idnits 2.17.1 draft-ietf-ccamp-rwa-wson-encode-02.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- ** The document seems to lack a License Notice according IETF Trust Provisions of 28 Dec 2009, Section 6.b.i or Provisions of 12 Sep 2009 Section 6.b -- however, there's a paragraph with a matching beginning. Boilerplate error? (You're using the IETF Trust Provisions' Section 6.b License Notice from 12 Feb 2009 rather than one of the newer Notices. See https://trustee.ietf.org/license-info/.) Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (July 10, 2009) is 5403 days in the past. Is this intentional? -- Found something which looks like a code comment -- if you have code sections in the document, please surround them with '' and '' lines. Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Unused Reference: 'G.694.1' is defined on line 1137, but no explicit reference was found in the text == Unused Reference: 'G.694.2' is defined on line 1140, but no explicit reference was found in the text -- Possible downref: Non-RFC (?) normative reference: ref. 'G.694.1' Summary: 1 error (**), 0 flaws (~~), 3 warnings (==), 3 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 1 Network Working Group G. Bernstein 2 Internet Draft Grotto Networking 3 Intended status: Standards Track Y. Lee 4 Expires: January 2010 D. Li 5 Huawei 6 W. Imajuku 7 NTT 9 July 10, 2009 11 Routing and Wavelength Assignment Information Encoding for 12 Wavelength Switched Optical Networks 14 draft-ietf-ccamp-rwa-wson-encode-02.txt 16 Status of this Memo 18 This Internet-Draft is submitted to IETF in full conformance with the 19 provisions of BCP 78 and BCP 79. 21 Internet-Drafts are working documents of the Internet Engineering 22 Task Force (IETF), its areas, and its working groups. Note that 23 other groups may also distribute working documents as Internet- 24 Drafts. 26 Internet-Drafts are draft documents valid for a maximum of six months 27 and may be updated, replaced, or obsoleted by other documents at any 28 time. It is inappropriate to use Internet-Drafts as reference 29 material or to cite them other than as "work in progress." 31 The list of current Internet-Drafts can be accessed at 32 http://www.ietf.org/ietf/1id-abstracts.txt 34 The list of Internet-Draft Shadow Directories can be accessed at 35 http://www.ietf.org/shadow.html 37 This Internet-Draft will expire on January 10, 2007. 39 Copyright Notice 41 Copyright (c) 2009 IETF Trust and the persons identified as the 42 document authors. All rights reserved. 44 This document is subject to BCP 78 and the IETF Trust's Legal 45 Provisions Relating to IETF Documents in effect on the date of 46 publication of this document (http://trustee.ietf.org/license-info). 47 Please review these documents carefully, as they describe your rights 48 and restrictions with respect to this document. 50 Abstract 52 A wavelength switched optical network (WSON) requires that certain 53 key information elements are made available to facilitate path 54 computation and the establishment of label switching paths (LSPs). 55 The information model described in "Routing and Wavelength Assignment 56 Information for Wavelength Switched Optical Networks" shows what 57 information is required at specific points in the WSON. 59 The information may be used in Generalized Multiprotocol Label 60 Switching (GMPLS) signaling protocols, and may be distributed by 61 GMPLS routing protocols. Other distribution mechanisms (for example, 62 XML-based protocols) may also be used. 64 This document provides efficient, protocol-agnostic encodings for the 65 information elements necessary to operate a WSON. It is intended that 66 protocol-specific documents will reference this memo to describe how 67 information is carried for specific uses. 69 Conventions used in this document 71 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 72 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 73 document are to be interpreted as described in RFC-2119 [RFC2119]. 75 Table of Contents 77 1. Introduction...................................................3 78 1.1. Revision History..........................................4 79 1.1.1. Changes from 00 draft................................4 80 1.1.2. Changes from 01 draft................................4 81 2. Terminology....................................................4 82 3. Common Field Encoding..........................................5 83 3.1. Link Set Field............................................5 84 3.2. Wavelength Information Encoding...........................7 85 3.3. Wavelength Set Field......................................8 86 3.3.1. Inclusive/Exclusive Wavelength Lists.................9 87 3.3.2. Inclusive/Exclusive Wavelength Ranges................9 88 3.3.3. Bitmap Wavelength Set...............................10 90 4. Wavelength and Connectivity sub-TLV Encodings.................10 91 4.1. Available Wavelengths Sub-TLV............................11 92 4.2. Shared Backup Wavelengths Sub-TLV........................11 93 4.3. Connectivity Matrix Sub-TLV..............................11 94 4.4. Port Wavelength Restriction sub-TLV......................12 95 4.4.1. SIMPLE_WAVELENGTH...................................13 96 4.4.2. CHANNEL_COUNT.......................................14 97 4.4.3. WAVEBAND1...........................................14 98 4.4.4. SIMPLE_WAVELENGTH & CHANNEL_COUNT...................14 99 5. Wavelength Converter Pool Encoding............................15 100 5.1. Wavelength Converter Set Field...........................15 101 5.2. Wavelength Converter Accessibility Sub-TLV...............16 102 5.3. Wavelength Conversion Range Sub-TLV......................17 103 5.4. Wavelength Converter Usage State Sub-TLV.................18 104 6. WSON Encoding Usage Recommendations...........................19 105 6.1. WSON Node TLV............................................19 106 6.2. WSON Dynamic Node TLV....................................19 107 6.3. WSON Link TLV............................................20 108 6.4. WSON Dynamic Link TLV....................................20 109 7. Security Considerations.......................................20 110 8. IANA Considerations...........................................20 111 9. Acknowledgments...............................................21 112 APPENDIX A: Encoding Examples....................................22 113 A.1. Wavelength Set Field.....................................22 114 A.2. Connectivity Matrix Sub-TLV..............................22 115 A.3. Wavelength Converter Accessibility Sub-TLV...............26 116 A.4. Wavelength Conversion Range Sub-TLV......................28 117 10. References...................................................30 118 10.1. Normative References....................................30 119 10.2. Informative References..................................30 120 11. Contributors.................................................32 121 Authors' Addresses...............................................32 122 Intellectual Property Statement..................................33 123 Disclaimer of Validity...........................................34 125 1. Introduction 127 A Wavelength Switched Optical Network (WSON) is a Wavelength Division 128 Multiplexing (WDM) optical network in which switching is performed 129 selectively based on the center wavelength of an optical signal. 131 [WSON-Frame] describes a framework for Generalized Multiprotocol 132 Label Switching (GMPLS) and Path Computation Element (PCE) control of 133 a WSON. Based on this framework, [WSON-Info] describes an information 134 model that specifies what information is needed at various points in 135 a WSON in order to compute paths and establish Label Switched Paths 136 (LSPs). 138 This document provides efficient encodings of information needed by 139 the routing and wavelength assignment (RWA) process in a WSON. Such 140 encodings can be used to extend GMPLS signaling and routing 141 protocols. In addition these encodings could be used by other 142 mechanisms to convey this same information to a path computation 143 element (PCE). Note that since these encodings are relatively 144 efficient they can provide more accurate analysis of the control 145 plane communications/processing load for WSONs looking to utilize a 146 GMPLS control plane. 148 1.1. Revision History 150 1.1.1. Changes from 00 draft 152 Edits to make consistent with update to [Otani], i.e., removal of 153 sign bit. 155 Clarification of TBD on connection matrix type and possibly 156 numbering. 158 New sections for wavelength converter pool encoding: Wavelength 159 Converter Set Sub-TLV, Wavelength Converter Accessibility Sub-TLV, 160 Wavelength Conversion Range Sub-TLV, WC Usage State Sub-TLV. 162 Added optional wavelength converter pool TLVs to the composite node 163 TLV. 165 1.1.2. Changes from 01 draft 167 The encoding examples have been moved to an appendix. Classified and 168 corrected information elements as either reusable fields or sub-TLVs. 169 Updated Port Wavelength Restriction sub-TLV. Added available 170 wavelength and shared backup wavelength sub-TLVs. Changed the title 171 and scope of section 6 to recommendations since the higher level TLVs 172 that this encoding will be used in is somewhat protocol specific. 174 2. Terminology 176 CWDM: Coarse Wavelength Division Multiplexing. 178 DWDM: Dense Wavelength Division Multiplexing. 180 FOADM: Fixed Optical Add/Drop Multiplexer. 182 ROADM: Reconfigurable Optical Add/Drop Multiplexer. A reduced port 183 count wavelength selective switching element featuring ingress and 184 egress line side ports as well as add/drop side ports. 186 RWA: Routing and Wavelength Assignment. 188 Wavelength Conversion. The process of converting an information 189 bearing optical signal centered at a given wavelength to one with 190 "equivalent" content centered at a different wavelength. Wavelength 191 conversion can be implemented via an optical-electronic-optical (OEO) 192 process or via a strictly optical process. 194 WDM: Wavelength Division Multiplexing. 196 Wavelength Switched Optical Network (WSON): A WDM based optical 197 network in which switching is performed selectively based on the 198 center wavelength of an optical signal. 200 3. Common Field Encoding 202 In encoding WSON information both sets of links and sets of 203 wavelengths frequently arise. In the following we specify the 204 encoding of these repeatedly used fields. 206 3.1. Link Set Field 208 We will frequently need to describe properties of groups of links. To 209 do so efficiently we can make use of a link set concept similar to 210 the label set concept of [RFC3471]. All links will be denoted by 211 their local link identifier as defined an used in [RFC4202], 212 [RFC4203], and [RFC5307].The information carried in a Link Set is 213 defined by: 215 0 1 2 3 216 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 217 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 218 | Action |Dir| Format | Length | 219 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 220 | Link Identifier 1 | 221 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 222 : : : 223 : : : 224 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 225 | Link Identifier N | 226 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 228 Action: 8 bits 230 0 - Inclusive List 232 Indicates that one or more link identifiers are included in the Link 233 Set. Each identifies a separate link that is part of the set. 235 1 - Inclusive Range 237 Indicates that the Link Set defines a range of links. It contains 238 two link identifiers. The first identifiers indicates the start of 239 the range (inclusive). The second identifiers indicates the end of 240 the range (inclusive). All links with numeric values between the 241 bounds are considered to be part of the set. A value of zero in 242 either position indicates that there is no bound on the corresponding 243 portion of the range. Note that the Action field can be set to 244 0x02(Inclusive Range) only when unnumbered link identifier is used. 246 Dir: Directionality of the Link Set (2 bits) 248 0 -- bidirectional 249 1 -- incoming 251 2 -- outgoing 253 In optical networks we think in terms of unidirectional as well as 254 bidirectional links. For example, wavelength restrictions or 255 connectivity may be different for an ingress port, than for its 256 "companion" egress port if one exists. Note that "interfaces" such as 257 those discussed in the Interfaces MIB [RFC2863] are assumed to be 258 bidirectional. This also applies to the links advertised in various 259 link state routing protocols. 261 Format: The format of the link identifier (6 bits) 263 0 -- Link Local Identifier 265 Indicates that the links in the Link Set are identified by link local 266 identifiers. All link local identifiers are supplied in the context 267 of the advertising node. 269 1 -- Local Interface IPv4 Address 271 2 -- Local Interface IPv6 Address 273 Indicates that the links in the Link Set are identified by Local 274 Interface IP Address. All Local Interface IP Address are supplied in 275 the context of the advertising node. 277 Others TBD. 279 Note that all link identifiers in the same list must be of the same 280 type. 282 Length: 16 bits 284 This field indicates the total length of the Link Set field. 286 Link Identifier: length is dependent on the link format 288 The link identifier represents the port which is being described 289 either for connectivity or wavelength restrictions. This can be the 290 link local identifier of [RFC4202], GMPLS routing, [RFC4203] GMPLS 291 OSPF routing, and [RFC5307] IS-IS GMPLS routing. The use of the link 292 local identifier format can result in more compact WSON encodings 293 when the assignments are done in a reasonable fashion. 295 3.2. Wavelength Information Encoding 297 This document makes frequent use of the lambda label format defined 298 in [Otani] shown below strictly for reference purposes: 300 0 1 2 3 301 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 302 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 303 |Grid | C.S. | Reserved | n | 304 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 305 Where 307 Grid is used to indicate which ITU-T grid specification is being 308 used. 310 C.S. = Channel spacing used in a DWDM system, i.e., with a ITU-T 311 G.694.1 grid. 313 n = Used to specify the frequency as 193.1THz +/- n*(channel spacing) 314 and n is an integer to take either a negative, zero or a positive 315 value. 317 3.3. Wavelength Set Field 319 Wavelength sets come up frequently in WSONs to describe the range of 320 a laser transmitter, the wavelength restrictions on ROADM ports, or 321 the availability of wavelengths on a DWDM link. The general format 322 for a wavelength set is given below. This format uses the Action 323 concept from [RFC3471] with an additional Action to define a "bit 324 map" type of label set. Note that the second 32 bit field is a lambda 325 label in the previously defined format. This provides important 326 information on the WDM grid type and channel spacing that will be 327 used in the compact encodings listed. 329 0 1 2 3 330 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 331 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 332 | Action| Num Wavelengths | Length | 333 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 334 |Grid | C.S. | Reserved | n for lowest frequency | 335 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 336 | Additional fields as necessary per action | 337 | 339 Action: 341 0 - Inclusive List 343 1 - Exclusive List 344 2 - Inclusive Range 346 3 - Exclusive Range 348 4 - Bitmap Set 350 3.3.1. Inclusive/Exclusive Wavelength Lists 352 In the case of the inclusive/exclusive lists the wavelength set 353 format is given by: 355 0 1 2 3 356 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 357 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 358 |0 or 1 | Num Wavelengths | Length | 359 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 360 |Grid | C.S. | Reserved | n for lowest frequency | 361 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 362 | n2 | n3 | 363 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 364 : : 365 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 366 | nm | | 367 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 369 Where Num Wavelengths tells us the number of wavelength in this 370 inclusive or exclusive list this does not include the initial 371 wavelength in the list hence if the number of wavelengths is odd then 372 zero padding of the last half word is required. 374 3.3.2. Inclusive/Exclusive Wavelength Ranges 376 In the case of inclusive/exclusive ranges the wavelength set format 377 is given by: 379 0 1 2 3 380 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 381 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 382 |2 or 3 | Num Wavelengths | Length | 383 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 384 |Grid | C.S. | Reserved | n for lowest frequency | 385 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 387 In this case Num Wavelengths specifies the number of wavelengths in 388 the range starting at the given wavelength and incrementing the Num 389 Wavelengths number of channel spacing up in frequency. 391 3.3.3. Bitmap Wavelength Set 393 In the case of Action = 4, the bitmap the wavelength set format is 394 given by: 396 0 1 2 3 397 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 398 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 399 | 4 | Num Wavelengths | Length | 400 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 401 |Grid | C.S. | Reserved | n for lowest frequency | 402 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 403 | Bit Map Word #1 (Lowest frequency channels) | 404 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 405 : : 406 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 407 | Bit Map Word #N (Highest frequency channels) | 408 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 410 Where Num Wavelengths in this case tells us the number of wavelengths 411 represented by the bit map. Each bit in the bit map represents a 412 particular frequency with a value of 1/0 indicating whether the 413 frequency is in the set or not. Bit position zero represents the 414 lowest frequency, while each succeeding bit position represents the 415 next frequency a channel spacing (C.S.) above the previous. 417 The size of the bit map is clearly Num Wavelengths bits, but the bit 418 map is made up to a full multiple of 32 bits so that the TLV is a 419 multiple of four bytes. Bits that do not represent wavelengths (i.e., 420 those in positions (Num Wavelengths - 1) and beyond) SHOULD be set to 421 zero and MUST be ignored. 423 4. Wavelength and Connectivity sub-TLV Encodings 425 A type-length-value (TLV) encoding of the high level WSON information 426 model [WSON-Info] is given in the following sections. This encoding 427 is designed to be suitable for use in the GMPLS routing protocols 428 OSPF [RFC4203] and IS-IS [RFC5307] and in the PCE protocol PCEP 429 [PCEP]. Note that the information distributed in [RFC4203] and 430 [RFC5307] is arranged via the nesting of sub-TLVs within TLVs and 431 this document makes use of such constructs. 433 4.1. Available Wavelengths Sub-TLV 435 To indicate the wavelengths available for use on a link the Available 436 Wavelengths sub-TLV consists of a single variable length wavelength 437 set field as follows: 439 0 1 2 3 440 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 441 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 442 | Wavelength Set Field | 443 : : 444 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 446 4.2. Shared Backup Wavelengths Sub-TLV 448 To indicate the wavelengths available for shared backup use on a link 449 the Shared Backup Wavelengths sub-TLV consists of a single variable 450 length wavelength set field as follows: 452 0 1 2 3 453 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 454 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 455 | Wavelength Set Field | 456 : : 457 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 459 4.3. Connectivity Matrix Sub-TLV 461 The switch and fixed connectivity matrices of [WSON-Info] can be 462 compactly represented in terms of a minimal list of ingress and 463 egress port set pairs that have mutual connectivity. As described in 464 [Switch] such a minimal list representation leads naturally to a 465 graph representation for path computation purposes that involves the 466 fewest additional nodes and links. 468 A TLV encoding of this list of link set pairs is: 470 0 1 2 3 471 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 472 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 473 | Connectivity | MatrixID | Reserved | 474 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 475 | Link Set A #1 | 476 : : : 477 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 478 | Link Set B #1 : 479 : : : 480 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 481 | Additional Link set pairs as needed | 482 : to specify connectivity : 483 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 485 Where 487 Connectivity is the device type. 489 0 -- the device is fixed 491 1 -- the device is switched(e.g., ROADM/OXC) 493 MatrixID represents the ID of the connectivity matrix and is an 8 bit 494 integer. The value of 0xFF is reserved for use with port wavelength 495 constraints and should not be used to identify a connectivity matrix. 497 4.4. Port Wavelength Restriction sub-TLV 499 The port wavelength restriction of [WSON-Info] can be encoded as a 500 sub-TLV as follows. More than one of these sub-TLVs may be needed to 501 fully specify a complex port constraint. When more than one of these 502 sub-TLVs are present the resulting restriction is the intersection of 503 the restrictions expressed in each sub-TLV. To indicate that a 504 restriction applies to the port in general and not to a specific 505 connectivity matrix use the reserved value of 0xFF for the MatrixID. 507 0 1 2 3 508 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 509 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 510 | MatrixID | RestrictionType | Reserved/Parameter | 511 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 512 | Additional Restriction Parameters per RestrictionType | 513 : : 514 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 516 Where: 518 MatrixID: either is the value in the corresponding Connectivity 519 Matrix sub-TLV or takes the value OxFF to indicate the restriction 520 applies to the port regardless of any Connectivity Matrix. 522 RestrictionType can take the following values and meanings: 524 0: SIMPLE_WAVELENGTH (Simple wavelength selective restriction) 526 1: CHANNEL_COUNT (Channel count restriction) 528 2: WAVEBAND1 (Waveband device with a tunable center frequency 529 and passband) 531 3: SIMPLE_WAVELENGTH & CHANNEL_COUNT (Combination of 532 SIMPLE_WAVELENGTH and CHANNEL_COUNT restriction. The 533 accompanying wavelength set and channel count indicate 534 wavelength permitted on the port and the maximum number of 535 channels that can be simultaneously used on the port) 537 4.4.1. SIMPLE_WAVELENGTH 539 In the case of the SIMPLE_WAVELENGTH the GeneralPortRestrictions (or 540 MatrixSpecificRestrictions) format is given by: 542 0 1 2 3 543 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 544 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 545 | MatrixID | RstType = 0 | Reserved | 546 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 547 | Wavelength Set Field | 548 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 550 In this case the accompanying wavelength set indicates the 551 wavelengths permitted on the port. 553 4.4.2. CHANNEL_COUNT 555 In the case of the CHANNEL_COUNT the format is given by: 557 0 1 2 3 558 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 559 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 560 | MatrixID | RstType = 1 | MaxNumChannels | 561 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 563 In this case the accompanying MaxNumChannels indicates the maximum 564 number of channels that can be simultaneously used on the 565 port/matrix. 567 4.4.3. WAVEBAND1 569 In the case of the WAVEBAND1 the GeneralPortRestrictions (or 570 MatrixSpecificRestrictions) format is given by: 572 0 1 2 3 573 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 574 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 575 | MatrixID | RstType = 2 | MaxWaveBandWidth | 576 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 577 | Wavelength Set | 578 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 580 In this case the accompanying MaxWaveBandWidth indicates the maximum 581 width of the waveband in terms of the channels spacing given in the 582 wavelength set. The corresponding wavelength set is used to indicate 583 the overall tuning range. Specific center frequency tuning 584 information can be obtained from dynamic channel in use information. 585 It is assumed that both center frequency and bandwidth (Q) tuning can 586 be done without causing faults in existing signals. 588 4.4.4. SIMPLE_WAVELENGTH & CHANNEL_COUNT 590 In the case of the SIMPLE_WAVELENGTH & CHANNEL_COUNT the format is 591 given by: 593 0 1 2 3 594 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 595 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 596 | MatrixInfo | RstType = 3 | MaxNumChannels | 597 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 598 | Wavelength Set Field | 599 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 601 In this case the accompanying wavelength set and MaxNumChannels 602 indicate wavelength permitted on the port and the maximum number of 603 channels that can be simultaneously used on the port. 605 5. Wavelength Converter Pool Encoding 607 The encoding of structure and properties of a general wavelength 608 converter pool utilizes a converter accessibility sub-TLV, a 609 wavelength converter range sub-TLV, and a wavelength converter state 610 sub-TLV. All these sub-TLVs make use of the wavelength converter set 611 field. 613 5.1. Wavelength Converter Set Field 615 A WSON node may include a set of wavelength converters (WC) and such 616 information frequently is used in describing the wavelength converter 617 pool and its properties. The WC Set field is defined in a similar 618 manner to the label set concept of [RFC3471]. 620 The information carried in a WC set field is defined by: 622 0 1 2 3 623 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 624 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 625 | Action | Reserved | Length | 626 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 627 | WC Identifier 1 | WC Identifier 2 | 628 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 629 : : : 630 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 631 | WC Identifier n-1 | WC Identifier n | 632 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 634 Action: 8 bits 636 0 - Inclusive List 638 Indicates that the TLV contains one or more WC elements that are 639 included in the list. 641 2 - Inclusive Range 643 Indicates that the TLV contains a range of WCs. The object/TLV 644 contains two WC elements. The first element indicates the start of 645 the range. The second element indicates the end of the range. A value 646 of zero indicates that there is no bound on the corresponding portion 647 of the range. 649 Reserved: 8 bits 651 This field is reserved. It MUST be set to zero on transmission and 652 MUST be ignored on receipt. 654 Length: 16 bits 656 The total length of this field in bytes. 658 WC Identifier: 660 The WC identifier represents the ID of the wavelength convertor which 661 is a 16 bit integer. 663 5.2. Wavelength Converter Accessibility Sub-TLV 665 This sub-TLV describes the structure of the wavelength converter pool 666 in relation to the switching device. In particular it gives the 667 ability of an ingress port to reach a wavelength converter and of a 668 wavelength converter to reach a particular egress port. This is the 669 PoolIngressMatrix and PoolEgressMatrix of [WSON-Info]. 671 The wavelength converter accessibility sub-TLV is defined by: 673 0 1 2 3 674 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 675 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 676 | Ingress Link Set Field A #1 | 677 : : 678 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 679 | WC Set Field A #1 | 680 : : 681 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 682 | Additional Link set and WC set pairs as needed to | 683 : specify PoolIngressMatrix : 684 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 685 | WC Set B Field #1 (for egress connectivity) | 686 : : 687 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 688 | Egress link Set Field B #1 | 689 : : 690 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 691 | Additional WC set and egress link set pairs | 692 : as needed to specify PoolEgressMatrix : 693 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 695 Note that the direction parameter within the Link Set Field is used 696 to indicate whether the link set is an ingress or egress link set. 698 5.3. Wavelength Conversion Range Sub-TLV 700 Wavelength converters may have a limited input or output range. 701 Additionally, due to the structure of the optical system not all 702 wavelengths can necessarily reach or leave all the converters. These 703 properties are described by using one or more wavelength conversion 704 sub-TLVs as defined below: 706 0 1 2 3 707 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 708 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 709 | WC Set Field | 710 : : 711 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 712 | Input Wavelength Set Field | 713 : : 714 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 715 | Output Wavelength Set Field | 716 : : 717 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 719 WC Set Field: 721 A set of wavelength converters (WCs) which have the same conversion 722 range. 724 Input Wavelength Set Field: 726 Indicates the wavelength input range of the WCs in the corresponding 727 WC set. 729 Output Wavelength Set Field: 731 Indicates the wavelength output range of WCs in the corresponding WC 732 set. 734 5.4. Wavelength Converter Usage State Sub-TLV 736 The usage state of a wavelength converter is encoded as a bit map 737 indicating whether the converter is available or in use. This 738 information can be relatively dynamic, i.e., can change when a 739 connection is established or torn down. This bit map is in 740 correspondence with a wavelength converter set as follows: 742 0 1 2 3 743 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 744 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 745 | WC Set Field | 746 : : 747 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 748 | WC Usage state bitmap | 749 : : 750 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 751 | ...... | Padding bits | 752 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 754 WC Usage state: Variable Length but must be a multiple of 4 byes. 756 Each bit indicates the usage status of one WC with 0 indicating the 757 WC is available and 1 indicating the WC is in used. The sequence of 758 the bit map is ordered according to the WC Set field with this sub- 759 TLV. 761 Padding bits: Variable Length 763 6. WSON Encoding Usage Recommendations 765 In this section we give recommendations of typical usage of the 766 previously defined sub-TLVs. Typically the sub-TLVs defined in the 767 preceding sections would be incorporated into some kind of composite 768 TLV. The example composite TLVs in the following sections are based 769 on the four high level information bundles of [WSON-Info]. 771 6.1. WSON Node TLV 773 The WSON Node TLV could consist of the following list of sub-TLVs: 775 ::= [Other GMPLS sub- 776 TLVs][...] 777 [][] 779 6.2. WSON Dynamic Node TLV 781 If the protocol supports the separation of dynamic information from 782 relatively static information then the wavelength converter pool 783 state can be separated from the general Node TLV into a dynamic Node 784 TLV as follows. 786 ::= [] 787 Note that currently the only dynamic information modeled with a node 788 is associated with the status of the wavelength converter pool. 790 6.3. WSON Link TLV 792 The new link related sub-TLVs could be incorporated into a composite 793 link TLV as follows: 795 ::= [Other GMPLS sub-TLVs] 796 <[PortWavelengthRestriction>...][] 797 [] 799 6.4. WSON Dynamic Link TLV 801 If the protocol supports the separation of dynamic information from 802 relatively static information then the available wavelength and 803 shared backup status can be separated from the general link TLV into 804 a TLV for dynamic link information. 806 ::= 807 [] 809 Where 811 ::= 812 814 7. Security Considerations 816 This document defines protocol-independent encodings for WSON 817 information and does not introduce any security issues. 819 However, other documents that make use of these encodings within 820 protocol extensions need to consider the issues and risks associated 821 with, inspection, interception, modification, or spoofing of any of 822 this information. It is expected that any such documents will 823 describe the necessary security measures to provide adequate 824 protection. 826 8. IANA Considerations 828 TBD. Once our approach is finalized we may need identifiers for the 829 various TLVs and sub-TLVs. 831 9. Acknowledgments 833 This document was prepared using 2-Word-v2.0.template.dot. 835 APPENDIX A: Encoding Examples 837 [Editors note: these examples will be revised once the changes to the 838 encodings settle down.] 840 A.1. Wavelength Set Field 842 Example: 844 A 40 channel C-Band DWDM system with 100GHz spacing with lowest 845 frequency 192.0THz (1561.4nm) and highest frequency 195.9THz 846 (1530.3nm). These frequencies correspond to n = -11, and n = 28 847 respectively. Now suppose the following channels are available: 849 Frequency (THz) n Value bit map position 850 -------------------------------------------------- 851 192.0 -11 0 852 192.5 -6 5 853 193.1 0 11 854 193.9 8 19 855 194.0 9 20 856 195.2 21 32 857 195.8 27 38 859 With the Grid value set to indicate an ITU-T G.694.1 DWDM grid, C.S. 860 set to indicate 100GHz this lambda bit map set would then be encoded 861 as follows: 863 0 1 2 3 864 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 865 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 866 | 4 | Num Wavelengths = 40 | Length = 16 bytes | 867 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 868 |Grid | C.S. | Reserved | n for lowest frequency = -11 | 869 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 870 |1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0| 871 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 872 |1 0 0 0 0 0 1 0| Not used in 40 Channel system (all zeros) | 873 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 875 A.2. Connectivity Matrix Sub-TLV 877 Example: 879 Suppose we have a typical 2-degree 40 channel ROADM. In addition to 880 its two line side ports it has 80 add and 80 drop ports. The picture 881 below illustrates how a typical 2-degree ROADM system that works with 882 bi-directional fiber pairs is a highly asymmetrical system composed 883 of two unidirectional ROADM subsystems. 885 (Tributary) Ports #3-#42 886 Ingress added to Egress dropped from 887 West Line Egress East Line Ingress 888 vvvvv ^^^^^ 889 | |||.| | |||.| 890 +-----| |||.|--------| |||.|------+ 891 | +----------------------+ | 892 | | | | 893 Egress | | Unidirectional ROADM | | Ingress 894 -----------------+ | | +-------------- 895 <=====================| |===================< 896 -----------------+ +----------------------+ +-------------- 897 | | 898 Port #1 | | Port #2 899 (West Line Side) | |(East Line Side) 900 -----------------+ +----------------------+ +-------------- 901 >=====================| |===================> 902 -----------------+ | Unidirectional ROADM | +-------------- 903 Ingress | | | | Egress 904 | | _ | | 905 | +----------------------+ | 906 +-----| |||.|--------| |||.|------+ 907 | |||.| | |||.| 908 vvvvv ^^^^^ 909 (Tributary) Ports #43-#82 910 Egress dropped from Ingress added to 911 West Line ingress East Line egress 913 Referring to the figure we see that the ingress direction of ports 914 #3-#42 (add ports) can only connect to the egress on port #1. While 915 the ingress side of port #2 (line side) can only connect to the 916 egress on ports #3-#42 (drop) and to the egress on port #1 (pass 917 through). Similarly, the ingress direction of ports #43-#82 can only 918 connect to the egress on port #2 (line). While the ingress direction 919 of port #1 can only connect to the egress on ports #43-#82 (drop) or 920 port #2 (pass through). We can now represent this potential 921 connectivity matrix as follows. This representation uses only 30 32- 922 bit words. 924 0 1 2 3 925 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 926 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 927 | Conn = 1 | MatrixID | Reserved |1 928 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 929 Note: adds to line 930 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 931 | Action=2 |0 1|0 0 0 0 0 0|Reserved(Note:inclusive range) |2 932 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 933 | Link Local Identifier = #3 |3 934 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 935 | Link Local Identifier = #42 |4 936 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 937 | Action=0 |1 0|0 0 0 0 0 0|Reserved (Note:inclusive list) |5 938 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 939 | Link Local Identifier = #1 |6 940 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 941 Note: line to drops 942 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 943 | Action=0 |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |7 944 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 945 | Link Local Identifier = #2 |8 946 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 947 | Action=2 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|9 948 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 949 | Link Local Identifier = #3 |10 950 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 951 | Link Local Identifier = #42 |11 952 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 953 Note: line to line 954 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 955 | Action=0 |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |12 956 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 957 | Link Local Identifier = #2 |13 958 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 959 | Action=0 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|14 960 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 961 | Link Local Identifier = #1 |15 962 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 963 Note: adds to line 964 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 965 | Action=2 |0 1|0 0 0 0 0 0|Reserved(Note:inclusive range) |16 966 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 967 | Link Local Identifier = #42 |17 968 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 969 | Link Local Identifier = #82 |18 970 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 971 | Action=0 |1 0|0 0 0 0 0 0|Reserved (Note:inclusive list) |19 972 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 973 | Link Local Identifier = #2 |20 974 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 975 Note: line to drops 976 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 977 | Action=0 |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |21 978 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 979 | Link Local Identifier = #1 |22 980 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 981 | Action=2 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|23 982 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 983 | Link Local Identifier = #43 |24 984 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 985 | Link Local Identifier = #82 |25 986 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 987 Note: line to line 988 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 989 | Action=0 |0 1|0 0 0 0 0 0|Reserved (Note:inclusive list) |26 990 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 991 | Link Local Identifier = #1 |27 992 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 993 | Action=0 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive range)|28 994 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 995 | Link Local Identifier = #2 |30 996 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 998 A.3. Wavelength Converter Accessibility Sub-TLV 1000 Example: 1002 Figure 1 shows a wavelength converter pool architecture know as 1003 "shared per fiber". In this case the ingress and egress pool matrices 1004 are simply: 1006 +-----+ +-----+ 1007 | 1 1 | | 1 0 | 1008 WI =| |, WE =| | 1009 | 1 1 | | 0 1 | 1010 +-----+ +-----+ 1012 +-----------+ +------+ 1013 | |--------------------->| | 1014 | |--------------------->| C | 1015 /| | |--------------------->| o | E1 1016 I1 /D+--->| |--------------------->| m | 1017 + e+--->| | | b |========> 1018 ========>| M| | Optical | +-----------+ | i | Port #3 1019 Port #1 + u+--->| Switch | | WC Pool | | n | 1020 \x+--->| | | +-----+ | | e | 1021 \| | +----+->|WC #1|--+---->| r | 1022 | | | +-----+ | +------+ 1023 | | | | +------+ 1024 /| | | | +-----+ | | | 1025 I2 /D+--->| +----+->|WC #2|--+---->| C | E2 1026 + e+--->| | | +-----+ | | o | 1027 ========>| M| | | +-----------+ | m |========> 1028 Port #2 + u+--->| | | b | Port #4 1029 \x+--->| |--------------------->| i | 1030 \| | |--------------------->| n | 1031 | |--------------------->| e | 1032 | |--------------------->| r | 1033 +-----------+ +------+ 1034 Figure 1 An optical switch featuring a shared per fiber wavelength 1035 converter pool architecture. 1037 This wavelength converter pool can be encoded as follows: 1039 0 1 2 3 1040 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1041 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1042 | Num In Pairs=1| Reserved | 1043 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1044 Note: I1,I2 can connect to either WC1 or WC2 1045 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1046 | Action=0 |0 1|0 0 0 0 0 0|Reserved(Note: inclusive list) | 1047 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1048 | Link Local Identifier = #1 | 1049 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1050 | Link Local Identifier = #2 | 1051 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1052 | Action=0 | Reserved(Note: inclusive WC list) | 1053 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1054 | WC ID = #1 | WC ID = #2 | 1055 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1056 Note: WC1 can only connect to E1 1057 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1058 | Action=0 | Reserved(Note: inclusive list) | 1059 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1060 | WC ID = #1 | zero padding | 1061 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1062 | Action=0 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive list) | 1063 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1064 | Link Local Identifier = #3 | 1065 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1066 Note: WC2 can only connect to E2 1067 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1068 | Action=0 | Reserved(Note: inclusive WC list) | 1069 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1070 | WC ID = #2 | zero padding | 1071 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1072 | Action=0 |1 0|0 0 0 0 0 0|Reserved(Note: inclusive list) | 1073 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1074 | Link Local Identifier = #4 | 1075 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1077 A.4. Wavelength Conversion Range Sub-TLV 1079 Example: 1081 We give an example based on figure 1 about how to represent the 1082 wavelength conversion range of wavelength converters. Suppose the 1083 wavelength range of input and output of WC1 and WC2 are {L1, L2, L3, 1084 L4}: 1086 0 1 2 3 1087 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1088 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1089 | Reserved | 1090 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1091 Note: WC Set 1092 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1093 | Action=0 |0 1| Reserved(Note: inclusive list) | 1094 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1095 | WC ID = #1 | WC ID = #2 | 1096 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1097 Note: wavelength input range 1098 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1099 | Action = 2 | Reserved | Num Wavelengths = 4 | 1100 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1101 |Grid | C.S. | Reserved | n for lowest frequency = 1 | 1102 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1103 Note: wavelength output range 1104 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1105 | Action = 2 | Reserved | Num Wavelengths = 4 | 1106 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1107 |Grid | C.S. | Reserved | n for lowest frequency = 1 | 1108 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1110 10. References 1112 10.1. Normative References 1114 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 1115 Requirement Levels", BCP 14, RFC 2119, March 1997. 1117 [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group 1118 MIB", RFC 2863, June 2000. 1120 [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching 1121 (GMPLS) Signaling Functional Description", RFC 3471, 1122 January 2003. 1124 [G.694.1] ITU-T Recommendation G.694.1, "Spectral grids for WDM 1125 applications: DWDM frequency grid", June, 2002. 1127 [RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing Extensions 1128 in Support of Generalized Multi-Protocol Label Switching 1129 (GMPLS)", RFC 4202, October 2005 1131 [RFC4203] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions in 1132 Support of Generalized Multi-Protocol Label Switching 1133 (GMPLS)", RFC 4203, October 2005. 1135 10.2. Informative References 1137 [G.694.1] ITU-T Recommendation G.694.1, Spectral grids for WDM 1138 applications: DWDM frequency grid, June 2002. 1140 [G.694.2] ITU-T Recommendation G.694.2, Spectral grids for WDM 1141 applications: CWDM wavelength grid, December 2003. 1143 [Otani] T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized 1144 Labels for G.694 Lambda-Switching Capable Label Switching 1145 Routers", work in progress: draft-ietf-ccamp-gmpls-g-694- 1146 lambda-labels. 1148 [RFC5307] Kompella, K., Ed., and Y. Rekhter, Ed., "IS-IS Extensions 1149 in Support of Generalized Multi-Protocol Label Switching 1150 (GMPLS)", RFC 5307, October 2008. 1152 [Switch] G. Bernstein, Y. Lee, A. Gavler, J. Martensson, " Modeling 1153 WDM Wavelength Switching Systems for Use in GMPLS and Automated 1154 Path Computation", Journal of Optical Communications and 1155 Networking, vol. 1, June, 2009, pp. 187-195. 1157 [WSON-Frame] Y. Lee, G. Bernstein, W. Imajuku, "Framework for GMPLS 1158 and PCE Control of Wavelength Switched Optical Networks", 1159 work in progress: draft-ietf-ccamp-wavelength-switched- 1160 framework, Marh 2009. 1162 [WSON-Info] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and 1163 Wavelength Assignment Information Model for Wavelength 1164 Switched Optical Networks", work in progress: draft-ietf- 1165 ccamp-rwa-info, March 2009. 1167 [PCEP] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation 1168 Element (PCE) communication Protocol (PCEP) - Version 1", 1169 RFC5440. 1171 11. Contributors 1173 Diego Caviglia 1174 Ericsson 1175 Via A. Negrone 1/A 16153 1176 Genoa Italy 1178 Phone: +39 010 600 3736 1179 Email: diego.caviglia@(marconi.com, ericsson.com) 1181 Anders Gavler 1182 Acreo AB 1183 Electrum 236 1184 SE - 164 40 Kista Sweden 1186 Email: Anders.Gavler@acreo.se 1188 Jonas Martensson 1189 Acreo AB 1190 Electrum 236 1191 SE - 164 40 Kista, Sweden 1193 Email: Jonas.Martensson@acreo.se 1195 Itaru Nishioka 1196 NEC Corp. 1197 1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666 1198 Japan 1200 Phone: +81 44 396 3287 1201 Email: i-nishioka@cb.jp.nec.com 1203 Authors' Addresses 1205 Greg M. Bernstein (ed.) 1206 Grotto Networking 1207 Fremont California, USA 1209 Phone: (510) 573-2237 1210 Email: gregb@grotto-networking.com 1211 Young Lee (ed.) 1212 Huawei Technologies 1213 1700 Alma Drive, Suite 100 1214 Plano, TX 75075 1215 USA 1217 Phone: (972) 509-5599 (x2240) 1218 Email: ylee@huawei.com 1220 Dan Li 1221 Huawei Technologies Co., Ltd. 1222 F3-5-B R&D Center, Huawei Base, 1223 Bantian, Longgang District 1224 Shenzhen 518129 P.R.China 1226 Phone: +86-755-28973237 1227 Email: danli@huawei.com 1229 Wataru Imajuku 1230 NTT Network Innovation Labs 1231 1-1 Hikari-no-oka, Yokosuka, Kanagawa 1232 Japan 1234 Phone: +81-(46) 859-4315 1235 Email: imajuku.wataru@lab.ntt.co.jp 1237 Jianrui Han 1238 Huawei Technologies Co., Ltd. 1239 F3-5-B R&D Center, Huawei Base, 1240 Bantian, Longgang District 1241 Shenzhen 518129 P.R.China 1243 Phone: +86-755-28972916 1244 Email: hanjianrui@huawei.com 1246 Intellectual Property Statement 1248 The IETF Trust takes no position regarding the validity or scope of 1249 any Intellectual Property Rights or other rights that might be 1250 claimed to pertain to the implementation or use of the technology 1251 described in any IETF Document or the extent to which any license 1252 under such rights might or might not be available; nor does it 1253 represent that it has made any independent effort to identify any 1254 such rights. 1256 Copies of Intellectual Property disclosures made to the IETF 1257 Secretariat and any assurances of licenses to be made available, or 1258 the result of an attempt made to obtain a general license or 1259 permission for the use of such proprietary rights by implementers or 1260 users of this specification can be obtained from the IETF on-line IPR 1261 repository at http://www.ietf.org/ipr 1263 The IETF invites any interested party to bring to its attention any 1264 copyrights, patents or patent applications, or other proprietary 1265 rights that may cover technology that may be required to implement 1266 any standard or specification contained in an IETF Document. Please 1267 address the information to the IETF at ietf-ipr@ietf.org. 1269 Disclaimer of Validity 1271 All IETF Documents and the information contained therein are provided 1272 on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE 1273 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE 1274 IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL 1275 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 1276 WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE 1277 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS 1278 FOR A PARTICULAR PURPOSE. 1280 Acknowledgment 1282 Funding for the RFC Editor function is currently provided by the 1283 Internet Society.