idnits 2.17.1 draft-ietf-ccamp-rwa-wson-encode-01.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- ** The document seems to lack a License Notice according IETF Trust Provisions of 28 Dec 2009, Section 6.b.i or Provisions of 12 Sep 2009 Section 6.b -- however, there's a paragraph with a matching beginning. Boilerplate error? -- It seems you're using the 'non-IETF stream' Licence Notice instead Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (March 3, 2009) is 5533 days in the past. Is this intentional? -- Found something which looks like a code comment -- if you have code sections in the document, please surround them with '' and '' lines. Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Unused Reference: 'G.694.1' is defined on line 1048, but no explicit reference was found in the text == Unused Reference: 'G.694.2' is defined on line 1051, but no explicit reference was found in the text -- Possible downref: Non-RFC (?) normative reference: ref. 'G.694.1' == Outdated reference: A later version (-11) exists of draft-ietf-ccamp-gmpls-g-694-lambda-labels-03 == Outdated reference: A later version (-24) exists of draft-ietf-ccamp-rwa-info-01 Summary: 1 error (**), 0 flaws (~~), 5 warnings (==), 4 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 1 Network Working Group G. Bernstein 2 Internet Draft Grotto Networking 3 Intended status: Standards Track Y. Lee 4 Expires: September 2009 D. Li 5 Huawei 6 W. Imajuku 7 NTT 9 March 3, 2009 11 Routing and Wavelength Assignment Information Encoding for 12 Wavelength Switched Optical Networks 14 draft-ietf-ccamp-rwa-wson-encode-01.txt 16 Status of this Memo 18 This Internet-Draft is submitted to IETF in full conformance with the 19 provisions of BCP 78 and BCP 79. 21 Internet-Drafts are working documents of the Internet Engineering 22 Task Force (IETF), its areas, and its working groups. Note that 23 other groups may also distribute working documents as Internet- 24 Drafts. 26 Internet-Drafts are draft documents valid for a maximum of six months 27 and may be updated, replaced, or obsoleted by other documents at any 28 time. It is inappropriate to use Internet-Drafts as reference 29 material or to cite them other than as "work in progress." 31 The list of current Internet-Drafts can be accessed at 32 http://www.ietf.org/ietf/1id-abstracts.txt 34 The list of Internet-Draft Shadow Directories can be accessed at 35 http://www.ietf.org/shadow.html 37 This Internet-Draft will expire on September 3, 2009. 39 Copyright Notice 41 Copyright (c) 2009 IETF Trust and the persons identified as the 42 document authors. All rights reserved. 44 This document is subject to BCP 78 and the IETF Trust's Legal 45 Provisions Relating to IETF Documents 46 (http://trustee.ietf.org/license-info) in effect on the date of 47 publication of this document. Please review these documents 48 carefully, as they describe your rights and restrictions with respect 49 to this document. 51 Abstract 53 A wavelength switched optical network (WSON) requires that certain 54 key information elements are made available to facilitate path 55 computation and the establishment of label switching paths (LSPs). 56 The information model described in "Routing and Wavelength Assignment 57 Information for Wavelength Switched Optical Networks" shows what 58 information is required at specific points in the WSON. 60 The information may be used in Generalized Multiprotocol Label 61 Switching (GMPLS) signaling protocols, and may be distributed by 62 GMPLS routing protocols. Other distribution mechanisms (for example, 63 XML-based protocols) may also be used. 65 This document provides efficient, protocol-agnostic encodings for the 66 information elements necessary to operate a WSON. It is intended that 67 protocol-specific documents will reference this memo to describe how 68 information is carried for specific uses. 70 Conventions used in this document 72 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 73 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 74 document are to be interpreted as described in RFC-2119 [RFC2119]. 76 Table of Contents 78 1. Introduction...................................................3 79 1.1. Revision History..........................................4 80 1.1.1. Changes from 00 draft................................4 81 2. Terminology....................................................4 82 3. Encoding of WSON Information: Sub-TLVs.........................5 83 3.1. Link Set Sub-TLV..........................................5 84 3.2. Connectivity Matrix Sub-TLV...............................6 85 3.3. Wavelength Information Encoding..........................10 86 3.4. Wavelength Set Sub-TLV...................................11 87 3.4.1. Inclusive/Exclusive Wavelength Lists................11 88 3.4.2. Inclusive/Exclusive Wavelength Ranges...............12 89 3.4.3. Bitmap Wavelength Set...............................12 90 3.5. Port Wavelength Restriction sub-TLV......................14 91 3.6. Wavelength Converter Set Sub-TLV.........................15 92 3.7. Wavelength Converter Accessibility Sub-TLV...............16 93 3.8. Wavelength Conversion Range Sub-TLV......................19 94 3.9. WC Usage State Sub-TLV...................................21 95 4. Composite TLVs................................................22 96 4.1. WSON Node TLV............................................22 97 4.2. WSON Link TLV............................................23 98 4.3. WSON Dynamic Link TLV....................................24 99 4.4. WSON Dynamic Node TLV....................................24 100 5. Security Considerations.......................................24 101 6. IANA Considerations...........................................24 102 7. Acknowledgments...............................................25 103 8. References....................................................26 104 8.1. Normative References.....................................26 105 8.2. Informative References...................................26 106 9. Contributors..................................................28 107 Authors' Addresses...............................................28 108 Intellectual Property Statement..................................29 109 Disclaimer of Validity...........................................30 111 1. Introduction 113 A Wavelength Switched Optical Network (WSON) is a Wavelength Division 114 Multiplexing (WDM) optical network in which switching is performed 115 selectively based on the center wavelength of an optical signal. 117 [WSON-Frame] describes a framework for Generalized Multiprotocol 118 Label Switching (GMPLS) and Path Computation Element (PCE) control of 119 a WSON. Based on this framework, [WSON-Info] describes an information 120 model that specifies what information is needed at various points in 121 a WSON in order to compute paths and establish Label Switched Paths 122 (LSPs). 124 This document provides efficient encodings of information needed by 125 the routing and wavelength assignment (RWA) process in a WSON. Such 126 encodings can be used to extend GMPLS signaling and routing 127 protocols. In addition these encodings could be used by other 128 mechanisms to convey this same information to a path computation 129 element (PCE). Note that since these encodings are relatively 130 efficient they can provide more accurate analysis of the control 131 plane communications/processing load for WSONs looking to utilize a 132 GMPLS control plane. 134 1.1. Revision History 136 1.1.1. Changes from 00 draft 138 Edits to make consistent with update to [Otani], i.e., removal of 139 sign bit. 141 Clarification of TBD on connection matrix type and possibly 142 numbering. 144 New sections for wavelength converter pool encoding: Wavelength 145 Converter Set Sub-TLV, Wavelength Converter Accessibility Sub-TLV, 146 Wavelength Conversion Range Sub-TLV, WC Usage State Sub-TLV. 148 Added optional wavelength converter pool TLVs to the composite node 149 TLV. 151 2. Terminology 153 CWDM: Coarse Wavelength Division Multiplexing. 155 DWDM: Dense Wavelength Division Multiplexing. 157 FOADM: Fixed Optical Add/Drop Multiplexer. 159 ROADM: Reconfigurable Optical Add/Drop Multiplexer. A reduced port 160 count wavelength selective switching element featuring ingress and 161 egress line side ports as well as add/drop side ports. 163 RWA: Routing and Wavelength Assignment. 165 Wavelength Conversion. The process of converting an information 166 bearing optical signal centered at a given wavelength to one with 167 "equivalent" content centered at a different wavelength. Wavelength 168 conversion can be implemented via an optical-electronic-optical (OEO) 169 process or via a strictly optical process. 171 WDM: Wavelength Division Multiplexing. 173 Wavelength Switched Optical Network (WSON): A WDM based optical 174 network in which switching is performed selectively based on the 175 center wavelength of an optical signal. 177 3. Encoding of WSON Information: Sub-TLVs 179 A TLV encoding of the high level WSON information model [WSON-Info] 180 is given in the following sections. This encoding is designed to be 181 suitable for use in the GMPLS routing protocols OSPF [RFC4203] and 182 IS-IS [RFC5307] and in the PCE protocol PCEP [PCEP]. Note that the 183 information distributed in [RFC4203] and [RFC5307] is arranged via 184 the nesting of sub-TLVs within TLVs and this document makes use of 185 such constructs. 187 3.1. Link Set Sub-TLV 189 We will frequently need to describe properties of groups of links. To 190 do so efficiently we can make use of a link set concept similar to 191 the label set concept of [RFC3471]. All links will be denoted by 192 their local link identifier as defined an used in [RFC4202], 193 [RFC4203], and [RFC5307]. 195 The information carried in a Link Set is defined by: 197 0 1 2 3 198 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 199 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 200 | Action |Dir| Format | Reserved | 201 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 202 | Link Identifier 1 | 203 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 204 : : : 205 : : : 206 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 207 | Link Identifier N | 208 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 210 Action: 8 bits 212 0 - Inclusive List 214 Indicates that the TLV contains one or more link elements that are 215 included in the Link Set. 217 2 - Inclusive Range 219 Indicates that the TLV contains a range of links. The object/TLV 220 contains two link elements. The first element indicates the start of 221 the range. The second element indicates the end of the range. A value 222 of zero indicates that there is no bound on the corresponding portion 223 of the range. 225 Dir: Directionality of the Link Set (2 bits) 227 0 -- bidirectional 229 1 -- incoming 231 2 -- outgoing 233 In optical networks we think in terms of unidirectional as well as 234 bidirectional links. For example, wavelength restrictions or 235 connectivity may be different for an ingress port, than for its 236 "companion" egress port if one exists. Note that "interfaces" such as 237 those discussed in the Interfaces MIB [RFC2863] are assumed to be 238 bidirectional. This also applies to the links advertised in various 239 link state routing protocols. 241 Format: The format of the link identifier (6 bits) 243 0 -- Link Local Identifier 245 Others TBD. 247 Note that all link identifiers in the same list must be of the same 248 type. 250 Reserved: 16 bits 252 This field is reserved. It MUST be set to zero on transmission and 253 MUST be ignored on receipt. 255 Link Identifier: 257 The link identifier represents the port which is being described 258 either for connectivity or wavelength restrictions. This can be the 259 link local identifier of [RFC4202], GMPLS routing, [RFC4203] GMPLS 260 OSPF routing, and [RFC5307] IS-IS GMPLS routing. The use of the link 261 local identifier format can result in more compact WSON encodings 262 when the assignments are done in a reasonable fashion. 264 3.2. Connectivity Matrix Sub-TLV 266 The switch and fixed connectivity matrices of [WSON-Info] can be 267 compactly represented in terms of a minimal list of ingress and 268 egress port set pairs that have mutual connectivity. As described in 269 [Switch] such a minimal list representation leads naturally to a 270 graph representation for path computation purposes that involves the 271 fewest additional nodes and links. 273 A TLV encoding of this list of link set pairs is: 275 0 1 2 3 276 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 277 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 278 | Connectivity | Reserved | 279 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 280 | Link Set A #1 | 281 : : : 282 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 283 | Link Set B #1 : 284 : : : 285 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 286 | Additional Link set pairs as needed | 287 : to specify connectivity : 288 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 290 Where Connectivity = 0 if the device is fixed 292 1 if the device is switched(e.g., ROADM/OXC) 294 TBD: Should we just have two sub-TLVs one for fixed one for switched, 295 or should we number matrices for a more general solution. 297 Example: 299 Suppose we have a typical 2-degree 40 channel ROADM. In addition to 300 its two line side ports it has 80 add and 80 drop ports. The picture 301 below illustrates how a typical 2-degree ROADM system that works with 302 bi-directional fiber pairs is a highly asymmetrical system composed 303 of two unidirectional ROADM subsystems. 305 (Tributary) Ports #3-#42 306 Ingress added to Egress dropped from 307 West Line Egress East Line Ingress 308 vvvvv ^^^^^ 309 | |||.| | |||.| 310 +-----| |||.|--------| |||.|------+ 311 | +----------------------+ | 312 | | | | 313 Egress | | Unidirectional ROADM | | Ingress 314 -----------------+ | | +-------------- 315 <=====================| |===================< 316 -----------------+ +----------------------+ +-------------- 317 | | 318 Port #1 | | Port #2 319 (West Line Side) | |(East Line Side) 320 -----------------+ +----------------------+ +-------------- 321 >=====================| |===================> 322 -----------------+ | Unidirectional ROADM | +-------------- 323 Ingress | | | | Egress 324 | | _ | | 325 | +----------------------+ | 326 +-----| |||.|--------| |||.|------+ 327 | |||.| | |||.| 328 vvvvv ^^^^^ 329 (Tributary) Ports #43-#82 330 Egress dropped from Ingress added to 331 West Line ingress East Line egress 333 Referring to the figure we see that the ingress direction of ports 334 #3-#42 (add ports) can only connect to the egress on port #1. While 335 the ingress side of port #2 (line side) can only connect to the 336 egress on ports #3-#42 (drop) and to the egress on port #1 (pass 337 through). Similarly, the ingress direction of ports #43-#82 can only 338 connect to the egress on port #2 (line). While the ingress direction 339 of port #1 can only connect to the egress on ports #43-#82 (drop) or 340 port #2 (pass through). We can now represent this potential 341 connectivity matrix as follows. This representation uses only 30 32- 342 bit words. 344 0 1 2 3 345 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 346 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 347 | Conn = 1 | Reserved |1 348 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 349 Note: adds to line 350 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 351 | Action=2 |0 1|0 0 0 0 0 0|Reserved(Note:inclusive range) |2 352 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 353 | Link Local Identifier = #3 |3 354 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 355 | Link Local Identifier = #42 |4 356 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 357 | Action=0 |1 0|0 0 0 0 0 0|Reserved (Note:inclusive list) |5 358 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 359 | Link Local Identifier = #1 |6 360 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 361 Note: line to drops 362 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 363 | Action=0 |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |7 364 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 365 | Link Local Identifier = #2 |8 366 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 367 | Action=2 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|9 368 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 369 | Link Local Identifier = #3 |10 370 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 371 | Link Local Identifier = #42 |11 372 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 373 Note: line to line 374 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 375 | Action=0 |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |12 376 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 377 | Link Local Identifier = #2 |13 378 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 379 | Action=0 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|14 380 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 381 | Link Local Identifier = #1 |15 382 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 383 Note: adds to line 384 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 385 | Action=2 |0 1|0 0 0 0 0 0|Reserved(Note:inclusive range) |16 386 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 387 | Link Local Identifier = #42 |17 388 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 389 | Link Local Identifier = #82 |18 390 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 391 | Action=0 |1 0|0 0 0 0 0 0|Reserved (Note:inclusive list) |19 392 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 393 | Link Local Identifier = #2 |20 394 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 395 Note: line to drops 396 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 397 | Action=0 |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |21 398 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 399 | Link Local Identifier = #1 |22 400 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 401 | Action=2 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|23 402 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 403 | Link Local Identifier = #43 |24 404 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 405 | Link Local Identifier = #82 |25 406 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 407 Note: line to line 408 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 409 | Action=0 |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |26 410 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 411 | Link Local Identifier = #1 |27 412 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 413 | Action=0 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|28 414 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 415 | Link Local Identifier = #2 |30 416 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 418 3.3. Wavelength Information Encoding 420 This document makes frequent use of the lambda label format defined 421 in [Otani] shown below strictly for reference purposes: 423 0 1 2 3 424 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 425 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 426 |Grid | C.S. | Reserved | n | 427 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 428 Where 430 Grid is used to indicate which ITU-T grid specification is being 431 used. 433 C.S. = Channel spacing used in a DWDM system, i.e., with a ITU-T 434 G.694.1 grid. 436 n = Used to specify the frequency as 193.1THz +/- n*(channel spacing) 437 and n is an integer to take either a negative, zero or a positive 438 value. 440 3.4. Wavelength Set Sub-TLV 442 Wavelength sets come up frequently in WSONs to describe the range of 443 a laser transmitter, the wavelength restrictions on ROADM ports, or 444 the availability of wavelengths on a DWDM link. The general format 445 for a wavelength set is given below. This format uses the Action 446 concept from [RFC3471] with an additional Action to define a "bit 447 map" type of label set. Note that the second 32 bit field is a lambda 448 label in the previously defined format. This provides important 449 information on the WDM grid type and channel spacing that will be 450 used in the compact encodings listed. 452 0 1 2 3 453 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 454 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 455 | Action | Reserved | Num Wavelengths | 456 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 457 |Grid | C.S. | Reserved | n for lowest frequency | 458 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 459 | Additional fields as necessary per action | 460 | 462 Action: 464 0 - Inclusive List 466 1 - Exclusive List 468 2 - Inclusive Range 470 3 - Exclusive Range 472 4 - Bitmap Set 474 3.4.1. Inclusive/Exclusive Wavelength Lists 476 In the case of the inclusive/exclusive lists the wavelength set 477 format is given by: 479 0 1 2 3 480 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 481 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 482 |Action=0 or 1 | Reserved | Num Wavelengths | 483 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 484 |Grid | C.S. | Reserved | n for lowest frequency | 485 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 486 | n2 | n3 | 487 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 488 : : 489 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 490 | nm | | 491 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 492 Where Num Wavelengths tells us the number of wavelength in this 493 inclusive or exclusive list this does not include the initial 494 wavelength in the list hence if the number of wavelengths is odd then 495 zero padding of the last half word is required. 497 3.4.2. Inclusive/Exclusive Wavelength Ranges 499 In the case of inclusive/exclusive ranges the wavelength set format 500 is given by: 502 0 1 2 3 503 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 504 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 505 |Action=2 or 3 | Reserved | Num Wavelengths | 506 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 507 |Grid | C.S. | Reserved | n for lowest frequency | 508 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 510 In this case Num Wavelengths specifies the number of wavelengths in 511 the range starting at the given wavelength and incrementing the Num 512 Wavelengths number of channel spacing up in frequency. 514 3.4.3. Bitmap Wavelength Set 516 In the case of Action = 4, the bitmap the wavelength set format is 517 given by: 519 0 1 2 3 520 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 521 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 522 | Action = 4 | Reserved | Num Wavelengths | 523 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 524 |Grid | C.S. | Reserved | n for lowest frequency | 525 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 526 | Bit Map Word #1 (Lowest frequency channels) | 527 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 528 : : 529 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 530 | Bit Map Word #N (Highest frequency channels) | 531 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 533 Where Num Wavelengths in this case tells us the number of wavelengths 534 represented by the bit map. Each bit in the bit map represents a 535 particular frequency with a value of 1/0 indicating whether the 536 frequency is in the set or not. Bit position zero represents the 537 lowest frequency, while each succeeding bit position represents the 538 next frequency a channel spacing (C.S.) above the previous. 540 The size of the bit map is clearly Num Wavelengths bits, but the bit 541 map is made up to a full multiple of 32 bits so that the TLV is a 542 multiple of four bytes. Bits that do not represent wavelengths (i.e., 543 those in positions (Num Wavelengths - 1) and beyond) SHOULD be set to 544 zero and MUST be ignored. 546 Example: 548 A 40 channel C-Band DWDM system with 100GHz spacing with lowest 549 frequency 192.0THz (1561.4nm) and highest frequency 195.9THz 550 (1530.3nm). These frequencies correspond to n = -11, and n = 28 551 respectively. Now suppose the following channels are available: 553 Frequency (THz) n Value bit map position 554 -------------------------------------------------- 555 192.0 -11 0 556 192.5 -6 5 557 193.1 0 11 558 193.9 8 19 559 194.0 9 20 560 195.2 21 32 561 195.8 27 38 563 With the Grid value set to indicate an ITU-T G.694.1 DWDM grid, C.S. 564 set to indicate 100GHz this lambda bit map set would then be encoded 565 as follows: 567 0 1 2 3 568 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 569 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 570 | Action = 4 | Reserved | Num Wavelengths = 40 | 571 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 572 |Grid | C.S. | Reserved | n for lowest frequency = -11 | 573 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 574 |1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0| 575 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 576 |1 0 0 0 0 0 1 0| Not used in 40 Channel system (all zeros) | 577 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 579 3.5. Port Wavelength Restriction sub-TLV 581 The port wavelength restriction of [WSON-Info] can be encoded as a 582 sub-TLV as follows. 584 0 1 2 3 585 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 586 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 587 |RestrictionKind|T| Reserved | MaxNumChannels | 588 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 589 --Wavelength Set-- 590 | Action | Reserved | Num Wavelengths | 591 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 592 |Grid | C.S. | Reserved | n for lowest frequency | 593 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 594 | Additional fields as necessary per action | 595 | | 597 RestrictionKind can take the following values and meanings: 599 0: Simple wavelength selective restriction. Max number of channels 600 indicates the number of wavelengths permitted on the port and the 601 accompanying wavelength set indicates the permitted values. 603 1: Waveband device with a tunable center frequency and passband. In 604 this case the maximum number of channels indicates the maximum width 605 of the waveband in terms of the channels spacing given in the 606 wavelength set. The corresponding wavelength set is used to indicate 607 the overall tuning range. Specific center frequency tuning 608 information can be obtained from dynamic channel in use information. 609 It is assumed that both center frequency and bandwidth (Q) tuning can 610 be done without causing faults in existing signals. 612 Values for T include: 614 0 == Use with a fixed connectivity matrix 616 1 == Use with a switched connectivity matrix 618 TBD: Should we just have two flavors of sub-TLV, or if we add 619 numbering to identify matrices we could add a number field here 620 (using currently reserved bits) to associate the constraints with the 621 right matrix. 623 3.6. Wavelength Converter Set Sub-TLV 625 A WSON node may include a set of wavelength converters (WC). We need 626 to describe the WC list which a node supports. This can be done via a 627 WC Set concept similar to the label set concept of [RFC3471]. 629 The information carried in a WC set is defined by: 630 0 1 2 3 631 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 632 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 633 | Action | Reserved | 634 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 635 | WC Identifier 1 | WC Identifier 2 | 636 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 637 : : : 638 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 639 | WC Identifier n-1 | WC Identifier n | 640 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 642 Action: 8 bits 644 0 - Inclusive List 646 Indicates that the TLV contains one or more WC elements that are 647 included in the list. 649 2 - Inclusive Range 651 Indicates that the TLV contains a range of WCs. The object/TLV 652 contains two WC elements. The first element indicates the start of 653 the range. The second element indicates the end of the range. A value 654 of zero indicates that there is no bound on the corresponding portion 655 of the range. 657 Reserved: 24 bits 659 This field is reserved. It MUST be set to zero on transmission and 660 MUST be ignored on receipt. 662 WC Identifier: 664 The WC identifier represents the ID of the wavelength convertor which 665 is a 16 bit integer. 667 3.7. Wavelength Converter Accessibility Sub-TLV 669 A WSON node may include wavelength converters. As described in [WSON- 670 Info], we should give the accessibility of a wavelength converter to 671 convert from a given ingress wavelength on a particular ingress 672 port to a desired egress wavelength on a particular egress port. 673 Before this, we need to describe the accessibility of a wavelength 674 converter to convert form a given ingress port to a desired egress 675 port. This information can be determined by the PoolIngressMatrix and 676 PoolEgressMatrix of [WSON-Info]. We can use a set of links (Link set) 677 followed by a set of WCs (WC set) to represent that this link set can 678 access this WC set. We use a set of WC (WC set) followed by a set of 679 links (Link set) to represent that this WC set can access this link 680 set. 682 The wavelength converter accessibility TLV is defined by: 684 0 1 2 3 685 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 686 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 687 | Num In Pairs | Reserved | 688 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 689 | Ingress Link Set A #1 | 690 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 691 | WC Set A #1 | 692 : : : 693 : : : 694 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 695 | Additional Link set and WC set pairs as needed to | 696 : specify PoolIngressMatrix : 697 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 698 | WC Set B #1 (for egress connectivity) | 699 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 700 | Egress link Set B #1 | 701 : : : 702 : : : 703 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 704 | Additional WC set and egress link set pairs | 705 : as needed to specify PoolEgressMatrix : 706 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 708 Where Num_In_Pairs tells us the number of ingress link and WC set 709 pairs. TBD: if link sets are identified in their own sub-TLVs and 710 similarly for WC sets then we may not need this field. 712 Example: 714 Figure 1 shows a wavelength converter pool architecture know as 715 "shared per fiber". In this case the ingress and egress pool matrices 716 are simply: 718 +-----+ +-----+ 719 | 1 1 | | 1 0 | 720 WI =| |, WE =| | 721 | 1 1 | | 0 1 | 722 +-----+ +-----+ 724 +-----------+ +------+ 725 | |--------------------->| | 726 | |--------------------->| C | 727 /| | |--------------------->| o | E1 728 I1 /D+--->| |--------------------->| m | 729 + e+--->| | | b |========> 730 ========>| M| | Optical | +-----------+ | i | Port #3 731 Port #1 + u+--->| Switch | | WC Pool | | n | 732 \x+--->| | | +-----+ | | e | 733 \| | +----+->|WC #1|--+---->| r | 734 | | | +-----+ | +------+ 735 | | | | +------+ 736 /| | | | +-----+ | | | 737 I2 /D+--->| +----+->|WC #2|--+---->| C | E2 738 + e+--->| | | +-----+ | | o | 739 ========>| M| | | +-----------+ | m |========> 740 Port #2 + u+--->| | | b | Port #4 741 \x+--->| |--------------------->| i | 742 \| | |--------------------->| n | 743 | |--------------------->| e | 744 | |--------------------->| r | 745 +-----------+ +------+ 746 Figure 1 An optical switch featuring a shared per fiber wavelength 747 converter pool architecture. 749 This wavelength converter pool can be encoded as follows: 751 0 1 2 3 752 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 753 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 754 | Num In Pairs=1| Reserved | 755 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 756 Note: I1,I2 can connect to either WC1 or WC2 757 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 758 | Action=0 |0 1|0 0 0 0 0 0|Reserved(Note: inclusive list) | 759 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 760 | Link Local Identifier = #1 | 761 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 762 | Link Local Identifier = #2 | 763 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 764 | Action=0 | Reserved(Note: inclusive WC list) | 765 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 766 | WC ID = #1 | WC ID = #2 | 767 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 768 Note: WC1 can only connect to E1 769 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 770 | Action=0 | Reserved(Note: inclusive list) | 771 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 772 | WC ID = #1 | zero padding | 773 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 774 | Action=0 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive list) | 775 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 776 | Link Local Identifier = #3 | 777 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 778 Note: WC2 can only connect to E2 779 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 780 | Action=0 | Reserved(Note: inclusive WC list) | 781 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 782 | WC ID = #2 | zero padding | 783 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 784 | Action=0 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive list) | 785 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 786 | Link Local Identifier = #4 | 787 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 789 3.8. Wavelength Conversion Range Sub-TLV 791 Since not all wavelengths can necessarily reach all the converters or 792 the converters may have limited input wavelength range we can have a 793 set of ingress wavelength constraints for each wavelength converter. 794 In addition, we also can have output wavelength constraints. 796 The information carried in a wavelength conversion range Sub-TLV is 797 defined by: 799 0 1 2 3 800 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 801 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 802 | Reserved | 803 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 804 | WC Set #1 | 805 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 806 | Input Wavelength Set #1 | 807 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 808 | Output Wavelength Set #1 | 809 : : : 810 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 811 | Additional WC Wavelength constraint set pairs as needed | 812 : : 813 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 815 WC Set: 817 Indicates the WCs which have the same conversion range. We group the 818 WCs which have the same conversion range to WC Set followed by the 819 input and output wavelength range for reducing the data size. 821 The format of WC Set is consistent with the encoding of "WC Set Sub- 822 TLV". 824 Input Wavelength Set: 826 Indicates the wavelength input range of WC(s). 828 The format of Input Wavelength Set is consistent with the encoding of 829 "Wavelength Set Sub-TLV". 831 Output Wavelength Set: 833 Indicates the wavelength output range of WC(s). 835 The format of Output Wavelength Set is consistent with the encoding 836 of "Wavelength Set Sub-TLV". 838 Example: 840 We give an example based on figure 1 about how to represent the 841 wavelength conversion range of wavelength converters. Suppose the 842 wavelength range of input and output of WC1 and WC2 are {L1, L2, L3, 843 L4}: 845 0 1 2 3 846 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 847 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 848 | Reserved | 849 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 850 Note: WC Set 851 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 852 | Action=0 |0 1| Reserved(Note: inclusive list) | 853 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 854 | WC ID = #1 | WC ID = #2 | 855 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 856 Note: wavelength input range 857 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 858 | Action = 2 | Reserved | Num Wavelengths = 4 | 859 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 860 |Grid | C.S. | Reserved | n for lowest frequency = 1 | 861 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 862 Note: wavelength output range 863 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 864 | Action = 2 | Reserved | Num Wavelengths = 4 | 865 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 866 |Grid | C.S. | Reserved | n for lowest frequency = 1 | 867 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 869 3.9. WC Usage State Sub-TLV 871 WC Usage state dependents upon whether the wavelength converter in 872 the pool is in use. This is the only state kept in the converter pool 873 model. 875 0 1 2 3 876 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 877 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 878 | WC Set sub-TLV | 879 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 880 | WC Usage state | 881 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 882 | ...... | Padded bits | 883 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 885 WC Usage state can be encoded by bit map. The bits indicate the usage 886 state of the wavelength convertors which is being described in the WC 887 Set sub-TLV. 889 WC Usage state: : Variable Length. 891 Each bit indicates the usage status of one WC. The sequence of the 892 bit map is consistent with the WC list in this TLV. 894 Padded bit: Variable Length 896 It is used to pad the bit to make the whole number of bits in bitmap 897 be the time of 32. Padded bit MUST be set to 0. 899 4. Composite TLVs 901 The Four composite TLVs in the following sections are based on the 902 four high level information bundles of [WSON-Info]. 904 4.1. WSON Node TLV 906 The WSON Node TLV consists of the following ordered list of sub-TLVs: 908 ::= [] 909 [], [] [] 911 o Node ID (This will be derived from standard IETF node identifiers) 913 o Switch Connectivity Matrix - (optional) This is a connectivity 914 matrix sub-TLV with the connectivity type set to "switched" (conn 915 = 1) 917 o Fixed Connectivity Matrix - (optional) This is a connectivity 918 matrix sub-TLV with the connectivity type set to "fixed" (conn = 919 0). 921 o Shared Risk Node Group - (optional) Format TBD (note that current 922 GMPLS SRLG encoding is general enough to include SRNG 923 information). 925 o Wavelength Converter Pool TLVs- (optional) Wavelength Converter 926 Set Sub-TLV, Wavelength Converter Accessibility Sub-TLV, and 927 Wavelength Conversion Range Sub-TLV. 929 4.2. WSON Link TLV 931 Note that a number of sub-TLVs for links have already been defined 932 and it is for further study if we can or should reuse any of those 933 sub-TLVs in our encoding. Note that for a system already employing 934 GMPLS based routing the existing encodings and transport mechanisms 935 should be used and the information does not need to appear twice. 937 ::= [] [] 938 [] []... [] 939 [] <[SwitchedPortWavelengthRestriction>] 940 [] 942 o Link Identifier - Need to double check on this with RFC4203 943 (required). 945 o Administrative Group - (optional) Standard sub-TLV type 9, 946 RFC3630. 948 o Interface Switching Capability Descriptor - Standard sub-TLV type 949 15, RFC4203. 951 o Protection - (optional) Standard sub-TLV type 15, RFC4203. 953 o Shared Risk Link Group - (optional) Standard sub-TLV 16, RFC4203. 955 o Traffic Engineering Metric - (optional) Standard sub-TLV type 5, 956 RFC3630. 958 o Maximum Bandwidth per Channel - TBD. 960 o Switched Port Wavelength Restriction - (optional) The port 961 wavelength restriction sub-TLV with T = 1. 963 o Fixed Port Wavelength Restriction - (optional) The port wavelength 964 restriction sub-TLV with T = 0. 966 4.3. WSON Dynamic Link TLV 968 ::= 969 [] 971 Where 973 ::= 974 976 o Available Wavelengths - A wavelength set sub-TLV used to indicate 977 which wavelengths are available on this link. 979 o Shared Backup Wavelengths - (optional) A wavelength set sub-TLV 980 used to indicate which wavelengths on this link are currently used 981 for shared backup protection (and hence can possibly be reused). 983 4.4. WSON Dynamic Node TLV 985 ::= [] 987 o Node ID - Format TBD. 989 o Wavelength Converter Pool Status - (optional) This is the WC Usage 990 state sub-TLV. 992 Note that currently the only dynamic information modeled with a node 993 is associated with the status of the wavelength converter pool. 995 5. Security Considerations 997 This document defines protocol-independent encodings for WSON 998 information and does not introduce any security issues. 1000 However, other documents that make use of these encodings within 1001 protocol extensions need to consider the issues and risks associated 1002 with, inspection, interception, modification, or spoofing of any of 1003 this information. It is expected that any such documents will 1004 describe the necessary security measures to provide adequate 1005 protection. 1007 6. IANA Considerations 1009 TBD. Once our approach is finalized we may need identifiers for the 1010 various TLVs and sub-TLVs. 1012 7. Acknowledgments 1014 This document was prepared using 2-Word-v2.0.template.dot. 1016 8. References 1018 8.1. Normative References 1020 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 1021 Requirement Levels", BCP 14, RFC 2119, March 1997. 1023 [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group 1024 MIB", RFC 2863, June 2000. 1026 [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching 1027 (GMPLS) Signaling Functional Description", RFC 3471, 1028 January 2003. 1030 [G.694.1] ITU-T Recommendation G.694.1, "Spectral grids for WDM 1031 applications: DWDM frequency grid", June, 2002. 1033 [RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing Extensions 1034 in Support of Generalized Multi-Protocol Label Switching 1035 (GMPLS)", RFC 4202, October 2005 1037 [RFC4203] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions in 1038 Support of Generalized Multi-Protocol Label Switching 1039 (GMPLS)", RFC 4203, October 2005. 1041 [Otani] T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized 1042 Labels for G.694 Lambda-Switching Capable Label Switching 1043 Routers", work in progress: draft-ietf-ccamp-gmpls-g-694- 1044 lambda-labels-03.txt. 1046 8.2. Informative References 1048 [G.694.1] ITU-T Recommendation G.694.1, Spectral grids for WDM 1049 applications: DWDM frequency grid, June 2002. 1051 [G.694.2] ITU-T Recommendation G.694.2, Spectral grids for WDM 1052 applications: CWDM wavelength grid, December 2003. 1054 [RFC5307] Kompella, K., Ed., and Y. Rekhter, Ed., "IS-IS Extensions 1055 in Support of Generalized Multi-Protocol Label Switching 1056 (GMPLS)", RFC 5307, October 2008. 1058 [Switch] G. Bernstein, Y. Lee, A. Gavler, J. Martensson, " Modeling 1059 WDM Wavelength Switching Systems for use in Automated Path 1060 Computation", http://www.grotto- 1061 networking.com/wson/ModelingWSONswitchesV2a.pdf , June, 2008 1063 [WSON-Frame] Y. Lee, G. Bernstein, W. Imajuku, "Framework for GMPLS 1064 and PCE Control of Wavelength Switched Optical Networks", 1065 work in progress: draft-ietf-ccamp-wavelength-switched- 1066 framework-01.txt, July 2008. 1068 [WSON-Info] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and 1069 Wavelength Assignment Information Model for Wavelength 1070 Switched Optical Networks", work in progress: draft-ietf- 1071 ccamp-rwa-info-01.txt, October 2008. 1073 [PCEP] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation 1074 Element (PCE) communication Protocol (PCEP) - Version 1", 1075 draft-ietf-pce-pcep, work in progress. 1077 9. Contributors 1079 Diego Caviglia 1080 Ericsson 1081 Via A. Negrone 1/A 16153 1082 Genoa Italy 1084 Phone: +39 010 600 3736 1085 Email: diego.caviglia@(marconi.com, ericsson.com) 1087 Anders Gavler 1088 Acreo AB 1089 Electrum 236 1090 SE - 164 40 Kista Sweden 1092 Email: Anders.Gavler@acreo.se 1094 Jonas Martensson 1095 Acreo AB 1096 Electrum 236 1097 SE - 164 40 Kista, Sweden 1099 Email: Jonas.Martensson@acreo.se 1101 Itaru Nishioka 1102 NEC Corp. 1103 1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666 1104 Japan 1106 Phone: +81 44 396 3287 1107 Email: i-nishioka@cb.jp.nec.com 1109 Authors' Addresses 1111 Greg M. Bernstein (ed.) 1112 Grotto Networking 1113 Fremont California, USA 1115 Phone: (510) 573-2237 1116 Email: gregb@grotto-networking.com 1117 Young Lee (ed.) 1118 Huawei Technologies 1119 1700 Alma Drive, Suite 100 1120 Plano, TX 75075 1121 USA 1123 Phone: (972) 509-5599 (x2240) 1124 Email: ylee@huawei.com 1126 Dan Li 1127 Huawei Technologies Co., Ltd. 1128 F3-5-B R&D Center, Huawei Base, 1129 Bantian, Longgang District 1130 Shenzhen 518129 P.R.China 1132 Phone: +86-755-28973237 1133 Email: danli@huawei.com 1135 Wataru Imajuku 1136 NTT Network Innovation Labs 1137 1-1 Hikari-no-oka, Yokosuka, Kanagawa 1138 Japan 1140 Phone: +81-(46) 859-4315 1141 Email: imajuku.wataru@lab.ntt.co.jp 1143 Jianrui Han 1144 Huawei Technologies Co., Ltd. 1145 F3-5-B R&D Center, Huawei Base, 1146 Bantian, Longgang District 1147 Shenzhen 518129 P.R.China 1149 Phone: +86-755-28972916 1150 Email: hanjianrui@huawei.com 1152 Intellectual Property Statement 1154 The IETF Trust takes no position regarding the validity or scope of 1155 any Intellectual Property Rights or other rights that might be 1156 claimed to pertain to the implementation or use of the technology 1157 described in any IETF Document or the extent to which any license 1158 under such rights might or might not be available; nor does it 1159 represent that it has made any independent effort to identify any 1160 such rights. 1162 Copies of Intellectual Property disclosures made to the IETF 1163 Secretariat and any assurances of licenses to be made available, or 1164 the result of an attempt made to obtain a general license or 1165 permission for the use of such proprietary rights by implementers or 1166 users of this specification can be obtained from the IETF on-line IPR 1167 repository at http://www.ietf.org/ipr 1169 The IETF invites any interested party to bring to its attention any 1170 copyrights, patents or patent applications, or other proprietary 1171 rights that may cover technology that may be required to implement 1172 any standard or specification contained in an IETF Document. Please 1173 address the information to the IETF at ietf-ipr@ietf.org. 1175 Disclaimer of Validity 1177 All IETF Documents and the information contained therein are provided 1178 on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE 1179 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE 1180 IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL 1181 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 1182 WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE 1183 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS 1184 FOR A PARTICULAR PURPOSE. 1186 Acknowledgment 1188 Funding for the RFC Editor function is currently provided by the 1189 Internet Society.