idnits 2.17.1 draft-ietf-ccamp-rwa-wson-encode-00.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- ** The document seems to lack a License Notice according IETF Trust Provisions of 28 Dec 2009, Section 6.b.i or Provisions of 12 Sep 2009 Section 6.b -- however, there's a paragraph with a matching beginning. Boilerplate error? -- It seems you're using the 'non-IETF stream' Licence Notice instead Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (December 18, 2008) is 5608 days in the past. Is this intentional? -- Found something which looks like a code comment -- if you have code sections in the document, please surround them with '' and '' lines. Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Unused Reference: 'G.694.1' is defined on line 743, but no explicit reference was found in the text == Unused Reference: 'G.694.2' is defined on line 746, but no explicit reference was found in the text -- Possible downref: Non-RFC (?) normative reference: ref. 'G.694.1' == Outdated reference: A later version (-11) exists of draft-ietf-ccamp-gmpls-g-694-lambda-labels-02 == Outdated reference: A later version (-24) exists of draft-ietf-ccamp-rwa-info-01 Summary: 1 error (**), 0 flaws (~~), 5 warnings (==), 4 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 1 Network Working Group G. Bernstein 2 Internet Draft Grotto Networking 3 Intended status: Standards Track Y. Lee 4 Expires: June 2009 D. Li 5 Huawei 6 W. Imajuku 7 NTT 9 December 18, 2008 11 Routing and Wavelength Assignment Information Encoding for 12 Wavelength Switched Optical Networks 14 draft-ietf-ccamp-rwa-wson-encode-00.txt 16 Status of this Memo 18 This Internet-Draft is submitted to IETF in full conformance with the 19 provisions of BCP 78 and BCP 79. 21 Internet-Drafts are working documents of the Internet Engineering 22 Task Force (IETF), its areas, and its working groups. Note that 23 other groups may also distribute working documents as Internet- 24 Drafts. 26 Internet-Drafts are draft documents valid for a maximum of six months 27 and may be updated, replaced, or obsoleted by other documents at any 28 time. It is inappropriate to use Internet-Drafts as reference 29 material or to cite them other than as "work in progress." 31 The list of current Internet-Drafts can be accessed at 32 http://www.ietf.org/ietf/1id-abstracts.txt 34 The list of Internet-Draft Shadow Directories can be accessed at 35 http://www.ietf.org/shadow.html 37 This Internet-Draft will expire on May 18, 2007. 39 Copyright Notice 41 Copyright (c) 2008 IETF Trust and the persons identified as the 42 document authors. All rights reserved. 44 This document is subject to BCP 78 and the IETF Trust's Legal 45 Provisions Relating to IETF Documents 46 (http://trustee.ietf.org/license-info) in effect on the date of 47 publication of this document. Please review these documents 48 carefully, as they describe your rights and restrictions with respect 49 to this document. 51 Abstract 53 A wavelength switched optical network (WSON) requires that certain 54 key information elements are made available to facilitate path 55 computation and the establishment of label switching paths (LSPs). 56 The information model described in "Routing and Wavelength Assignment 57 Information for Wavelength Switched Optical Networks" shows what 58 information is required at specific points in the WSON. 60 The information may be used in Generalized Multiprotocol Label 61 Switching (GMPLS) signaling protocols, and may be distributed by 62 GMSPL routing protocols. Other distribution mechanisms (for example, 63 XML-based protocols) may also be used. 65 This document provides efficient, protocol-agnostic encodings for the 66 information elements necessary to operate a WSON. It is intended that 67 protocol-specific documents will reference this memo to describe how 68 information is carried for specific uses. 70 Conventions used in this document 72 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 73 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 74 document are to be interpreted as described in RFC-2119 [RFC2119]. 76 Table of Contents 78 1. Introduction...................................................3 79 2. Terminology....................................................3 80 3. Encoding of WSON Information: Sub-TLVs.........................4 81 3.1. Link Set Sub-TLV..........................................4 82 3.2. Connectivity Matrix Sub-TLV...............................6 83 3.3. Wavelength Information Encoding...........................9 84 3.4. Wavelength Set Sub-TLV...................................10 85 3.4.1. Inclusive/Exclusive Wavelength Lists................10 86 3.4.2. Inclusive/Exclusive Wavelength Ranges...............11 87 3.4.3. Bitmap Wavelength Set...............................11 88 3.5. Port Wavelength Restriction sub-TLV......................13 89 4. Composite TLVs................................................14 90 4.1. WSON Node TLV............................................14 91 4.2. WSON Link TLV............................................14 92 4.3. WSON Dynamic Link TLV....................................15 93 4.4. WSON Dynamic Node TLV....................................16 94 5. Security Considerations.......................................16 95 6. IANA Considerations...........................................16 96 7. Acknowledgments...............................................16 97 8. References....................................................17 98 8.1. Normative References.....................................17 99 8.2. Informative References...................................17 100 9. Contributors..................................................19 101 Authors' Addresses...............................................19 102 Intellectual Property Statement..................................20 103 Disclaimer of Validity...........................................21 105 1. Introduction 107 A Wavelength Switched Optical Network (WSON) is a Wavelength Division 108 Multiplexing (WDM) optical network in which switching is performed 109 selectively based on the center wavelength of an optical signal. 111 [WSON-Frame] describes a framework for Generalized Multiprotocol 112 Label Switching (GMPLS) and Path Computation Element (PCE) control of 113 a WSON. Based on this framework, [WSON-Info] describes an information 114 model that specifies what information is needed at various points in 115 a WSON in order to compute paths and establish Label Switched Paths 116 (LSPs). 118 This document provides efficient encodings of information needed by 119 the routing and wavelength assignment (RWA) process in a WSON. Such 120 encodings can be used to extend GMPLS signaling and routing 121 protocols. In addition these encodings could be used by other 122 mechanisms to convey this same information to a path computation 123 element (PCE). Note that since these encodings are relatively 124 efficient they can provide more accurate analysis of the control 125 plane communications/processing load for WSONs looking to utilize a 126 GMPLS control plane. 128 2. Terminology 130 CWDM: Coarse Wavelength Division Multiplexing. 132 DWDM: Dense Wavelength Division Multiplexing. 134 FOADM: Fixed Optical Add/Drop Multiplexer. 136 ROADM: Reconfigurable Optical Add/Drop Multiplexer. A reduced port 137 count wavelength selective switching element featuring ingress and 138 egress line side ports as well as add/drop side ports. 140 RWA: Routing and Wavelength Assignment. 142 Wavelength Conversion. The process of converting an information 143 bearing optical signal centered at a given wavelength to one with 144 "equivalent" content centered at a different wavelength. Wavelength 145 conversion can be implemented via an optical-electronic-optical (OEO) 146 process or via a strictly optical process. 148 WDM: Wavelength Division Multiplexing. 150 Wavelength Switched Optical Network (WSON): A WDM based optical 151 network in which switching is performed selectively based on the 152 center wavelength of an optical signal. 154 3. Encoding of WSON Information: Sub-TLVs 156 A TLV encoding of the high level WSON information model [WSON-Info] 157 is given in the following sections. This encoding is designed to be 158 suitable for use in the GMPLS routing protocols OSPF [RFC4203] and 159 IS-IS [RFC5307] and in the PCE protocol PCEP [PCEP]. Note that the 160 information distributed in [RFC4203] and [RFC5307] is arranged via 161 the nesting of sub-TLVs within TLVs and this document makes use of 162 such constructs. 164 3.1. Link Set Sub-TLV 166 We will frequently need to describe properties of groups of links. To 167 do so efficiently we can make use of a link set concept similar to 168 the label set concept of [RFC3471]. All links will be denoted by 169 their local link identifier as defined an used in [RFC4202], 170 [RFC4203], and [RFC5307]. 172 The information carried in a Link Set is defined by: 174 0 1 2 3 175 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 176 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 177 | Action |Dir| Format | Reserved | 178 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 179 | Link Identifier 1 | 180 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 181 : : : 182 : : : 183 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 184 | Link Identifier N | 185 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 186 Action: 8 bits 188 0 - Inclusive List 190 Indicates that the TLV contains one or more link elements that are 191 included in the Link Set. 193 2 - Inclusive Range 195 Indicates that the TLV contains a range of links. The object/TLV 196 contains two link elements. The first element indicates the start of 197 the range. The second element indicates the end of the range. A value 198 of zero indicates that there is no bound on the corresponding portion 199 of the range. 201 Dir: Directionality of the Link Set (2 bits) 203 0 -- bidirectional 205 1 -- incoming 207 2 -- outgoing 209 In optical networks we think in terms of unidirectional as well as 210 bidirectional links. For example, wavelength restrictions or 211 connectivity may be different for an ingress port, than for its 212 "companion" egress port if one exists. Note that "interfaces" such as 213 those discussed in the Interfaces MIB [RFC2863] are assumed to be 214 bidirectional. This also applies to the links advertised in various 215 link state routing protocols. 217 Format: The format of the link identifier (6 bits) 219 0 -- Link Local Identifier 221 Others TBD. 223 Note that all link identifiers in the same list must be of the same 224 type. 226 Reserved: 16 bits 228 This field is reserved. It MUST be set to zero on transmission and 229 MUST be ignored on receipt. 231 Link Identifier: 233 The link identifier represents the port which is being described 234 either for connectivity or wavelength restrictions. This can be the 235 link local identifier of [RFC4202], GMPLS routing, [RFC4203] GMPLS 236 OSPF routing, and [RFC5307] IS-IS GMPLS routing. The use of the link 237 local identifier format can result in more compact WSON encodings 238 when the assignments are done in a reasonable fashion. 240 3.2. Connectivity Matrix Sub-TLV 242 The switch and fixed connectivity matrices of [WSON-Info] can be 243 compactly represented in terms of a minimal list of ingress and 244 egress port set pairs that have mutual connectivity. As described in 245 [Switch] such a minimal list representation leads naturally to a 246 graph representation for path computation purposes that involves the 247 fewest additional nodes and links. 249 A TLV encoding of this list of link set pairs is: 251 0 1 2 3 252 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 253 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 254 | Connectivity | Reserved | 255 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 256 | Link Set A #1 | 257 : : : 258 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 259 | Link Set B #1 : 260 : : : 261 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 262 | Additional Link set pairs as needed | 263 : to specify connectivity : 264 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 266 Where Connectivity = 0 if the device is fixed 268 1 if the device is switched(e.g., ROADM/OXC) 270 TBD: Should we just have two sub-TLVs one for fixed one for switched? 272 Example: 274 Suppose we have a typical 2-degree 40 channel ROADM. In addition to 275 its two line side ports it has 80 add and 80 drop ports. The picture 276 below illustrates how a typical 2-degree ROADM system that works with 277 bi-directional fiber pairs is a highly asymmetrical system composed 278 of two unidirectional ROADM subsystems. 280 (Tributary) Ports #3-#42 281 Ingress added to Egress dropped from 282 West Line Egress East Line Ingress 283 vvvvv ^^^^^ 284 | |||.| | |||.| 285 +-----| |||.|--------| |||.|------+ 286 | +----------------------+ | 287 | | | | 288 Egress | | Unidirectional ROADM | | Ingress 289 -----------------+ | | +-------------- 290 <=====================| |===================< 291 -----------------+ +----------------------+ +-------------- 292 | | 293 Port #1 | | Port #2 294 (West Line Side) | |(East Line Side) 295 -----------------+ +----------------------+ +-------------- 296 >=====================| |===================> 297 -----------------+ | Unidirectional ROADM | +-------------- 298 Ingress | | | | Egress 299 | | _ | | 300 | +----------------------+ | 301 +-----| |||.|--------| |||.|------+ 302 | |||.| | |||.| 303 vvvvv ^^^^^ 304 (Tributary) Ports #43-#82 305 Egress dropped from Ingress added to 306 West Line ingress East Line egress 308 Referring to the figure we see that the ingress direction of ports 309 #3-#42 (add ports) can only connect to the egress on port #1. While 310 the ingress side of port #2 (line side) can only connect to the 311 egress on ports #3-#42 (drop) and to the egress on port #1 (pass 312 through). Similarly, the ingress direction of ports #43-#82 can only 313 connect to the egress on port #2 (line). While the ingress direction 314 of port #1 can only connect to the egress on ports #43-#82 (drop) or 315 port #2 (pass through). We can now represent this potential 316 connectivity matrix as follows. This representation uses only 30 32- 317 bit words. 319 0 1 2 3 320 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 321 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 322 | Conn = 1 | Reserved |1 323 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 324 Note: adds to line 325 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 326 | Action=2 |0 1|0 0 0 0 0 0|Reserved(Note:inclusive range) |2 327 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 328 | Link Local Identifier = #3 |3 329 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 330 | Link Local Identifier = #42 |4 331 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 332 | Action=0 |1 0|0 0 0 0 0 0|Reserved (Note:inclusive list) |5 333 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 334 | Link Local Identifier = #1 |6 335 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 336 Note: line to drops 337 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 338 | Action=0 |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |7 339 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 340 | Link Local Identifier = #2 |8 341 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 342 | Action=2 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|9 343 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 344 | Link Local Identifier = #3 |10 345 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 346 | Link Local Identifier = #42 |11 347 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 348 Note: line to line 349 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 350 | Action=0 |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |12 351 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 352 | Link Local Identifier = #2 |13 353 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 354 | Action=0 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|14 355 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 356 | Link Local Identifier = #1 |15 357 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 358 Note: adds to line 359 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 360 | Action=2 |0 1|0 0 0 0 0 0|Reserved(Note:inclusive range) |16 361 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 362 | Link Local Identifier = #42 |17 363 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 364 | Link Local Identifier = #82 |18 365 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 366 | Action=0 |1 0|0 0 0 0 0 0|Reserved (Note:inclusive list) |19 367 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 368 | Link Local Identifier = #2 |20 369 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 370 Note: line to drops 371 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 372 | Action=0 |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |21 373 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 374 | Link Local Identifier = #1 |22 375 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 376 | Action=2 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|23 377 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 378 | Link Local Identifier = #43 |24 379 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 380 | Link Local Identifier = #82 |25 381 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 382 Note: line to line 383 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 384 | Action=0 |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |26 385 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 386 | Link Local Identifier = #1 |27 387 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 388 | Action=0 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|28 389 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 390 | Link Local Identifier = #2 |30 391 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 393 3.3. Wavelength Information Encoding 395 This document makes frequent use of the lambda label format defined 396 in [Otani] shown below strictly for reference purposes: 398 0 1 2 3 399 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 400 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 401 |Grid | C.S. |S| Reserved | n | 402 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 403 Where 405 Grid is used to indicate which ITU-T grid specification is being 406 used. 408 C.S. = Channel spacing used in a DWDM system, i.e., with a ITU-T 409 G.694.1 grid. 411 S = sign of the offset from the center frequency of 193.1THz for the 412 ITU-T G.694.1 grid. 414 n = Used to specify the frequency as 193.1THz +/- n*(channel spacing) 415 where the + or - is chosen based on the sign (S) bit. 417 3.4. Wavelength Set Sub-TLV 419 Wavelength sets come up frequently in WSONs to describe the range of 420 a laser transmitter, the wavelength restrictions on ROADM ports, or 421 the availability of wavelengths on a DWDM link. The general format 422 for a wavelength set is given below. This format uses the Action 423 concept from [RFC3471] with an additional Action to define a "bit 424 map" type of label set. Note that the second 32 bit field is a lambda 425 label in the previously defined format. This provides important 426 information on the WDM grid type and channel spacing that will be 427 used in the compact encodings listed. 429 0 1 2 3 430 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 431 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 432 | Action | Reserved | Num Wavelengths | 433 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 434 |Grid | C.S. |S| Reserved | n for lowest frequency | 435 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 436 | Additional fields as necessary per action | 437 | 439 Action: 441 0 - Inclusive List 443 1 - Exclusive List 445 2 - Inclusive Range 447 3 - Exclusive Range 449 4 - Bitmap Set 451 3.4.1. Inclusive/Exclusive Wavelength Lists 453 In the case of the inclusive/exclusive lists the wavelength set 454 format is given by: 456 0 1 2 3 457 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 458 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 459 |Action=0 or 1 | Reserved | Num Wavelengths | 460 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 461 |Grid | C.S. |S| Reserved | n for lowest frequency | 462 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 463 | n2 | n3 | 464 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 465 : : 466 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 467 | nm | | 468 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 469 Where Num Wavelengths tells us the number of wavelength in this 470 inclusive or exclusive list this does not include the initial 471 wavelength in the list hence if the number of wavelengths is odd then 472 zero padding of the last half word is required. 474 3.4.2. Inclusive/Exclusive Wavelength Ranges 476 In the case of inclusive/exclusive ranges the wavelength set format 477 is given by: 479 0 1 2 3 480 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 481 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 482 |Action=2 or 3 | Reserved | Num Wavelengths | 483 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 484 |Grid | C.S. |S| Reserved | n for lowest frequency | 485 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 487 In this case Num Wavelengths specifies the number of wavelengths in 488 the range starting at the given wavelength and incrementing the Num 489 Wavelengths number of channel spacing up in frequency (regardless of 490 the value of the sign bit). 492 3.4.3. Bitmap Wavelength Set 494 In the case of Action = 4, the bitmap the wavelength set format is 495 given by: 497 0 1 2 3 498 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 499 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 500 | Action = 4 | Reserved | Num Wavelengths | 501 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 502 |Grid | C.S. |S| Reserved | n for lowest frequency | 503 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 504 | Bit Map Word #1 (Lowest frequency channels) | 505 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 506 : : 507 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 508 | Bit Map Word #N (Highest frequency channels) | 509 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 511 Where Num Wavelengths in this case tells us the number of wavelengths 512 represented by the bit map. Each bit in the bit map represents a 513 particular frequency with a value of 1/0 indicating whether the 514 frequency is in the set or not. Bit position zero represents the 515 lowest frequency, while each succeeding bit position represents the 516 next frequency a channel spacing (C.S.) above the previous. 518 The size of the bit map is clearly Num Wavelengths bits, but the bit 519 map is made up to a full multiple of 32 bits so that the TLV is a 520 multiple of four bytes. Bits that do not represent wavelengths (i.e., 521 those in positions (Num Wavelengths - 1) and beyond) SHOULD be set to 522 zero and MUST be ignored. 524 Example: 526 A 40 channel C-Band DWDM system with 100GHz spacing with lowest 527 frequency 192.0THz (1561.4nm) and highest frequency 195.9THz 528 (1530.3nm). These frequencies correspond to n = -11, and n = 28 529 respectively. Now suppose the following channels are available: 531 Frequency (THz) n Value bit map position 532 -------------------------------------------------- 533 192.0 -11 0 534 192.5 -6 5 535 193.1 0 11 536 193.9 8 19 537 194.0 9 20 538 195.2 21 32 539 195.8 27 38 541 With the Grid value set to indicate an ITU-T G.694.1 DWDM grid, C.S. 542 set to indicate 100GHz, and with S (sign) set to indicate negative 543 this lambda bit map set would then be encoded as follows: 545 0 1 2 3 546 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 547 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 548 | Action = 4 | Reserved | Num Wavelengths = 40 | 549 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 550 |Grid | C.S. |S| Reserved | n for lowest frequency = -11 | 551 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 552 |1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0| 553 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 554 |1 0 0 0 0 0 1 0| Not used in 40 Channel system (all zeros) | 555 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 557 3.5. Port Wavelength Restriction sub-TLV 559 The port wavelength restriction of [WSON-Info] can be encoded as a 560 sub-TLV as follows. 562 0 1 2 3 563 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 564 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 565 |RestrictionKind|T| Reserved | MaxNumChannels | 566 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 567 --Wavelength Set-- 568 | Action | Reserved | Num Wavelengths | 569 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 570 |Grid | C.S. |S| Reserved | n for lowest frequency | 571 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 572 | Additional fields as necessary per action | 573 | | 575 RestrictionKind can take the following values and meanings: 577 0: Simple wavelength selective restriction. Max number of channels 578 indicates the number of wavelengths permitted on the port and the 579 accompanying wavelength set indicates the permitted values. 581 1: Waveband device with a tunable center frequency and passband. In 582 this case the maximum number of channels indicates the maximum width 583 of the waveband in terms of the channels spacing given in the 584 wavelength set. The corresponding wavelength set is used to indicate 585 the overall tuning range. Specific center frequency tuning 586 information can be obtained from dynamic channel in use information. 588 It is assumed that both center frequency and bandwidth (Q) tuning can 589 be done without causing faults in existing signals. 591 Values for T include: 593 0 == Use with a fixed connectivity matrix 595 1 == Use with a switched connectivity matrix 597 TBD: Should we just have two flavors of sub-TLV then? 599 4. Composite TLVs 601 The Four composite TLVs in the following sections are based on the 602 four high level information bundles of [WSON-Info]. 604 4.1. WSON Node TLV 606 The WSON Node TLV consists of the following ordered list of sub-TLVs: 608 ::= [] 609 [], [] [] 611 o Node ID (This will be derived from standard IETF node identifiers) 613 o Switch Connectivity Matrix - (optional) This is a connectivity 614 matrix sub-TLV with the connectivity type set to "switched" (conn 615 = 1) 617 o Fixed Connectivity Matrix - (optional) This is a connectivity 618 matrix sub-TLV with the connectivity type set to "fixed" (conn = 619 0). 621 o Shared Risk Node Group - (optional) Format TBD. 623 o Wavelength Converter Pool - (optional) Format TBD. 625 4.2. WSON Link TLV 627 Note that a number of sub-TLVs for links have already been defined 628 and it is for further study if we can or should reuse any of those 629 sub-TLVs in our encoding. Note that for a system already employing 630 GMPLS based routing the existing encodings and transport mechanisms 631 should be used and the information does not need to appear twice. 633 ::= [] [] 634 [] []... [] 635 [] <[SwitchedPortWavelengthRestriction>] 636 [] 638 o Link Identifier - Need to double check on this with RFC4203 639 (required). 641 o Administrative Group - (optional) Standard sub-TLV type 9, 642 RFC3630. 644 o Interface Switching Capability Descriptor - Standard sub-TLV type 645 15, RFC4203. 647 o Protection - (optional) Standard sub-TLV type 15, RFC4203. 649 o Shared Risk Link Group - (optional) Standard sub-TLV 16, RFC4203. 651 o Traffic Engineering Metric - (optional) Standard sub-TLV type 5, 652 RFC3630. 654 o Maximum Bandwidth per Channel - TBD. 656 o Switched Port Wavelength Restriction - (optional) The port 657 wavelength restriction sub-TLV with T = 1. 659 o Fixed Port Wavelength Restriction - (optional) The port wavelength 660 restriction sub-TLV with T = 0. 662 4.3. WSON Dynamic Link TLV 664 ::= 665 [] 667 Where 669 ::= 670 672 o Available Wavelengths - A wavelength set sub-TLV used to indicate 673 which wavelengths are available on this link. 675 o Shared Backup Wavelengths - (optional) A wavelength set sub-TLV 676 used to indicate which wavelengths on this link are currently used 677 for shared backup protection (and hence can possibly be reused). 679 4.4. WSON Dynamic Node TLV 681 ::= [] 683 o Node ID - Format TBD. 685 o Wavelength Converter Pool Status - (optional) Format TBD. 687 Note that currently the only dynamic information modeled with a node 688 is associated with the status of the wavelength converter pool. 690 5. Security Considerations 692 This document defines protocol-independent encodings for WSON 693 information and does not introduce any security issues. 695 However, other documents that make use of these encodings within 696 protocol extensions need to consider the issues and risks associated 697 with, inspection, interception, modification, or spoofing of any of 698 this information. It is expected that any such documents will 699 describe the necessary security measures to provide adequate 700 protection. 702 6. IANA Considerations 704 TBD. Once our approach is finalized we may need identifiers for the 705 various TLVs and sub-TLVs. 707 7. Acknowledgments 709 This document was prepared using 2-Word-v2.0.template.dot. 711 8. References 713 8.1. Normative References 715 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 716 Requirement Levels", BCP 14, RFC 2119, March 1997. 718 [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group 719 MIB", RFC 2863, June 2000. 721 [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching 722 (GMPLS) Signaling Functional Description", RFC 3471, 723 January 2003. 725 [G.694.1] ITU-T Recommendation G.694.1, "Spectral grids for WDM 726 applications: DWDM frequency grid", June, 2002. 728 [RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing Extensions 729 in Support of Generalized Multi-Protocol Label Switching 730 (GMPLS)", RFC 4202, October 2005 732 [RFC4203] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions in 733 Support of Generalized Multi-Protocol Label Switching 734 (GMPLS)", RFC 4203, October 2005. 736 [Otani] T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized 737 Labels for G.694 Lambda-Switching Capable Label Switching 738 Routers", work in progress: draft-ietf-ccamp-gmpls-g-694- 739 lambda-labels-02.txt, July 2008. 741 8.2. Informative References 743 [G.694.1] ITU-T Recommendation G.694.1, Spectral grids for WDM 744 applications: DWDM frequency grid, June 2002. 746 [G.694.2] ITU-T Recommendation G.694.2, Spectral grids for WDM 747 applications: CWDM wavelength grid, December 2003. 749 [RFC5307] Kompella, K., Ed., and Y. Rekhter, Ed., "IS-IS Extensions 750 in Support of Generalized Multi-Protocol Label Switching 751 (GMPLS)", RFC 5307, October 2008. 753 [Switch] G. Bernstein, Y. Lee, A. Gavler, J. Martensson, " Modeling 754 WDM Wavelength Switching Systems for use in Automated Path 755 Computation", http://www.grotto- 756 networking.com/wson/ModelingWSONswitchesV2a.pdf , June, 2008 758 [WSON-Frame] G. Bernstein, Y. Lee, W. Imajuku, "Framework for GMPLS 759 and PCE Control of Wavelength Switched Optical Networks", 760 work in progress: draft-ietf-ccamp-wavelength-switched- 761 framework-01.txt, July 2008. 763 [WSON-Info] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and 764 Wavelength Assignment Information Model for Wavelength 765 Switched Optical Networks", work in progress: draft-ietf- 766 ccamp-rwa-info-01.txt, October 2008. 768 [PCEP] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation 769 Element (PCE) communication Protocol (PCEP) - Version 1", 770 draft-ietf-pce-pcep, work in progress. 772 9. Contributors 774 Diego Caviglia 775 Ericsson 776 Via A. Negrone 1/A 16153 777 Genoa Italy 779 Phone: +39 010 600 3736 780 Email: diego.caviglia@(marconi.com, ericsson.com) 782 Anders Gavler 783 Acreo AB 784 Electrum 236 785 SE - 164 40 Kista Sweden 787 Email: Anders.Gavler@acreo.se 789 Jonas Martensson 790 Acreo AB 791 Electrum 236 792 SE - 164 40 Kista, Sweden 794 Email: Jonas.Martensson@acreo.se 796 Itaru Nishioka 797 NEC Corp. 798 1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666 799 Japan 801 Phone: +81 44 396 3287 802 Email: i-nishioka@cb.jp.nec.com 804 Authors' Addresses 806 Greg M. Bernstein (ed.) 807 Grotto Networking 808 Fremont California, USA 810 Phone: (510) 573-2237 811 Email: gregb@grotto-networking.com 812 Young Lee (ed.) 813 Huawei Technologies 814 1700 Alma Drive, Suite 100 815 Plano, TX 75075 816 USA 818 Phone: (972) 509-5599 (x2240) 819 Email: ylee@huawei.com 821 Dan Li 822 Huawei Technologies Co., Ltd. 823 F3-5-B R&D Center, Huawei Base, 824 Bantian, Longgang District 825 Shenzhen 518129 P.R.China 827 Phone: +86-755-28973237 828 Email: danli@huawei.com 830 Wataru Imajuku 831 NTT Network Innovation Labs 832 1-1 Hikari-no-oka, Yokosuka, Kanagawa 833 Japan 835 Phone: +81-(46) 859-4315 836 Email: imajuku.wataru@lab.ntt.co.jp 838 Intellectual Property Statement 840 The IETF Trust takes no position regarding the validity or scope of 841 any Intellectual Property Rights or other rights that might be 842 claimed to pertain to the implementation or use of the technology 843 described in any IETF Document or the extent to which any license 844 under such rights might or might not be available; nor does it 845 represent that it has made any independent effort to identify any 846 such rights. 848 Copies of Intellectual Property disclosures made to the IETF 849 Secretariat and any assurances of licenses to be made available, or 850 the result of an attempt made to obtain a general license or 851 permission for the use of such proprietary rights by implementers or 852 users of this specification can be obtained from the IETF on-line IPR 853 repository at http://www.ietf.org/ipr 855 The IETF invites any interested party to bring to its attention any 856 copyrights, patents or patent applications, or other proprietary 857 rights that may cover technology that may be required to implement 858 any standard or specification contained in an IETF Document. Please 859 address the information to the IETF at ietf-ipr@ietf.org. 861 Disclaimer of Validity 863 All IETF Documents and the information contained therein are provided 864 on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE 865 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE 866 IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL 867 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 868 WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE 869 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS 870 FOR A PARTICULAR PURPOSE. 872 Acknowledgment 874 Funding for the RFC Editor function is currently provided by the 875 Internet Society.