 1275 } 1276 enum G.653 { 1277 description "G.653 Dispersion Shifted Fiber"; 1278 } 1279 enum G.655 { 1280 description "G.655 Non-Zero Dispersion Shifted Fiber"; 1281 } 1282 enum G.656 { 1283 description "G.656 Non-Zero Dispersion for Wideband 1284 Optical Transport"; 1285 } 1286 enum G.657 { 1287 description "G.657 Bend-Insensitive Fiber"; 1288 } 1289 } 1290 description 1291 "ITU-T based fiber-types"; 1292 } 1294 // grouping 1296 grouping transponder-attributes { 1297 description "Configuration of an optical transponder"; 1299 leaf-list available-modulation-types { 1300 type identityref { 1301 base modulation; 1302 } 1303 config false; 1304 description 1305 "List of modulation types the OTSi supports"; 1306 } 1308 leaf configured-modulation-type { 1309 type identityref { 1310 base modulation; 1311 } 1312 config false; 1313 description 1314 "Currently configured OTSi modulation type"; 1315 } 1317 leaf-list available-baud-rates { 1318 type uint32; 1319 units Bd; 1320 config false; 1321 description 1322 "list of available baud-rates. 1323 Baud-rate is the unit for 1324 symbol rate or modulation rate 1325 in symbols per second or 1326 pulses per second. 1327 It is the number of distinct symbol 1328 changes (signal events) made to the 1329 transmission medium 1330 per second in a digitally 1331 modulated signal or a line code"; 1332 } 1334 leaf configured-baud-rate { 1335 type uint32; 1336 units Bd; 1337 config false; 1338 description "configured baud-rate"; 1339 } 1341 leaf-list available-FEC-types { 1342 type identityref { 1343 base FEC; 1344 } 1345 config false; 1346 description "List determining all the available FEC"; 1347 } 1349 leaf configured-FEC-type { 1350 type identityref { 1351 base FEC; 1352 } 1353 config false; 1354 description 1355 "FEC type configured for the transponder"; 1356 } 1358 leaf FEC-code-rate { 1359 type decimal64 { 1360 fraction-digits 8; 1361 range "0..max"; 1362 } 1363 config false; 1364 description "FEC-code-rate"; 1365 } 1367 leaf FEC-threshold { 1368 type decimal64 { 1369 fraction-digits 8; 1370 range "0..max"; 1371 } 1372 config false; 1373 description 1374 "Threshold on the BER, for which FEC 1375 is able to correct errors"; 1376 } 1378 } 1380 grouping sliceable-transponder-attributes { 1381 description 1382 "Configuration of a sliceable transponder."; 1383 list sliceable-transponder-list { 1384 key "carrier-id"; 1385 config false; 1386 description "List of carriers"; 1387 leaf carrier-id { 1388 type uint32; 1389 config false; 1390 description "Identifier of the carrier"; 1391 } 1392 } 1393 } 1395 grouping optical-fiber-data { 1396 description 1397 "optical link (fiber) attributes with impairment data"; 1398 leaf fiber-type { 1399 type fiber-type; 1400 config false; 1401 description "fiber-type"; 1402 } 1404 leaf span-length { 1405 type decimal64 { 1406 fraction-digits 2; 1407 } 1408 units "km"; 1409 config false; 1410 description "the lenght of the fiber span in km"; 1411 } 1413 leaf input-power { 1414 type decimal64 { 1415 fraction-digits 2; 1416 } 1417 units "dBm"; 1418 config false; 1419 description 1420 "Average input power level estimated at the receiver 1421 of the link"; 1422 } 1424 leaf output-power { 1425 type decimal64 { 1426 fraction-digits 2; 1427 } 1428 units "dBm"; 1429 description 1430 "Mean launched power at the transmitter of the link"; 1431 } 1433 leaf pmd { 1434 type decimal64 { 1435 fraction-digits 8; 1436 range "0..max"; 1437 } 1438 units "ps/(km)^0.5"; 1439 config false; 1440 description 1441 "Polarization Mode Dispersion"; 1442 } 1444 leaf cd { 1445 type decimal64 { 1446 fraction-digits 5; 1447 } 1448 units "ps/nm/km"; 1449 config false; 1450 description 1451 "Cromatic Dispersion"; 1452 } 1454 leaf osnr { 1455 type l0-types-ext:snr; 1456 config false; 1457 description 1458 "Optical Signal-to-Noise Ratio (OSNR) estimated 1459 at the receiver"; 1460 } 1462 leaf sigma { 1463 type decimal64 { 1464 fraction-digits 5; 1465 } 1466 units "dB"; 1467 config false; 1468 description 1469 "sigma in the Gausian Noise Model"; 1470 } 1471 } 1473 grouping optical-channel-data { 1474 description 1475 "optical impairment data per channel/wavelength"; 1476 leaf bit-rate { 1477 type decimal64 { 1478 fraction-digits 8; 1479 range "0..max"; 1480 } 1481 units "Gbit/s"; 1482 config false; 1483 description 1484 "Gross bit rate"; 1485 } 1487 leaf BER { 1488 type decimal64 { 1489 fraction-digits 18; 1490 range "0..max"; 1491 } 1492 config false; 1493 description 1494 "BER (Bit Error Rate)"; 1495 } 1497 leaf ch-input-power { 1498 type decimal64 { 1499 fraction-digits 2; 1500 } 1501 units "dBm"; 1502 config false; 1503 description 1504 "Per channel average input power level 1505 estimated at the receiver of the link"; 1507 } 1509 leaf ch-pmd { 1510 type decimal64 { 1511 fraction-digits 8; 1512 range "0..max"; 1513 } 1514 units "ps/(km)^0.5"; 1515 config false; 1516 description 1517 "per channel Polarization Mode Dispersion"; 1518 } 1520 leaf ch-cd { 1521 type decimal64 { 1522 fraction-digits 5; 1523 } 1524 units "ps/nm/km"; 1525 config false; 1526 description 1527 "per channel Cromatic Dispersion"; 1528 } 1530 leaf ch-osnr { 1531 type l0-types-ext:snr; 1532 config false; 1533 description 1534 "per channel Optical Signal-to-Noise Ratio 1535 (OSNR) estimated at the receiver"; 1536 } 1538 leaf q-factor { 1539 type decimal64 { 1540 fraction-digits 5; 1541 } 1542 units "dB"; 1543 config false; 1544 description 1545 "q-factor estimated at the receiver"; 1546 } 1547 } 1549 /* 1550 * Identities 1551 */ 1552 identity type-element { 1553 description 1554 "Base identity for element type"; 1556 } 1558 identity Fiber { 1559 base type-element; 1560 description 1561 "Fiber element"; 1562 } 1564 identity Roadm { 1565 base type-element; 1566 description 1567 "Roadm element"; 1568 } 1570 identity Edfa { 1571 base type-element; 1572 description 1573 "Edfa element"; 1574 } 1576 identity Concentratedloss { 1577 base type-element; 1578 description 1579 "Concentratedloss element"; 1580 } 1582 identity type-power-mode { 1583 description 1584 "power equalization mode used within the 1585 OMS and its elements"; 1586 } 1588 identity power-spectral-density { 1589 base type-power-mode; 1590 description 1591 "all elements must use power spectral density (W/Hz)"; 1592 } 1594 identity channel-power { 1595 base type-power-mode; 1596 description 1597 "all elements must use power (dBm)"; 1598 } 1600 /* 1601 * Groupings 1602 */ 1603 grouping amplifier-params { 1604 description "describes parameters for an amplifier"; 1605 container amplifier{ 1606 description "amplifier type, operatonal parameters 1607 are described"; 1608 leaf type-variety { 1609 type string ; 1610 mandatory true ; 1611 description 1612 "String identifier of amplifier type referencing 1613 a specification in a separate equipment catalog"; 1614 } 1615 container operational { 1616 description "amplifier operationnal parameters"; 1617 leaf actual-gain { 1618 type decimal64 { 1619 fraction-digits 2; 1620 } 1621 units dB ; 1622 mandatory true ; 1623 description ".."; 1624 } 1625 leaf tilt-target { 1626 type decimal64 { 1627 fraction-digits 2; 1628 } 1629 mandatory true ; 1630 description ".."; 1631 } 1632 leaf out-voa { 1633 type decimal64 { 1634 fraction-digits 2; 1635 } 1636 units dB; 1637 mandatory true; 1638 description ".."; 1639 } 1640 leaf in-voa { 1641 type decimal64 { 1642 fraction-digits 2; 1643 } 1644 units dB; 1645 mandatory true; 1646 description ".."; 1647 } 1648 uses power-param; 1649 } 1650 } 1651 } 1652 grouping fiber-params { 1653 description 1654 "String identifier of fiber type referencing a 1655 specification in a separate equipment catalog"; 1656 container fiber { 1657 description "fiber characteristics"; 1658 leaf type-variety { 1659 type string ; 1660 mandatory true ; 1661 description "fiber type"; 1662 } 1663 leaf length { 1664 type decimal64 { 1665 fraction-digits 2; 1666 } 1667 units km; 1668 mandatory true ; 1669 description "length of fiber"; 1670 } 1671 leaf loss-coef { 1672 type decimal64 { 1673 fraction-digits 2; 1674 } 1675 units dB/km; 1676 mandatory true ; 1677 description "loss coefficient of the fiber"; 1678 } 1679 leaf total-loss { 1680 type decimal64 { 1681 fraction-digits 2; 1682 } 1683 units dB; 1684 mandatory true ; 1685 description 1686 "includes all losses: fiber loss and conn-in and 1687 conn-out losses"; 1688 } 1689 leaf pmd{ 1690 type decimal64 { 1691 fraction-digits 2; 1692 } 1693 units sqrt(ps); 1694 description "pmd of the fiber"; 1695 } 1696 leaf conn-in{ 1697 type decimal64 { 1698 fraction-digits 2; 1699 } 1700 units dB; 1701 description "connector-in"; 1702 } 1703 leaf conn-out{ 1704 type decimal64 { 1705 fraction-digits 2; 1706 } 1707 units dB; 1708 description "connector-out"; 1709 } 1710 } 1711 } 1713 grouping roadm-express-path { 1714 description "roadm express path optical impairments"; 1716 container roadm-express-path { 1717 description "roadm parameters per express path"; 1719 leaf roadm-pmd { 1720 type decimal64 { 1721 fraction-digits 8; 1722 range "0..max"; 1723 } 1724 units "ps/(km)^0.5"; 1725 description 1726 "Polarization Mode Dispersion"; 1727 } 1728 leaf roadm-cd { 1729 type decimal64 { 1730 fraction-digits 5; 1731 } 1732 units "ps/nm"; 1733 description "Chromatic Dispersion"; 1734 } 1735 leaf roadm-pdl { 1736 type decimal64 { 1737 fraction-digits 2; 1738 } 1739 units dB ; 1740 description "Polarization dependent loss"; 1741 } 1742 leaf roadm-inband-crosstalk { 1743 type decimal64 { 1744 fraction-digits 2; 1745 } 1746 units dB; 1747 description 1748 "In-band crosstalk, or coherent crosstalk, can occur in 1749 components that can have multiple same wavelength inputs 1750 with the inputs either routed to different output ports, 1751 or all but 1 blocked"; 1752 } 1753 leaf roadm-maxloss { 1754 type decimal64 { 1755 fraction-digits 2; 1756 } 1757 units dB; 1758 description 1759 "This is the maximum expected add path loss from the 1760 ROADM ingress to the ROADM egress 1761 assuming no additional add path loss is added"; 1762 } 1763 } 1764 } 1766 grouping roadm-add-path { 1767 description "roadm add block path optical impairments"; 1769 container roadm-add-path { 1770 description "roadm optical impairment parameters 1771 per add path"; 1773 leaf roadm-pmd { 1774 type decimal64 { 1775 fraction-digits 8; 1776 range "0..max"; 1777 } 1778 units "ps"; 1779 description 1780 "Polarization Mode Dispersion"; 1781 } 1782 leaf roadm-cd { 1783 type decimal64 { 1784 fraction-digits 5; 1785 } 1786 units "ps/nm"; 1787 description "Cromatic Dispersion"; 1788 } 1789 leaf roadm-pdl { 1790 type decimal64 { 1791 fraction-digits 2; 1792 } 1793 units dB ; 1794 description "Polarization dependent loss"; 1795 } 1796 leaf roadm-inband-crosstalk { 1797 type decimal64 { 1798 fraction-digits 2; 1799 } 1800 units dB ; 1801 description 1802 "In-band crosstalk, or coherent crosstalk, 1803 can occur in components that can have multiple same 1804 wavelength inputs,with the inputs either 1805 routed to different output ports, 1806 or all but 1 blocked. 1807 In the case of add path it is the total 1808 of the add block 1809 + egress WSS crosstalk contributions."; 1810 } 1811 leaf roadm-maxloss { 1812 type decimal64 { 1813 fraction-digits 2; 1814 } 1815 units dB ; 1816 description 1817 "This is the maximum expected add path loss from 1818 the add/drop port input to the ROADM egress, 1819 assuming no additional add path loss is added. 1820 This is used to establish the minimum required 1821 transponder output power required 1822 to hit the ROADM egress target power 1823 levels and preventing 1824 to hit the WSS attenuation limits. 1825 If the add path contains an internal amplifier 1826 this loss value should be based 1827 on worst case expected amplifier gain due to 1828 ripple or gain uncertainty"; 1829 } 1830 leaf roadm-pmax { 1831 type decimal64 { 1832 fraction-digits 2; 1833 } 1834 units dBm ; 1835 description 1836 "This is the maximum (per carrier) power level 1837 permitted at the add block input ports, 1838 that can be handled by the ROADM node. 1839 This may reflect either add amplifier power 1840 contraints or WSS adjustment limits. 1841 Higher power transponders would need to have 1842 their launch power reduced 1843 to this value or lower"; 1844 } 1845 leaf roadm-osnr { 1846 type l0-types-ext:snr; 1847 description 1848 "Optical Signal-to-Noise Ratio (OSNR). 1849 If the add path contains the ability to adjust the 1850 carrier power levels into an add path amplifier 1851 (if present) to a target value, 1852 this reflects the OSNR contribution of the 1853 add amplifier assuming this target value is obtained. 1854 The worst case OSNR based on the input power and 1855 NF calculation method, and this value, should be used 1856 (if both are defined)."; 1857 } 1858 leaf roadm-noise-figure { 1859 type decimal64 { 1860 fraction-digits 5; 1861 } 1862 units "dB"; 1863 description 1864 "Noise Figure. If the add path contains an amplifier, 1865 this is the noise figure of that amplifier inferred 1866 to the add port. 1867 This permits add path OSNR calculation based 1868 on the input power levels to the add block 1869 without knowing the ROADM path losses to 1870 the add amplifier."; 1871 } 1872 } 1873 } 1875 grouping roadm-drop-path { 1876 description "roadm drop block path optical impairments"; 1878 container roadm-drop-path { 1879 description "roadm optical impairment parameters 1880 per drop path"; 1882 leaf roadm-pmd { 1883 type decimal64 { 1884 fraction-digits 8; 1885 range "0..max"; 1886 } 1887 units "ps/(km)^0.5"; 1888 description 1889 "Polarization Mode Dispersion"; 1891 } 1892 leaf roadm-cd { 1893 type decimal64 { 1894 fraction-digits 5; 1895 } 1896 units "ps/nm"; 1897 description "Chromatic Dispersion"; 1898 } 1899 leaf roadm-pdl { 1900 type decimal64 { 1901 fraction-digits 2; 1902 } 1903 units dB ; 1904 description "Polarization dependent loss"; 1905 } 1906 leaf roadm-inband-crosstalk { 1907 type decimal64 { 1908 fraction-digits 2; 1909 } 1910 units dB; 1911 description 1912 "In-band crosstalk, or coherent crosstalk, can occur in 1913 components that can have multiple same wavelength 1914 inputs,with the inputs either routed to different 1915 output ports,or all but 1 blocked. 1916 In the case of drop path it is the total 1917 of the ingress 1918 to drop e.g. WSS and drop block crosstalk 1919 contributions."; 1920 } 1921 leaf roadm-maxloss { 1922 type decimal64 { 1923 fraction-digits 2; 1924 } 1925 units dB ; 1926 description 1927 "The net loss from the ROADM input,to the output 1928 of the drop block. 1929 If ROADM ingress to drop path includes an amplifier, 1930 the amplifier gain reduces the net loss. 1931 This is before any additional drop path attenuation 1932 that may be required 1933 due to drop amplifier power contraints. 1934 The max value correspond to worst case expected loss, 1935 including amplifier gain ripple or uncertainty. 1936 It is the maximum output power of the drop 1937 amplifier."; 1938 } 1939 leaf roadm-minloss { 1940 type decimal64 { 1941 fraction-digits 2; 1942 } 1943 units dB ; 1944 description 1945 "The net loss from the ROADM input, to the 1946 output of the drop block. 1947 If this ROADM ingress to drop path includes 1948 an amplifier,the amplifier gain reduces the net loss. 1949 This is before any additional drop path attenuation 1950 that may be required due to drop amplifier power 1951 contraints. 1952 The min value correspond to best case expected loss, 1953 including amplifier gain ripple or uncertainty."; 1954 } 1955 leaf roadm-typloss { 1956 type decimal64 { 1957 fraction-digits 2; 1958 } 1959 units dB ; 1960 description 1961 "The net loss from the ROADM input, 1962 to the output of the drop block. 1963 If this ROADM ingress to drop path 1964 includes an amplifier, 1965 the amplifier gain reduces the net loss. 1966 This is before any additional drop path 1967 attenuation 1968 that may be required due to drop amplifier 1969 power contraints. 1970 The typ value correspond to typical case 1971 expected loss."; 1972 } 1973 leaf roadm-pmin { 1974 type decimal64 { 1975 fraction-digits 2; 1976 } 1977 units dBm ; 1978 description 1979 "If the drop path has additional loss 1980 that is added, for example, 1981 to hit target power levels into a 1982 drop path amplifier, or simply, to reduce the 1983 power of a "strong" carrier 1984 (due to ripple,for example), 1985 then the use of the ROADM input power levels and 1986 the above drop losses is not appropriate. 1988 This parameter corresponds to the min per 1989 carrier power levels 1990 expected at the output of the drop block. 1991 A detail example of the comparison using 1992 these parameters is 1993 detailed in section xxx of the document yyy."; 1994 } 1995 leaf roadm-pmax { 1996 type decimal64 { 1997 fraction-digits 2; 1998 } 1999 units dBm ; 2000 description 2001 "If the drop path has additional loss that is added, 2002 for example, to hit target power levels into a 2003 drop path amplifier,or simply,to reduce the power 2004 of a "strong" carrier(due to ripple,for example), 2005 then the use of the ROADM input power levels and the 2006 above drop losses is not appropriate. 2007 This parameter corresponds to the best case per 2008 carrier power levels expected at the output of the 2009 drop block. 2010 A detail example of the comparison using 2011 these parameters 2012 is detailed in section xxx of the document yyy"; 2013 } 2014 leaf roadm-ptyp { 2015 type decimal64 { 2016 fraction-digits 2; 2017 } 2018 units dBm ; 2019 description 2020 "If the drop path has additional loss that is added, 2021 for example, to hit target power levels into a 2022 drop path amplifier,or simply,to reduce the 2023 power of a "strong" carrier(due to ripple,for example), 2024 then the use of the ROADM input power levels and 2025 the above drop losses is not appropriate. 2026 This parameter corresponds to the typical case 2027 per carrier power levels expected 2028 at the output of the drop block."; 2029 } 2030 leaf roadm-osnr { 2031 type l0-types-ext:snr; 2032 description 2033 "Optical Signal-to-Noise Ratio (OSNR). 2034 Expected OSNR contribution of the drop path 2035 amplifier(if present) 2036 for the case of additional drop path loss 2037 (before this amplifier) 2038 in order to hit a target power level (per carrier). 2039 If both, the OSNR based on the ROADM 2040 input power level 2041 (Pcarrier = 2042 Pref+10Log(carrier-baudrate/ref-baud) + delta-power) 2043 and the input inferred NF(NF.drop), 2044 and this OSNR value, are defined, 2045 the minimum value between these two should be used"; 2046 } 2047 leaf roadm-noise-figure { 2048 type decimal64 { 2049 fraction-digits 5; 2050 } 2051 units "dB"; 2052 description 2053 "Drop path Noise Figure. 2054 If the drop path contains an amplifier, 2055 this is the noise figure 2056 of that amplifier, inferred to the 2057 ROADM ingress port. 2058 This permits to determine 2059 amplifier OSNR contribution 2060 without having to specify the 2061 ROADM node's losses to that amplifier. 2062 This applies for the case of no 2063 additional drop path loss, 2064 before the amplifier, in order to reduce the power 2065 of the carriers to a target value"; 2066 } 2067 } 2068 } 2070 grouping concentratedloss-params{ 2071 description "concentrated loss"; 2072 container concentratedloss{ 2073 description "concentrated loss"; 2074 leaf loss { 2075 type decimal64 { 2076 fraction-digits 2; 2077 } 2078 units dB ; 2079 description ".."; 2080 } 2081 } 2082 } 2083 grouping power-param{ 2084 description 2085 "optical power or PSD after the ROADM or after the out-voa"; 2086 choice power-param { 2087 description 2088 "select the mode: channel power or power spectral density"; 2089 case channel-power { 2090 /* when "equalization-mode='channel-power'"; */ 2091 leaf nominal-channel-power{ 2092 type decimal64 { 2093 fraction-digits 1; 2094 } 2095 units dBm ; 2096 description 2097 " Reference channel power after the ROADM or after 2098 the out-voa. "; 2099 } 2100 } 2101 case power-spectral-density{ 2102 /* when "equalization-mode='power-spectral-density'"; */ 2103 leaf nominal-power-spectral-density{ 2104 type decimal64 { 2105 fraction-digits 16; 2106 } 2107 units W/Hz ; 2108 description 2109 " Reference power spectral density after 2110 the ROADM or after the out-voa. 2111 Typical value : 3.9 E-14, resolution 0.1nW/MHz"; 2112 } 2113 } 2114 } 2115 } 2117 grouping oms-general-optical-params { 2118 description "OMS link optical parameters"; 2119 leaf generalized-snr { 2120 type l0-types-ext:snr; 2121 description "generalized snr"; 2122 } 2123 leaf equalization-mode{ 2124 type identityref { 2125 base type-power-mode; 2126 } 2127 mandatory true; 2128 description "equalization mode"; 2129 } 2130 uses power-param; 2132 } 2134 grouping OTSiG { 2135 description "OTSiG definition , representing client 2136 digital information stream supported by 1 or more OTSi"; 2138 list otsi { 2139 key "otsi-carrier-id"; 2140 config false; 2141 description 2142 "list of OTSi contained in 1 OTSiG. 2143 The list could also be of only 1 element"; 2144 leaf otsi-carrier-id { 2145 type int16; 2146 description "OTSi carrier-id"; 2147 } 2149 /*any OTSi as signal generated by transceiver and*/ 2150 /* attached to a transponder.*/ 2152 leaf transponder-ref { 2153 type leafref { 2154 path "/nw:networks/nw:network/nw:node/tet:te" + 2155 "/tet:tunnel-termination-point" + 2156 "/transponder/transponder-id"; 2157 } 2158 description 2159 "Reference to the configured transponder"; 2160 } 2161 leaf transceiver-ref { 2162 type leafref { 2163 path "/nw:networks/nw:network/nw:node/tet:te" + 2164 "/tet:tunnel-termination-point/" 2165 +"transponder[transponder-id=current()" 2166 +"/../transponder-ref]/" 2167 + "transceiver/transceiver-id" ; 2168 } 2169 description 2170 "Reference to the configured transceiver " ; 2171 } 2172 leaf configured-mode { 2173 type leafref { 2174 path "/nw:networks/nw:network/nw:node/tet:te" + 2175 "/tet:tunnel-termination-point/" 2176 +"transponder[transponder-id=current()" 2177 +"/../transponder-ref]/"+ 2178 "transceiver[transceiver-id=current()/"+ 2179 "../transceiver-ref]/supported-modes/"+ 2180 "supported-mode/mode-id"; 2181 } 2182 description 2183 "Reference to the configured mode for transceiver 2184 compatibility approach"; 2185 } 2186 uses l0-types-ext:common-transceiver-configured-param; 2187 } // OTSi list 2188 } // OTSiG grouping 2190 grouping media-channel-groups { 2191 description "media channel groups"; 2192 list media-channel-group { 2193 key "i"; 2194 description 2195 "list of media channel groups"; 2196 leaf i { 2197 type int16; 2198 description "index of media channel group member"; 2199 } 2201 list media-channels { 2202 key "flexi-n"; 2203 description 2204 "list of media channels represented as (n,m)"; 2206 // this grouping add both n.m values 2207 uses l0-types:flexi-grid-frequency-slot; 2209 leaf OTSiG-ref { 2210 type leafref { 2211 path "/nw:networks/nw:network/nw:node/tet:te" + 2212 "/tet:tunnel-termination-point" + 2213 "/otsi-group/otsi-group-id" ; 2215 } 2216 description 2217 "Reference to the otsi-group list to get otsi-group 2218 identifier of the 2219 OTSiG carried by this media channel 2220 that reports the transient stat"; 2221 } 2222 leaf OTSi-ref { 2223 type leafref { 2224 path "/nw:networks/nw:network/nw:node/tet:te" + 2225 "/tet:tunnel-termination-point/" 2226 +"otsi-group[otsi-group-id=current()" 2227 +"/../OTSiG-ref]/" 2228 + "otsi/otsi-carrier-id" ; 2229 } 2230 description 2231 "Reference to the otsi list supporting 2232 the related OTSiG to get otsi identifier"; 2233 } 2235 } // media channels list 2236 } // media-channel-groups list 2237 } // media media-channel-groups grouping 2239 grouping oms-element { 2240 description "OMS description"; 2241 list OMS-elements { 2242 key "elt-index"; 2243 description 2244 "defines the spans and the amplifier blocks of 2245 the amplified lines"; 2246 leaf elt-index { 2247 type uint16; 2248 description 2249 "ordered list of Index of OMS element 2250 (whether it's a Fiber, an EDFA or a 2251 Concentratedloss)"; 2252 } 2253 leaf uid { 2254 type string; 2255 description 2256 "unique id of the element if it exists"; 2257 } 2258 leaf type { 2259 type identityref { 2260 base type-element; 2261 } 2262 mandatory true; 2263 description "element type"; 2264 } 2266 container element { 2267 description "element of the list of elements of the OMS"; 2268 choice element { 2269 description "OMS element type"; 2270 case amplifier { 2271 /* when "type = 'Edfa'"; */ 2272 uses amplifier-params ; 2273 } 2274 case fiber { 2276 /* when "type = 'Fiber'"; */ 2277 uses fiber-params ; 2278 } 2279 case concentratedloss { 2280 /* when "type = 'Concentratedloss'"; */ 2281 uses concentratedloss-params ; 2282 } 2283 } 2284 } 2285 } 2286 } 2288 /* Data nodes */ 2290 augment "/nw:networks/nw:network/nw:network-types" 2291 + "/tet:te-topology" { 2292 description "optical-impairment topology augmented"; 2293 container optical-impairment-topology { 2294 presence "indicates an impairment-aware topology of 2295 optical networks"; 2296 description 2297 "Container to identify impairment-aware topology type"; 2298 } 2299 } 2301 augment "/nw:networks/nw:network/nt:link/tet:te" 2302 + "/tet:te-link-attributes" { 2303 when "/nw:networks/nw:network/nw:network-types" 2304 +"/tet:te-topology/" 2305 +"optical-imp-topo:optical-impairment-topology" { 2306 description 2307 "This augment is only valid for Optical Impairment."; 2308 } 2309 description "Optical Link augmentation for impairment data."; 2310 container OMS-attributes { 2311 config false; 2312 description "OMS attributes"; 2313 uses oms-general-optical-params; 2314 uses media-channel-groups; 2315 uses oms-element; 2316 } 2317 } 2319 augment "/nw:networks/nw:network/nw:node/tet:te" 2320 + "/tet:tunnel-termination-point" { 2321 when "/nw:networks/nw:network/nw:network-types" 2322 +"/tet:te-topology/optical-imp-topo:optical-impairment-topology"{ 2323 description 2324 "This augment is only valid for Impairment with non-sliceable 2325 transponder model"; 2326 } 2327 description 2328 "Tunnel termination point augmentation for non-sliceable 2329 transponder model."; 2331 list otsi-group { 2332 key "otsi-group-id"; 2333 config false; 2334 description 2335 "the list of possible OTSiG representing client digital 2336 stream"; 2338 leaf otsi-group-id { 2339 type int16; 2340 description "index of otsi-group element"; 2341 } 2342 uses OTSiG; 2343 } // list of OTSiG 2345 list transponder { 2346 key "transponder-id"; 2347 config false; 2348 description "list of transponder"; 2349 leaf transponder-id { 2350 type uint32; 2351 description "transponder identifier"; 2352 } 2354 list transceiver { 2355 key "transceiver-id"; 2356 config false; 2357 description "list of transceiver related to a transponder"; 2358 leaf transceiver-id { 2359 type uint32; 2360 description "transceiver identifier"; 2361 } 2362 uses l0-types-ext:transceiver-capabilities; 2363 } // end of list of transceiver 2365 } // end list of transponder 2367 } // end of augment 2369 augment "/nw:networks/nw:network/nw:node/tet:te" 2370 + "/tet:tunnel-termination-point" { 2371 when "/nw:networks/nw:network/nw:network-types" 2372 +"/tet:te-topology/" 2373 + "optical-imp-topo:optical-impairment-topology" { 2374 description 2375 "This augment is only valid for optical impairment 2376 with sliceable transponder model"; 2377 } 2378 description 2379 "Tunnel termination point augmentation for sliceable 2380 transponder model."; 2381 uses sliceable-transponder-attributes; 2382 } 2384 augment "/nw:networks/nw:network/nw:node/tet:te" 2385 + "/tet:te-node-attributes" { 2386 when "/nw:networks/nw:network/nw:network-types" 2387 + "/tet:te-topology" 2388 + "/optical-imp-topo:optical-impairment-topology" { 2390 description 2391 "This augment is only valid for Optical Impairment 2392 topology"; 2393 } 2394 description 2395 "node attributes augmentantion for optical-impairment ROADM 2396 node"; 2398 list roadm-path-impairments { 2399 key "roadm-path-impairments-id"; 2400 config false; 2401 description "list of set of optical impairments related 2402 to ROADM "; 2404 leaf roadm-path-impairments-id { 2405 type uint32; 2406 description "index of the ROADM path-impairment list"; 2407 } 2408 choice impairment-type { 2409 description "type path impairment"; 2410 case roadm-express-path { 2411 uses roadm-express-path; 2412 } 2413 case roadm-add-path { 2414 uses roadm-add-path; 2415 } 2416 case roadm-drop-path { 2417 uses roadm-drop-path; 2419 } 2420 } 2421 } // list path impairments 2422 } // augmentation for optical-impairment ROADM 2424 augment "/nw:networks/nw:network/nw:node/tet:te/" 2425 + "tet:information-source-entry/tet:connectivity-matrices"{ 2426 when "/nw:networks/nw:network/nw:network-types" 2427 + "/tet:te-topology/" 2428 + "optical-imp-topo:optical-impairment-topology" { 2429 description 2430 "This augment is only valid for Optical Impairment 2431 topology "; 2432 } 2434 description 2435 "Augment default TE node connectivity matrix information 2436 source."; 2438 leaf roadm-path-impairments { 2439 type leafref { 2440 path "../../../tet:te-node-attributes/" 2441 + "roadm-path-impairments/roadm-path-impairments-id"; 2442 } 2443 description "pointer to the list set of ROADM optical 2444 impairments"; 2445 } 2446 } // augmentation connectivity-matrices information-source 2448 augment "/nw:networks/nw:network/nw:node/tet:te/" 2449 + "tet:information-source-entry/tet:connectivity-matrices/" 2450 + "tet:connectivity-matrix" { 2451 when "/nw:networks/nw:network/nw:network-types" 2452 + "/tet:te-topology/" 2453 + "optical-imp-topo:optical-impairment-topology" { 2454 description 2455 "This augment is only valid for Optical Impairment 2456 topology "; 2457 } 2459 description 2460 "Augment TE node connectivity matrix entry information 2461 source."; 2463 leaf roadm-path-impairments { 2464 type leafref { 2465 path "../../../../tet:te-node-attributes/" 2466 + "roadm-path-impairments/roadm-path-impairments-id"; 2468 } 2469 description "pointer to the list set of ROADM optical 2470 impairments"; 2471 } 2472 } // augmentation connectivity-matrix information-source 2474 augment "/nw:networks/nw:network/nw:node/tet:te/" 2475 + "tet:te-node-attributes/tet:connectivity-matrices" { 2476 when "/nw:networks/nw:network/nw:network-types" 2477 + "/tet:te-topology/" 2478 + "optical-imp-topo:optical-impairment-topology" { 2479 description 2480 "This augment is only valid for Optical Impairment 2481 topology "; 2482 } 2484 description 2485 "Augment default TE node connectivity matrix."; 2486 leaf roadm-path-impairments { 2487 type leafref { 2488 path "../../roadm-path-impairments/" 2489 + "roadm-path-impairments-id"; 2490 } 2491 config false; /*the identifier in the list */ 2492 /*"roadm-path-impairments" of ROADM optical impairment*/ 2493 /*is read-only as the rest of attributes*/ 2494 description "pointer to the list set of ROADM optical 2495 impairments"; 2496 } 2497 } // augmentation connectivity-matrices 2499 augment "/nw:networks/nw:network/nw:node/tet:te/" 2500 + "tet:te-node-attributes/" 2501 + "tet:connectivity-matrices/tet:connectivity-matrix" { 2502 when "/nw:networks/nw:network/nw:network-types" 2503 + "/tet:te-topology/" 2504 + "optical-imp-topo:optical-impairment-topology" { 2505 description 2506 "This augment is only valid for 2507 Optical Impairment topology "; 2508 } 2510 description 2511 "Augment TE node connectivity matrix entry."; 2513 leaf roadm-path-impairments { 2514 type leafref { 2515 path "../../../roadm-path-impairments/" 2516 + "roadm-path-impairments-id"; 2517 } 2518 config false; 2519 description "pointer to the list set of ROADM optical 2520 impairments"; 2521 } 2522 } // augmentation connectivity-matrix 2524 augment "/nw:networks/nw:network/nw:node/tet:te/" 2525 + "tet:tunnel-termination-point/" 2526 + "tet:local-link-connectivities" { 2528 when "/nw:networks/nw:network/nw:network-types" 2529 + "/tet:te-topology/" 2530 + "optical-imp-topo:optical-impairment-topology" { 2531 description 2532 "This augment is only valid for Optical Impairment topology "; 2533 } 2535 description 2536 "Augment default TTP LLC."; 2537 leaf add-path-impairments { 2538 type leafref { 2539 path "../../../tet:te-node-attributes/" 2540 + "roadm-path-impairments/roadm-path-impairments-id" ; 2541 } 2542 config false; 2543 description "pointer to the list set of ROADM optical 2544 impairments"; 2545 } 2546 leaf drop-path-impairments { 2547 type leafref { 2548 path "../../../tet:te-node-attributes/" 2549 + "roadm-path-impairments/roadm-path-impairments-id" ; 2550 } 2551 config false; 2552 description "pointer to the list set of ROADM 2553 optical impairments"; 2554 } 2555 } // augmentation local-link-connectivities 2557 augment "/nw:networks/nw:network/nw:node/tet:te/" 2558 + "tet:tunnel-termination-point/" 2559 + "tet:local-link-connectivities/" 2560 + "tet:local-link-connectivity" { 2562 when "/nw:networks/nw:network/nw:network-types" 2563 + "/tet:te-topology/" 2564 + "optical-imp-topo:optical-impairment-topology" { 2565 description 2566 "This augment is only valid for 2567 Optical Impairment topology "; 2568 } 2570 description 2571 "Augment TTP LLC entry."; 2572 leaf add-path-impairments { 2573 type leafref { 2574 path "../../../../tet:te-node-attributes/" 2575 + "roadm-path-impairments/roadm-path-impairments-id" ; 2576 } 2577 config false; 2578 description "pointer to the list set of ROADM optical 2579 impairments"; 2580 } 2581 leaf drop-path-impairments { 2582 type leafref { 2583 path "../../../../tet:te-node-attributes/" 2584 + "roadm-path-impairments/roadm-path-impairments-id" ; 2585 } 2586 config false; 2587 description "pointer to the list set of ROADM optical 2588 impairments"; 2589 } 2590 } // augmentation local-link-connectivity 2591 } 2592 2594 5. Security Considerations 2596 The configuration, state, and action data defined in this document 2597 are designed to be accessed via a management protocol with a secure 2598 transport layer, such as NETCONF [RFC6241]. The NETCONF access 2599 control model [RFC8341] provides the means to restrict access for 2600 particular NETCONF users to a preconfigured subset of all available 2601 NETCONF protocol operations and content. 2603 A number of configuration data nodes defined in this document are 2604 read-only; however, these data nodes may be considered sensitive or 2605 vulnerable in some network environments (TBD). 2607 6. IANA Considerations 2609 This document registers the following namespace URIs in the IETF XML 2610 registry [RFC3688]: 2612 -------------------------------------------------------------------- 2613 URI: urn:ietf:params:xml:ns:yang:ietf-optical-impairment-topology 2614 Registrant Contact: The IESG. 2615 XML: N/A, the requested URI is an XML namespace. 2616 -------------------------------------------------------------------- 2618 This document registers the following YANG modules in the YANG Module 2619 Names registry [RFC7950]: 2621 -------------------------------------------------------------------- 2622 name: ietf-optical-impairment-topology 2623 namespace: urn:ietf:params:xml:ns:yang:ietf-optical-impairment- 2624 topology 2625 prefix: optical-imp-topo 2626 reference: RFC XXXX (TDB) 2627 -------------------------------------------------------------------- 2629 7. Acknowledgments 2631 We thank Daniele Ceccarelli and Oscar G. De Dios for useful 2632 discussions and motivation for this work. 2634 8. References 2636 8.1. Normative References 2638 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", 2639 RFC 7950, DOI 10.17487/RFC7950, August 2016, 2640 . 2642 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF 2643 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017, 2644 . 2646 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration 2647 Access Control Model", STD 91, RFC 8341, 2648 DOI 10.17487/RFC8341, March 2018, 2649 . 2651 8.2. Informative References 2653 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., 2654 and A. Bierman, Ed., "Network Configuration Protocol 2655 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, 2656 . 2658 [RFC6566] Lee, Y., Ed., Bernstein, G., Ed., Li, D., and G. 2659 Martinelli, "A Framework for the Control of Wavelength 2660 Switched Optical Networks (WSONs) with Impairments", 2661 RFC 6566, DOI 10.17487/RFC6566, March 2012, 2662 . 2664 [RFC7446] Lee, Y., Ed., Bernstein, G., Ed., Li, D., and W. Imajuku, 2665 "Routing and Wavelength Assignment Information Model for 2666 Wavelength Switched Optical Networks", RFC 7446, 2667 DOI 10.17487/RFC7446, February 2015, 2668 . 2670 [RFC7579] Bernstein, G., Ed., Lee, Y., Ed., Li, D., Imajuku, W., and 2671 J. Han, "General Network Element Constraint Encoding for 2672 GMPLS-Controlled Networks", RFC 7579, 2673 DOI 10.17487/RFC7579, June 2015, 2674 . 2676 [RFC7581] Bernstein, G., Ed., Lee, Y., Ed., Li, D., Imajuku, W., and 2677 J. Han, "Routing and Wavelength Assignment Information 2678 Encoding for Wavelength Switched Optical Networks", 2679 RFC 7581, DOI 10.17487/RFC7581, June 2015, 2680 . 2682 [RFC7698] Gonzalez de Dios, O., Ed., Casellas, R., Ed., Zhang, F., 2683 Fu, X., Ceccarelli, D., and I. Hussain, "Framework and 2684 Requirements for GMPLS-Based Control of Flexi-Grid Dense 2685 Wavelength Division Multiplexing (DWDM) Networks", 2686 RFC 7698, DOI 10.17487/RFC7698, November 2015, 2687 . 2689 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", 2690 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018, 2691 . 2693 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K., 2694 and R. Wilton, "Network Management Datastore Architecture 2695 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018, 2696 . 2698 [RFC8345] Clemm, A., Medved, J., Varga, R., Bahadur, N., 2699 Ananthakrishnan, H., and X. Liu, "A YANG Data Model for 2700 Network Topologies", RFC 8345, DOI 10.17487/RFC8345, March 2701 2018, . 2703 [RFC8453] Ceccarelli, D., Ed. and Y. Lee, Ed., "Framework for 2704 Abstraction and Control of TE Networks (ACTN)", RFC 8453, 2705 DOI 10.17487/RFC8453, August 2018, 2706 . 2708 [I-D.ietf-teas-yang-te-topo] 2709 Liu, X., Bryskin, I., Beeram, V., Saad, T., Shah, H., and 2710 O. Dios, "YANG Data Model for Traffic Engineering (TE) 2711 Topologies", draft-ietf-teas-yang-te-topo-22 (work in 2712 progress), June 2019. 2714 [I-D.ietf-ccamp-wson-yang] 2715 Zheng, H., Lee, Y., Guo, A., Lopez, V., and D. King, "A 2716 YANG Data Model for WSON (Wavelength Switched Optical 2717 Networks)", draft-ietf-ccamp-wson-yang-27 (work in 2718 progress), October 2020. 2720 [I-D.ietf-ccamp-layer0-types] 2721 Zheng, H., Lee, Y., Guo, A., Lopez, V., and D. King, "A 2722 YANG Data Model for Layer 0 Types", draft-ietf-ccamp- 2723 layer0-types-08 (work in progress), October 2020. 2725 [I-D.ietf-ccamp-dwdm-if-param-yang] 2726 Galimberti, G., Kunze, R., Burk, A., Hiremagalur, D., and 2727 G. Grammel, "A YANG model to manage the optical interface 2728 parameters for an external transponder in a WDM network", 2729 draft-ietf-ccamp-dwdm-if-param-yang-04 (work in progress), 2730 May 2020. 2732 [G.807] "Generic functional architecture of the optical media 2733 network", ITU-T Recommendation G.807 - in publication 2734 process, February 2020. 2736 [G.709] "Interfaces for the Optical Transport Network (OTN)", 2737 ITU-T Recommendation G.709, June 2016. 2739 [G.694.1] "Spectral grids for WDM applications: DWDM frequency 2740 grid", ITU-T Recommendation G.694.1, February 2012. 2742 [G.959.1] "Optical transport network physical layer interfaces", 2743 ITU-T Recommendation G.959.1, February 2012. 2745 [G.872] "Architecture of optical transport networks", 2746 ITU-T Recommendation G.872, January 2017. 2748 [G.698.2] "Amplified multichannel dense wavelength division 2749 multiplexing applications with single channel optical 2750 interfaces", ITU-T Recommendation G.698.2, November 2018. 2752 Appendix A. Contributors 2754 Aihua Guo 2755 Huawei Technologies 2757 Email: aguo@futurewei.com 2759 Jonas Martensson 2760 RISE 2762 Email: jonas.martensson@ri.se 2764 Appendix B. Additional Authors 2766 Haomian Zheng 2767 Huawei Technologies 2769 Email: zhenghaomian@huawei.com 2771 Italo Busi 2772 Huawei Technologies 2774 Email: Italo.Busi@huawei.com 2776 Nicola Sambo 2777 Scuola Superiore Sant'Anna 2779 Email: nicosambo@gmail.com 2781 Giovanni Martinelli 2782 Cisco 2784 Email: giomarti@cisco.com 2786 Esther Le Rouzic 2787 Orange 2789 Email: esther.lerouzic@orange.com 2790 Julien Meuric 2791 Orange 2793 Email: julien.meuric@orange.com 2795 Sergio Belotti 2796 Nokia 2798 Email: Sergio.belotti@nokia.com 2800 Griseri Enrico 2801 Nokia 2803 Email: Enrico.Griseri@nokia.com 2805 Gert Grammel 2806 Juniper 2808 Email: ggrammel@juniper.net 2810 Authors' Addresses 2812 Young Lee 2813 SKKU (Sung Kyun Kwan University) 2815 Email: younglee.tx@gmail.com 2817 Jean-Luc Auge 2818 Orange 2820 Email: jeanluc.auge@orange.com 2822 Victor Lopez 2823 Telefonica 2825 Email: victor.lopezalvarez@telefonica.com 2827 G. Galimberti 2828 Cisco 2830 Email: ggalimbe@cisco.com 2831 Dieter Beller 2832 Nokia 2834 Email: Dieter.Beller@nokia.com