idnits 2.17.1 draft-ietf-ccamp-ospf-gmpls-extensions-07.txt: ** The Abstract section seems to be numbered Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- ** Looks like you're using RFC 2026 boilerplate. This must be updated to follow RFC 3978/3979, as updated by RFC 4748. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- ** The document seems to lack a 1id_guidelines paragraph about 6 months document validity -- however, there's a paragraph with a matching beginning. Boilerplate error? == No 'Intended status' indicated for this document; assuming Proposed Standard == The page length should not exceed 58 lines per page, but there was 10 longer pages, the longest (page 2) being 61 lines Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- ** The document seems to lack an IANA Considerations section. (See Section 2.2 of https://www.ietf.org/id-info/checklist for how to handle the case when there are no actions for IANA.) ** The document seems to lack an Authors' Addresses Section. ** The document seems to lack separate sections for Informative/Normative References. All references will be assumed normative when checking for downward references. ** There is 1 instance of too long lines in the document, the longest one being 3 characters in excess of 72. Miscellaneous warnings: ---------------------------------------------------------------------------- -- The document seems to lack a disclaimer for pre-RFC5378 work, but may have content which was first submitted before 10 November 2008. If you have contacted all the original authors and they are all willing to grant the BCP78 rights to the IETF Trust, then this is fine, and you can ignore this comment. If not, you may need to add the pre-RFC5378 disclaimer. (See the Legal Provisions document at https://trustee.ietf.org/license-info for more information.) -- Couldn't find a document date in the document -- date freshness check skipped. Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Missing Reference: 'TBD' is mentioned on line 326, but not defined == Outdated reference: A later version (-10) exists of draft-katz-yeung-ospf-traffic-06 == Outdated reference: A later version (-09) exists of draft-ietf-mpls-generalized-signaling-04 == Outdated reference: A later version (-09) exists of draft-ietf-mpls-generalized-rsvp-te-06 == Outdated reference: A later version (-09) exists of draft-ietf-ccamp-gmpls-routing-01 == Outdated reference: A later version (-08) exists of draft-ietf-ospf-hitless-restart-02 Summary: 7 errors (**), 0 flaws (~~), 8 warnings (==), 2 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 CCAMP Working Group K. Kompella (Juniper Networks) 3 Internet Draft Y. Rekhter (Juniper Networks) 4 Expiration Date: November 2002 A. Banerjee (Calient Networks) 5 J. Drake (Calient Networks) 6 G. Bernstein (Ciena) 7 D. Fedyk (Nortel Networks) 8 E. Mannie (GTS Network) 9 D. Saha (Tellium) 10 V. Sharma (Metanoia, Inc.) 12 OSPF Extensions in Support of Generalized MPLS 14 draft-ietf-ccamp-ospf-gmpls-extensions-07.txt 16 1. Status of this Memo 18 This document is an Internet-Draft and is in full conformance with 19 all provisions of Section 10 of RFC2026. 21 Internet-Drafts are working documents of the Internet Engineering 22 Task Force (IETF), its areas, and its working groups. Note that 23 other groups may also distribute working documents as Internet- 24 Drafts. 26 Internet-Drafts are draft documents valid for a maximum of six months 27 and may be updated, replaced, or obsoleted by other documents at any 28 time. It is inappropriate to use Internet-Drafts as reference 29 material or to cite them other than as ``work in progress.'' 31 The list of current Internet-Drafts can be accessed at 32 http://www.ietf.org/ietf/1id-abstracts.txt 34 The list of Internet-Draft Shadow Directories can be accessed at 35 http://www.ietf.org/shadow.html. 37 2. Abstract 39 This document specifies encoding of extensions to the OSPF routing 40 protocol in support of Generalized Multi-Protocol Label Switching. 42 3. Summary for Sub-IP Area 44 3.1. Summary 46 This document specifies encoding of extensions to the OSPF routing 47 protocol in support of Generalized Multi-Protocol Label Switching 48 (GMPLS). The description of the extensions is specified in [GMPLS- 49 ROUTING]. 51 3.2. Where does it fit in the Picture of the Sub-IP Work 53 This work fits squarely in either the CCAMP or OSPF box. 55 3.3. Why is it Targeted at this WG 57 This draft is targeted at the CCAMP or the OSPF WG, because this 58 draft specifies the extensions to the OSPF routing protocols in 59 support of GMPLS, because GMPLS is within the scope of the CCAMP WG, 60 and because OSPF is within the scope of the OSPF WG. 62 3.4. Justification 64 The WG should consider this document as it specifies the extensions 65 to the OSPF routing protocols in support of GMPLS. 67 4. Specification of Requirements 69 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 70 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 71 document are to be interpreted as described in RFC 2119 [RFC2119]. 73 5. Introduction 75 This document specifies extensions to the OSPF routing protocol in 76 support of carrying link state information for Generalized Multi- 77 Protocol Label Switching (GMPLS). The set of required enhancements to 78 OSPF are outlined in [GMPLS-ROUTING]. 80 6. OSPF Routing Enhancements 82 In this section we define the enhancements to the TE properties of 83 GMPLS TE links that can be announced in OSPF TE LSAs. The Traffic 84 Engineering (TE) LSA, which is an opaque LSA with area flooding scope 85 [OSPF-TE], has only one top-level Type/Length/Value (TLV) triplet and 86 has one or more nested sub-TLVs for extensibility. The top-level TLV 87 can take one of two values (1) Router Address or (2) Link. In this 88 document, we enhance the sub-TLVs for the Link TLV in support of 89 GMPLS. Specifically, we add the following sub-TLVs to the Link TLV: 91 Sub-TLV Type Length Name 92 11 8 Link Local/Remote Identifiers 93 14 4 Link Protection Type 94 15 variable Interface Switching Capability Descriptor 95 16 variable Shared Risk Link Group 97 6.1. Link Local/Remote Identifiers 99 A Link Local/Remote Identifiers is a sub-TLV of the Link TLV. The 100 type of this sub-TLV is 11, and length is eight octets. The value 101 field of this sub-TLV contains four octets of Link Local Identifier 102 followed by four octets of Link Remote Idenfier (see Section "Support 103 for unnumbered links" of [GMPLS-ROUTING]). If the Link Remote 104 Identifier is unknown, it is set to 0. 106 0 1 2 3 107 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 108 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 109 | Link Local Idenfiier | 110 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 111 | Link Remote Idenfiier | 112 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 114 A node can communicate its Link Local Identifier to its neighbor 115 using a link local Opaque LSA, as described in Section "Exchanging 116 Link Local TE Information". 118 6.2. Link Protection Type 120 The Link Protection Type is a sub-TLV of the Link TLV. The type of 121 this sub-TLV is 14, and length is four octets. 123 0 1 2 3 124 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 125 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 126 |Protection Cap | Reserved | 127 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 129 The first octet is a bit vector describing the protection 130 capabilities of the link (see Section "Link Protection Type" of 131 [GMPLS-ROUTING]). They are: 133 0x01 Extra Traffic 135 0x02 Unprotected 137 0x04 Shared 139 0x08 Dedicated 1:1 141 0x10 Dedicated 1+1 143 0x20 Enhanced 145 0x40 Reserved 147 0x80 Reserved 149 The remaining three octets SHOULD be set to zero by the sender, and 150 SHOULD be ignored by the receiver. 152 The Link Protection Type sub-TLV may occur at most once within the 153 Link TLV. 155 6.3. Shared Risk Link Group (SRLG) 157 The SRLG is a sub-TLV (of type 16) of the Link TLV. The length is the 158 length of the list in octets. The value is an unordered list of 32 159 bit numbers that are the SRLGs that the link belongs to. The format 160 of the value field is as shown below: 162 0 1 2 3 163 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 164 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 165 | Shared Risk Link Group Value | 166 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 167 | ............ | 168 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 169 | Shared Risk Link Group Value | 170 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 172 This sub-TLV carries the Shared Risk Link Group information (see 173 Section "Shared Risk Link Group Information" of [GMPLS-ROUTING]). 175 The SRLG sub-TLV may occur at most once within the Link TLV. 177 6.4. Interface Switching Capability Descriptor 179 The Interface Switching Capability Descriptor is a sub-TLV (of type 180 15) of the Link TLV. The length is the length of value field in 181 octets. The format of the value field is as shown below: 183 0 1 2 3 184 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 185 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 186 | Switching Cap | Encoding | Reserved | 187 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 188 | Max LSP Bandwidth at priority 0 | 189 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 190 | Max LSP Bandwidth at priority 1 | 191 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 192 | Max LSP Bandwidth at priority 2 | 193 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 194 | Max LSP Bandwidth at priority 3 | 195 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 196 | Max LSP Bandwidth at priority 4 | 197 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 198 | Max LSP Bandwidth at priority 5 | 199 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 200 | Max LSP Bandwidth at priority 6 | 201 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 202 | Max LSP Bandwidth at priority 7 | 203 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 204 | Switching Capability-specific information | 205 | (variable) | 206 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 208 The Switching Capability (Switching Cap) field contains one of the 209 following values: 211 1 Packet-Switch Capable-1 (PSC-1) 212 2 Packet-Switch Capable-2 (PSC-2) 213 3 Packet-Switch Capable-3 (PSC-3) 214 4 Packet-Switch Capable-4 (PSC-4) 215 51 Layer-2 Switch Capable (L2SC) 216 100 Time-Division-Multiplex Capable (TDM) 217 150 Lambda-Switch Capable (LSC) 218 200 Fiber-Switch Capable (FSC) 220 The Encoding field contains one of the values specified in Section 221 3.1.1 of [GMPLS-SIG]. 223 Maximum LSP Bandwidth is encoded as a list of eight 4 octet fields in 224 the IEEE floating point format, with priority 0 first and priority 7 225 last. The units are bytes (not bits!) per second. 227 The content of the Switching Capability specific information field 228 depends on the value of the Switching Capability field. 230 When the Switching Capability field is PSC-1, PSC-2, PSC-3, or PSC-4, 231 the Switching Capability specific information field includes Minimum 232 LSP Bandwidth, Interface MTU, and padding. 234 0 1 2 3 235 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 236 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 237 | Minimum LSP Bandwidth | 238 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 239 | Interface MTU | Padding | 240 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 242 The Minimum LSP Bandwidth is is encoded in a 4 octets field in the 243 IEEE floating point format. The units are bytes (not bits!) per 244 second. The Interface MTU is encoded as a 2 octets integer. The 245 padding is 2 octets, and is used to make the Interface Switching 246 Capability Descriptor sub-TLV 32-bits aligned. It SHOULD be set to 247 zero by the sender and SHOULD be ignored by the receiver. 249 When the Switching Capability field is L2SC, there is no Switching 250 Capability specific information field present. 252 When the Switching Capability field is TDM, the Switching Capability 253 specific information field includes Minimum LSP Bandwidth, an 254 indication whether the interface supports Standard or Arbitrary 255 SONET/SDH, and padding. 257 0 1 2 3 258 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 259 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 260 | Minimum LSP Bandwidth | 261 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 262 | Indication | Padding | 263 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 265 The Minimum LSP Bandwidth is encoded in a 4 octets field in the IEEE 266 floating point format. The units are bytes (not bits!) per second. 267 The indication whether the interface supports Standard or Arbitrary 268 SONET/SDH is encoded as 1 octet. The value of this octet is 0 if the 269 interface supports Standard SONET/SDH, and 1 if the interface 270 supports Arbitrary SONET/SDH. The padding is 3 octets, and is used 271 to make the Interface Switching Capability Descriptor sub-TLV 32-bits 272 aligned. It SHOULD be set to zero by the sender and SHOULD be ignored 273 by the receiver. 275 When the Switching Capability field is LSC, there is no Switching 276 Capability specific information field present. 278 To support interfaces that have more than one Interface Switching 279 Capability Descriptor (see Section "Interface Switching Capability 280 Descriptor" of [GMPLS-ROUTING]) the Interface Switching Capability 281 Descriptor sub-TLV may occur more than once within the Link TLV. 283 7. Implications on Graceful Restart 285 The restarting node should follow the OSPF restart procedures [OSPF- 286 RESTART], and the RSVP-TE restart procedures [GMPLS-RSVP]. 288 When a restarting node is going to originate its TE LSAs, the TE LSAs 289 containing Link TLV should be originated with 0 unreserved bandwidth, 290 Traffic Engineering metric set to 0xffffffff, and if the Link has LSC 291 or FSC as its Switching Capability then also with 0 as Max LSP 292 Bandwidth, until the node is able to determine the amount of 293 unreserved resources taking into account the resources reserved by 294 the already established LSPs that have been preserved across the 295 restart. Once the restarting node determines the amount of unreserved 296 resources, taking into account the resources reserved by the already 297 established LSPs that have been preserved across the restart, the 298 node should advertise these resources in its TE LSAs. 300 In addition in the case of a planned restart prior to restarting, the 301 restarting node SHOULD originate the TE LSAs containing Link TLV with 302 0 as unreserved bandwidth, and if the Link has LSC or FSC as its 303 Switching Capability then also with 0 as Max LSP Bandwidth. This 304 would discourage new LSP establishment through the restarting router. 306 Neighbors of the restarting node should continue advertise the actual 307 unreserved bandwidth on the TE links from the neighbors to that node. 309 Regular graceful restart should not be aborted if a TE LSA or TE 310 topology changes. TE graceful restart need not be aborted if a TE LSA 311 or TE topology changes. 313 8. Exchanging Link Local TE Information 315 It is often useful for a node to communicate some Traffic Engineering 316 information for a given interface to its neighbors on that interface. 317 One example of this is a Link Local Identifier. If nodes X and Y are 318 connected by an unnumbered point-to-point interface I, then X's Link 319 Local Identifier for I is Y's Link Remote Identifier for I. X can 320 communicate its Link Local Identifer for I by exchanging with Y a TE 321 link local opaque LSA described below. Note that this information 322 need only be exchanged over interface I, hence the use of a link 323 local Opaque LSA. 325 A TE Link Local LSA is an opaque LSA of type 9 (link-local flooding 326 scope) with Opaque Type [TBD] and Opaque ID of 0. 328 0 1 2 3 329 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 330 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 331 | LS age | Options | 9 | 332 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 333 | Opaque Type | Opaque ID | 334 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 335 | Advertising Router | 336 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 337 | LS sequence number | 338 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 339 | LS checksum | length | 340 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 341 | | 342 +- TLVs -+ 343 | ... | 345 The format of the TLVs that make up the body of the TE Link Local LSA 346 is the same as that of the TE TLVs: a 2-octet Type field followed by 347 a 2-octet Length field which indicates the length of the Value field 348 in octets. The Value field is zero-padded at the end to a four octet 349 boundary. 351 The only TLV defined here is the Link Local Identifier TLV, with Type 352 1, Length 4 and Value the 32 bit Link Local Identifier for the link 353 over which the TE Link Local LSA is exchanged. 355 9. Security Considerations 357 The sub-TLVs proposed in this document do not raise any new security 358 concerns. 360 10. Acknowledgements 362 The authors would like to thank Suresh Katukam, Jonathan Lang, 363 Quaizar Vohra, and Alex Zinin for their comments on the draft. 365 11. References 367 [OSPF-TE] Katz, D., Yeung, D., "Traffic Engineering Extensions to 368 OSPF", 369 draft-katz-yeung-ospf-traffic-06.txt (work in progress) 371 [GMPLS-SIG] "Generalized MPLS - Signaling Functional 372 Description", draft-ietf-mpls-generalized-signaling-04.txt (work 373 in progress) 375 [GMPLS-RSVP] "Generalized MPLS Signaling - RSVP-TE Extensions", 376 draft-ietf-mpls-generalized-rsvp-te-06.txt (work in progress) 378 [GMPLS-ROUTING] "Routing Extensions in Support of Generalized MPLS", 379 draft-ietf-ccamp-gmpls-routing-01.txt (work in progress) 381 [OSPF-RESTART] "Hitless OSPF Restart", draft-ietf-ospf-hitless- 382 restart-02.txt 383 (work in progress) 385 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 386 Requirement Levels", BCP 14, RFC 2119, March 1997. 388 12. Authors' Information 390 Kireeti Kompella 391 Juniper Networks, Inc. 392 1194 N. Mathilda Ave 393 Sunnyvale, CA 94089 394 Email: kireeti@juniper.net 396 Yakov Rekhter 397 Juniper Networks, Inc. 398 1194 N. Mathilda Ave 399 Sunnyvale, CA 94089 400 Email: yakov@juniper.net 402 Ayan Banerjee 403 Calient Networks 404 5853 Rue Ferrari 405 San Jose, CA 95138 406 Phone: +1.408.972.3645 407 Email: abanerjee@calient.net 409 John Drake 410 Calient Networks 411 5853 Rue Ferrari 412 San Jose, CA 95138 413 Phone: (408) 972-3720 414 Email: jdrake@calient.net 416 Greg Bernstein 417 Ciena Corporation 418 10480 Ridgeview Court 419 Cupertino, CA 94014 420 Phone: (408) 366-4713 421 Email: greg@ciena.com 422 Don Fedyk 423 Nortel Networks Corp. 424 600 Technology Park Drive 425 Billerica, MA 01821 426 Phone: +1-978-288-4506 427 Email: dwfedyk@nortelnetworks.com 429 Eric Mannie 430 GTS Network Services 431 RDI Department, Core Network Technology Group 432 Terhulpsesteenweg, 6A 433 1560 Hoeilaart, Belgium 434 Phone: +32-2-658.56.52 435 E-mail: eric.mannie@gtsgroup.com 437 Debanjan Saha 438 Tellium Optical Systems 439 2 Crescent Place 440 P.O. Box 901 441 Ocean Port, NJ 07757 442 Phone: (732) 923-4264 443 Email: dsaha@tellium.com 445 Vishal Sharma 446 Metanoia, Inc. 447 335 Elan Village Lane, Unit 203 448 San Jose, CA 95134-2539 449 Phone: +1 408-943-1794 450 Email: v.sharma@ieee.org