idnits 2.17.1 draft-ietf-ccamp-ospf-gmpls-extensions-11.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- ** Looks like you're using RFC 2026 boilerplate. This must be updated to follow RFC 3978/3979, as updated by RFC 4748. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- ** The document seems to lack a 1id_guidelines paragraph about 6 months document validity -- however, there's a paragraph with a matching beginning. Boilerplate error? Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- ** The document seems to lack an Authors' Addresses Section. -- The draft header indicates that this document updates RFC3630, but the abstract doesn't seem to mention this, which it should. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the RFC 3978 Section 5.4 Copyright Line does not match the current year == Line 512 has weird spacing: '...for the purpo...' (Using the creation date from RFC3630, updated by this document, for RFC5378 checks: 1999-04-21) -- The document seems to lack a disclaimer for pre-RFC5378 work, but may have content which was first submitted before 10 November 2008. If you have contacted all the original authors and they are all willing to grant the BCP78 rights to the IETF Trust, then this is fine, and you can ignore this comment. If not, you may need to add the pre-RFC5378 disclaimer. (See the Legal Provisions document at https://trustee.ietf.org/license-info for more information.) -- The document date (October 2003) is 7471 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Missing Reference: 'TBD' is mentioned on line 329, but not defined == Unused Reference: 'OSPF' is defined on line 373, but no explicit reference was found in the text == Outdated reference: A later version (-09) exists of draft-ietf-ccamp-gmpls-routing-08 ** Downref: Normative reference to an Experimental RFC: RFC 2154 (ref. 'OSPF-SIG') Summary: 4 errors (**), 0 flaws (~~), 5 warnings (==), 3 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 2 Network Working Group K. Kompella, Editor 3 Internet Draft Y. Rekhter, Editor 4 Category: Standards Track Juniper Networks 5 Updates: 3630 October 2003 6 Expires: April 2004 8 OSPF Extensions in Support of Generalized 9 Multi-Protocol Label Switching 11 draft-ietf-ccamp-ospf-gmpls-extensions-11.txt 13 Status of this Memo 15 This document is an Internet-Draft and is in full conformance with 16 all provisions of Section 10 of RFC2026. 18 Internet-Drafts are working documents of the Internet Engineering 19 Task Force (IETF), its areas, and its working groups. Note that 20 other groups may also distribute working documents as Internet- 21 Drafts. 23 Internet-Drafts are draft documents valid for a maximum of six months 24 and may be updated, replaced, or obsoleted by other documents at any 25 time. It is inappropriate to use Internet-Drafts as reference 26 material or to cite them other than as ``work in progress.'' 28 The list of current Internet-Drafts can be accessed at 29 http://www.ietf.org/ietf/1id-abstracts.txt 31 The list of Internet-Draft Shadow Directories can be accessed at 32 http://www.ietf.org/shadow.html. 34 Copyright Notice 36 Copyright (C) The Internet Society (2003). All Rights Reserved. 38 Abstract 40 This document specifies encoding of extensions to the OSPF routing 41 protocol in support of Generalized Multi-Protocol Label Switching. 43 Summary for Sub-IP Area 45 (This section to be removed before publication.) 47 0.1. Summary 49 This document specifies encoding of extensions to the OSPF routing 50 protocol in support of Generalized Multi-Protocol Label Switching 51 (GMPLS). The description of the extensions is specified in [GMPLS- 52 ROUTING]. 54 0.2. Where does it fit in the Picture of the Sub-IP Work 56 This work fits squarely in either the CCAMP or OSPF box. 58 0.3. Why is it Targeted at this WG 60 This draft is targeted at the CCAMP or the OSPF WG, because this 61 draft specifies the extensions to the OSPF routing protocols in 62 support of GMPLS, because GMPLS is within the scope of the CCAMP WG, 63 and because OSPF is within the scope of the OSPF WG. 65 0.4. Justification 67 The WG should consider this document as it specifies the extensions 68 to the OSPF routing protocols in support of GMPLS. 70 Specification of Requirements 72 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 73 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 74 document are to be interpreted as described in RFC 2119 [RFC2119]. 76 1. Introduction 78 This document specifies extensions to the OSPF routing protocol in 79 support of carrying link state information for Generalized 80 Multi-Protocol Label Switching (GMPLS). The set of required 81 enhancements to OSPF are outlined in [GMPLS-ROUTING]. 83 2. OSPF Routing Enhancements 85 In this section we define the enhancements to the TE properties of 86 GMPLS TE links that can be announced in OSPF TE LSAs. The Traffic 87 Engineering (TE) LSA, which is an opaque LSA with area flooding scope 88 [OSPF-TE], has only one top-level Type/Length/Value (TLV) triplet and 89 has one or more nested sub-TLVs for extensibility. The top-level TLV 90 can take one of two values (1) Router Address or (2) Link. In this 91 document, we enhance the sub-TLVs for the Link TLV in support of 92 GMPLS. Specifically, we add the following sub-TLVs to the Link TLV: 94 Sub-TLV Type Length Name 95 11 8 Link Local/Remote Identifiers 96 14 4 Link Protection Type 97 15 variable Interface Switching Capability Descriptor 98 16 variable Shared Risk Link Group 100 2.1. Link Local/Remote Identifiers 102 A Link Local/Remote Identifiers is a sub-TLV of the Link TLV. The 103 type of this sub-TLV is 11, and length is eight octets. The value 104 field of this sub-TLV contains four octets of Link Local Identifier 105 followed by four octets of Link Remote Idenfier (see Section "Support 106 for unnumbered links" of [GMPLS-ROUTING]). If the Link Remote 107 Identifier is unknown, it is set to 0. 109 0 1 2 3 110 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 111 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 112 | Link Local Identifier | 113 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 114 | Link Remote Identifier | 115 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 117 A node can communicate its Link Local Identifier to its neighbor 118 using a link local Opaque LSA, as described in Section "Exchanging 119 Link Local TE Information". 121 2.2. Link Protection Type 123 The Link Protection Type is a sub-TLV of the Link TLV. The type of 124 this sub-TLV is 14, and length is four octets. 126 0 1 2 3 127 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 128 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 129 |Protection Cap | Reserved | 130 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 132 The first octet is a bit vector describing the protection 133 capabilities of the link (see Section "Link Protection Type" of 134 [GMPLS-ROUTING]). They are: 136 0x01 Extra Traffic 138 0x02 Unprotected 140 0x04 Shared 142 0x08 Dedicated 1:1 144 0x10 Dedicated 1+1 146 0x20 Enhanced 148 0x40 Reserved 150 0x80 Reserved 152 The remaining three octets SHOULD be set to zero by the sender, and 153 SHOULD be ignored by the receiver. 155 The Link Protection Type sub-TLV may occur at most once within the 156 Link TLV. 158 2.3. Shared Risk Link Group (SRLG) 160 The SRLG is a sub-TLV (of type 16) of the Link TLV. The length is 161 the length of the list in octets. The value is an unordered list of 162 32 bit numbers that are the SRLGs that the link belongs to. The 163 format of the value field is as shown below: 165 0 1 2 3 166 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 167 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 168 | Shared Risk Link Group Value | 169 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 170 | ............ | 171 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 172 | Shared Risk Link Group Value | 173 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 175 This sub-TLV carries the Shared Risk Link Group information (see 176 Section "Shared Risk Link Group Information" of [GMPLS-ROUTING]). 178 The SRLG sub-TLV may occur at most once within the Link TLV. 180 2.4. Interface Switching Capability Descriptor 182 The Interface Switching Capability Descriptor is a sub-TLV (of type 183 15) of the Link TLV. The length is the length of value field in 184 octets. The format of the value field is as shown below: 186 0 1 2 3 187 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 188 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 189 | Switching Cap | Encoding | Reserved | 190 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 191 | Max LSP Bandwidth at priority 0 | 192 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 193 | Max LSP Bandwidth at priority 1 | 194 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 195 | Max LSP Bandwidth at priority 2 | 196 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 197 | Max LSP Bandwidth at priority 3 | 198 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 199 | Max LSP Bandwidth at priority 4 | 200 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 201 | Max LSP Bandwidth at priority 5 | 202 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 203 | Max LSP Bandwidth at priority 6 | 204 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 205 | Max LSP Bandwidth at priority 7 | 206 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 207 | Switching Capability-specific information | 208 | (variable) | 209 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 211 The Switching Capability (Switching Cap) field contains one of the 212 following values: 214 1 Packet-Switch Capable-1 (PSC-1) 215 2 Packet-Switch Capable-2 (PSC-2) 216 3 Packet-Switch Capable-3 (PSC-3) 217 4 Packet-Switch Capable-4 (PSC-4) 218 51 Layer-2 Switch Capable (L2SC) 219 100 Time-Division-Multiplex Capable (TDM) 220 150 Lambda-Switch Capable (LSC) 221 200 Fiber-Switch Capable (FSC) 223 The Encoding field contains one of the values specified in Section 224 3.1.1 of [GMPLS-SIG]. 226 Maximum LSP Bandwidth is encoded as a list of eight 4 octet fields in 227 the IEEE floating point format, with priority 0 first and priority 7 228 last. The units are bytes (not bits!) per second. 230 The content of the Switching Capability specific information field 231 depends on the value of the Switching Capability field. 233 When the Switching Capability field is PSC-1, PSC-2, PSC-3, or PSC-4, 234 the Switching Capability specific information field includes Minimum 235 LSP Bandwidth, Interface MTU, and padding. 237 0 1 2 3 238 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 239 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 240 | Minimum LSP Bandwidth | 241 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 242 | Interface MTU | Padding | 243 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 245 The Minimum LSP Bandwidth is is encoded in a 4 octets field in the 246 IEEE floating point format. The units are bytes (not bits!) per 247 second. The Interface MTU is encoded as a 2 octets integer. The 248 padding is 2 octets, and is used to make the Interface Switching 249 Capability Descriptor sub-TLV 32-bits aligned. It SHOULD be set to 250 zero by the sender and SHOULD be ignored by the receiver. 252 When the Switching Capability field is L2SC, there is no Switching 253 Capability specific information field present. 255 When the Switching Capability field is TDM, the Switching Capability 256 specific information field includes Minimum LSP Bandwidth, an 257 indication whether the interface supports Standard or Arbitrary 258 SONET/SDH, and padding. 260 0 1 2 3 261 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 262 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 263 | Minimum LSP Bandwidth | 264 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 265 | Indication | Padding | 266 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 268 The Minimum LSP Bandwidth is encoded in a 4 octets field in the IEEE 269 floating point format. The units are bytes (not bits!) per second. 270 The indication whether the interface supports Standard or Arbitrary 271 SONET/SDH is encoded as 1 octet. The value of this octet is 0 if the 272 interface supports Standard SONET/SDH, and 1 if the interface 273 supports Arbitrary SONET/SDH. The padding is 3 octets, and is used 274 to make the Interface Switching Capability Descriptor sub-TLV 32-bits 275 aligned. It SHOULD be set to zero by the sender and SHOULD be 276 ignored by the receiver. 278 When the Switching Capability field is LSC, there is no Switching 279 Capability specific information field present. 281 To support interfaces that have more than one Interface Switching 282 Capability Descriptor (see Section "Interface Switching Capability 283 Descriptor" of [GMPLS-ROUTING]) the Interface Switching Capability 284 Descriptor sub-TLV may occur more than once within the Link TLV. 286 3. Implications on Graceful Restart 288 The restarting node should follow the OSPF restart procedures [OSPF- 289 RESTART], and the RSVP-TE restart procedures [GMPLS-RSVP]. 291 When a restarting node is going to originate its TE LSAs, the TE LSAs 292 containing Link TLV should be originated with 0 unreserved bandwidth, 293 Traffic Engineering metric set to 0xffffffff, and if the Link has LSC 294 or FSC as its Switching Capability then also with 0 as Max LSP 295 Bandwidth, until the node is able to determine the amount of 296 unreserved resources taking into account the resources reserved by 297 the already established LSPs that have been preserved across the 298 restart. Once the restarting node determines the amount of 299 unreserved resources, taking into account the resources reserved by 300 the already established LSPs that have been preserved across the 301 restart, the node should advertise these resources in its TE LSAs. 303 In addition in the case of a planned restart prior to restarting, the 304 restarting node SHOULD originate the TE LSAs containing Link TLV with 305 0 as unreserved bandwidth, and if the Link has LSC or FSC as its 306 Switching Capability then also with 0 as Max LSP Bandwidth. This 307 would discourage new LSP establishment through the restarting router. 309 Neighbors of the restarting node should continue advertise the actual 310 unreserved bandwidth on the TE links from the neighbors to that node. 312 Regular graceful restart should not be aborted if a TE LSA or TE 313 topology changes. TE graceful restart need not be aborted if a TE 314 LSA or TE topology changes. 316 4. Exchanging Link Local TE Information 318 It is often useful for a node to communicate some Traffic Engineering 319 information for a given interface to its neighbors on that interface. 320 One example of this is a Link Local Identifier. If nodes X and Y are 321 connected by an unnumbered point-to-point interface I, then X's Link 322 Local Identifier for I is Y's Link Remote Identifier for I. X can 323 communicate its Link Local Identifer for I by exchanging with Y a TE 324 link local opaque LSA described below. Note that this information 325 need only be exchanged over interface I, hence the use of a link 326 local Opaque LSA. 328 A TE Link Local LSA is an opaque LSA of type 9 (link-local flooding 329 scope) with Opaque Type [TBD] and Opaque ID of 0. 331 0 1 2 3 332 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 333 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 334 | LS age | Options | 9 | 335 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 336 | Opaque Type | Opaque ID | 337 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 338 | Advertising Router | 339 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 340 | LS sequence number | 341 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 342 | LS checksum | length | 343 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 344 | | 345 +- TLVs -+ 346 | ... | 348 The format of the TLVs that make up the body of the TE Link Local LSA 349 is the same as that of the TE TLVs: a 2-octet Type field followed by 350 a 2-octet Length field which indicates the length of the Value field 351 in octets. The Value field is zero-padded at the end to a four octet 352 boundary. 354 The only TLV defined here is the Link Local Identifier TLV, with Type 355 1, Length 4 and Value the 32 bit Link Local Identifier for the link 356 over which the TE Link Local LSA is exchanged. 358 5. Normative References 360 [GMPLS-ROUTING] Kompella, K., and Rekhter, Y. (Editors), "Routing 361 Extensions in Support of Generalized Multi-Protocol Label 362 Switching", (work in progress) [draft-ietf-ccamp-gmpls- 363 routing-08.txt] 365 [GMPLS-RSVP] Berger, L., (Editor), "Generalized Multi-Protocol Label 366 Switching (GMPLS) Signaling Resource ReserVation Protocol-Traffic 367 Engineering (RSVP-TE) Extensions", RFC 3473, January 2003 369 [GMPLS-SIG] Berger, L. (Editor), "Generalized Multi-Protocol Label 370 Switching (GMPLS) Signaling Functional Description", RFC 3471, 371 January 2003 373 [OSPF] Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998. 375 [OSPF-RESTART] Moy, J., Pillay-Esnault, P., Lindem, A., "Graceful 376 OSPF Restart", (work in progress) [draft-ietf-ospf-hitless- 377 restart-08.txt] 379 [OSPF-SIG] Murphy, S., Badger, M., and B. Wellington, "OSPF with 380 Digital Signatures", RFC 2154, June 1997. 382 [OSPF-TE] Katz, D., Kompella, K. and Yeung, D., "Traffic Engineering 383 (TE) Extensions to OSPF Version 2", RFC 3630, September 2003. 385 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 386 Requirement Levels", BCP 14, RFC 2119, March 1997. 388 6. Security Considerations 390 This document specifies the contents of Opaque LSAs in OSPFv2. As 391 Opaque LSAs are not used for SPF computation or normal routing, the 392 extensions specified here have no direct effect on IP routing. 393 Tampering with GMPLS TE LSAs may have an effect on the underlying 394 transport (optical and/or SONET-SDH) network. [OSPF-TE] suggests 395 mechanisms such as [OSPF-SIG] to protect the transmission of this 396 information, and those or other mechanisms should be used to secure 397 and/or authenticate the information carried in the Opaque LSAs. 399 7. IANA Considerations 401 The memo introduces 4 new sub-TLVs of the TE Link TLV in the TE 402 Opaque LSA for OSPF v2; [OSPF-TE] says that the sub-TLVs of the TE 403 Link TLV in the range 10-32767 must be assigned by Expert Review, and 404 must be registered with IANA. 406 The memo has four suggested values for the four sub-TLVs of the TE 407 Link TLV; it is strongly recommended that the suggested values be 408 granted, as there are interoperable implementations using these 409 values. 411 8. Acknowledgements 413 The authors would like to thank Suresh Katukam, Jonathan Lang, 414 Quaizar Vohra, and Alex Zinin for their comments on the draft. 416 9. Contributors 418 Ayan Banerjee 419 Calient Networks 420 5853 Rue Ferrari 421 San Jose, CA 95138 422 Phone: +1.408.972.3645 423 Email: abanerjee@calient.net 425 John Drake 426 Calient Networks 427 5853 Rue Ferrari 428 San Jose, CA 95138 429 Phone: +1.408.972.3720 430 Email: jdrake@calient.net 432 Greg Bernstein 433 Ciena Corporation 434 10480 Ridgeview Court 435 Cupertino, CA 94014 436 Phone: +1.408.366.4713 437 Email: greg@ciena.com 438 Don Fedyk 439 Nortel Networks Corp. 440 600 Technology Park Drive 441 Billerica, MA 01821 442 Phone: +1.978.288.4506 443 Email: dwfedyk@nortelnetworks.com 445 Eric Mannie 446 Independent Consultant 447 E-mail: eric_mannie@hotmail.com 449 Debanjan Saha 450 Tellium Optical Systems 451 2 Crescent Place 452 P.O. Box 901 453 Ocean Port, NJ 07757 454 Phone: +1.732.923.4264 455 Email: dsaha@tellium.com 457 Vishal Sharma 458 Metanoia, Inc. 459 335 Elan Village Lane, Unit 203 460 San Jose, CA 95134-2539 461 Phone: +1.408.943.1794 462 Email: v.sharma@ieee.org 464 10. Authors' Information 466 Kireeti Kompella 467 Juniper Networks, Inc. 468 1194 N. Mathilda Ave 469 Sunnyvale, CA 94089 470 Email: kireeti@juniper.net 472 Yakov Rekhter 473 Juniper Networks, Inc. 474 1194 N. Mathilda Ave 475 Sunnyvale, CA 94089 476 Email: yakov@juniper.net 478 11. Intellectual Property Rights Notices 480 The IETF takes no position regarding the validity or scope of any 481 intellectual property or other rights that might be claimed to 482 pertain to the implementation or use of the technology described in 483 this document or the extent to which any license under such rights 484 might or might not be available; neither does it represent that it 485 has made any effort to identify any such rights. Information on the 486 IETF's procedures with respect to rights in standards-track and 487 standards-related documentation can be found in BCP-11. Copies of 488 claims of rights made available for publication and any assurances of 489 licenses to be made available, or the result of an attempt made to 490 obtain a general license or permission for the use of such 491 proprietary rights by implementors or users of this specification can 492 be obtained from the IETF Secretariat. 494 The IETF invites any interested party to bring to its attention any 495 copyrights, patents or patent applications, or other proprietary 496 rights which may cover technology that may be required to practice 497 this standard. Please address the information to the IETF Executive 498 Director. 500 Full Copyright Statement 502 Copyright (C) The Internet Society (2003). All Rights Reserved. 504 This document and translations of it may be copied and furnished to 505 others, and derivative works that comment on or otherwise explain it 506 or assist in its implmentation may be prepared, copied, published and 507 distributed, in whole or in part, without restriction of any kind, 508 provided that the above copyright notice and this paragraph are 509 included on all such copies and derivative works. However, this 510 document itself may not be modified in any way, such as by removing 511 the copyright notice or references to the Internet Society or other 512 Internet organizations, except as needed for the purpose of 513 developing Internet standards in which case the procedures for 514 copyrights defined in the Internet Standards process must be 515 followed, or as required to translate it into languages other than 516 English. 518 The limited permissions granted above are perpetual and will not be 519 revoked by the Internet Society or its successors or assigns. 521 This document and the information contained herein is provided on an 522 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING 523 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING 524 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION 525 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF 526 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.