idnits 2.17.1 draft-ietf-ccamp-rwa-wson-encode-03.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- ** The document seems to lack a License Notice according IETF Trust Provisions of 28 Dec 2009, Section 6.b.i or Provisions of 12 Sep 2009 Section 6.b -- however, there's a paragraph with a matching beginning. Boilerplate error? (You're using the IETF Trust Provisions' Section 6.b License Notice from 12 Feb 2009 rather than one of the newer Notices. See https://trustee.ietf.org/license-info/.) Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (October 8, 2009) is 5315 days in the past. Is this intentional? -- Found something which looks like a code comment -- if you have code sections in the document, please surround them with '' and '' lines. Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Unused Reference: 'G.694.1' is defined on line 1272, but no explicit reference was found in the text == Unused Reference: 'G.694.2' is defined on line 1275, but no explicit reference was found in the text -- Possible downref: Non-RFC (?) normative reference: ref. 'G.694.1' Summary: 1 error (**), 0 flaws (~~), 3 warnings (==), 3 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 1 Network Working Group G. Bernstein 2 Internet Draft Grotto Networking 3 Intended status: Standards Track Y. Lee 4 Expires: April 2010 D. Li 5 Huawei 6 W. Imajuku 7 NTT 9 October 8, 2009 11 Routing and Wavelength Assignment Information Encoding for 12 Wavelength Switched Optical Networks 14 draft-ietf-ccamp-rwa-wson-encode-03.txt 16 Status of this Memo 18 This Internet-Draft is submitted to IETF in full conformance with the 19 provisions of BCP 78 and BCP 79. 21 Internet-Drafts are working documents of the Internet Engineering 22 Task Force (IETF), its areas, and its working groups. Note that 23 other groups may also distribute working documents as Internet- 24 Drafts. 26 Internet-Drafts are draft documents valid for a maximum of six months 27 and may be updated, replaced, or obsoleted by other documents at any 28 time. It is inappropriate to use Internet-Drafts as reference 29 material or to cite them other than as "work in progress." 31 The list of current Internet-Drafts can be accessed at 32 http://www.ietf.org/ietf/1id-abstracts.txt 34 The list of Internet-Draft Shadow Directories can be accessed at 35 http://www.ietf.org/shadow.html 37 This Internet-Draft will expire on April 8, 2007. 39 Copyright Notice 41 Copyright (c) 2009 IETF Trust and the persons identified as the 42 document authors. All rights reserved. 44 This document is subject to BCP 78 and the IETF Trust's Legal 45 Provisions Relating to IETF Documents in effect on the date of 46 publication of this document (http://trustee.ietf.org/license-info). 47 Please review these documents carefully, as they describe your rights 48 and restrictions with respect to this document. 50 Abstract 52 A wavelength switched optical network (WSON) requires that certain 53 key information elements are made available to facilitate path 54 computation and the establishment of label switching paths (LSPs). 55 The information model described in "Routing and Wavelength Assignment 56 Information for Wavelength Switched Optical Networks" shows what 57 information is required at specific points in the WSON. 59 The information may be used in Generalized Multiprotocol Label 60 Switching (GMPLS) signaling protocols, and may be distributed by 61 GMPLS routing protocols. Other distribution mechanisms (for example, 62 XML-based protocols) may also be used. 64 This document provides efficient, protocol-agnostic encodings for the 65 information elements necessary to operate a WSON. It is intended that 66 protocol-specific documents will reference this memo to describe how 67 information is carried for specific uses. 69 Conventions used in this document 71 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 72 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 73 document are to be interpreted as described in RFC-2119 [RFC2119]. 75 Table of Contents 77 1. Introduction...................................................3 78 1.1. Revision History..........................................4 79 1.1.1. Changes from 00 draft................................4 80 1.1.2. Changes from 01 draft................................4 81 1.1.3. Changes from 02 draft................................4 82 2. Terminology....................................................5 83 3. Common Field Encoding..........................................5 84 3.1. Link Set Field............................................5 85 3.2. Wavelength Information Encoding...........................7 86 3.3. Wavelength Set Field......................................8 87 3.3.1. Inclusive/Exclusive Wavelength Lists.................9 88 3.3.2. Inclusive/Exclusive Wavelength Ranges................9 89 3.3.3. Bitmap Wavelength Set...............................10 90 4. Wavelength and Connectivity sub-TLV Encodings.................11 91 4.1. Available Wavelengths Sub-TLV............................11 92 4.2. Shared Backup Wavelengths Sub-TLV........................11 93 4.3. Connectivity Matrix Sub-TLV..............................11 94 4.4. Port Wavelength Restriction sub-TLV......................13 95 4.4.1. SIMPLE_WAVELENGTH...................................14 96 4.4.2. CHANNEL_COUNT.......................................14 97 4.4.3. WAVEBAND1...........................................14 98 4.4.4. SIMPLE_WAVELENGTH & CHANNEL_COUNT...................15 99 5. Wavelength Converter Pool Encoding............................15 100 5.1. Wavelength Converter Set Field...........................16 101 5.2. Wavelength Converter Accessibility Sub-TLV...............17 102 5.3. Wavelength Conversion Range Sub-TLV......................18 103 5.4. Wavelength Converter Usage State Sub-TLV.................19 104 6. WSON Encoding Usage Recommendations...........................20 105 6.1. WSON Node TLV............................................20 106 6.2. WSON Dynamic Node TLV....................................20 107 6.3. WSON Link TLV............................................21 108 6.4. WSON Dynamic Link TLV....................................21 109 7. Security Considerations.......................................21 110 8. IANA Considerations...........................................21 111 9. Acknowledgments...............................................21 112 APPENDIX A: Encoding Examples....................................22 113 A.1. Link Set Field...........................................22 114 A.2. Wavelength Set Field.....................................22 115 A.3. Connectivity Matrix Sub-TLV..............................23 116 A.4. Connectivity Matrix with Bi-directional Symmetry.........26 117 A.5. Wavelength Converter Accessibility Sub-TLV...............28 118 A.6. Wavelength Conversion Range Sub-TLV......................30 119 10. References...................................................32 120 10.1. Normative References....................................32 121 10.2. Informative References..................................32 122 11. Contributors.................................................34 123 Authors' Addresses...............................................34 124 Intellectual Property Statement..................................35 125 Disclaimer of Validity...........................................36 127 1. Introduction 129 A Wavelength Switched Optical Network (WSON) is a Wavelength Division 130 Multiplexing (WDM) optical network in which switching is performed 131 selectively based on the center wavelength of an optical signal. 133 [WSON-Frame] describes a framework for Generalized Multiprotocol 134 Label Switching (GMPLS) and Path Computation Element (PCE) control of 135 a WSON. Based on this framework, [WSON-Info] describes an information 136 model that specifies what information is needed at various points in 137 a WSON in order to compute paths and establish Label Switched Paths 138 (LSPs). 140 This document provides efficient encodings of information needed by 141 the routing and wavelength assignment (RWA) process in a WSON. Such 142 encodings can be used to extend GMPLS signaling and routing 143 protocols. In addition these encodings could be used by other 144 mechanisms to convey this same information to a path computation 145 element (PCE). Note that since these encodings are relatively 146 efficient they can provide more accurate analysis of the control 147 plane communications/processing load for WSONs looking to utilize a 148 GMPLS control plane. 150 1.1. Revision History 152 1.1.1. Changes from 00 draft 154 Edits to make consistent with update to [Otani], i.e., removal of 155 sign bit. 157 Clarification of TBD on connection matrix type and possibly 158 numbering. 160 New sections for wavelength converter pool encoding: Wavelength 161 Converter Set Sub-TLV, Wavelength Converter Accessibility Sub-TLV, 162 Wavelength Conversion Range Sub-TLV, WC Usage State Sub-TLV. 164 Added optional wavelength converter pool TLVs to the composite node 165 TLV. 167 1.1.2. Changes from 01 draft 169 The encoding examples have been moved to an appendix. Classified and 170 corrected information elements as either reusable fields or sub-TLVs. 171 Updated Port Wavelength Restriction sub-TLV. Added available 172 wavelength and shared backup wavelength sub-TLVs. Changed the title 173 and scope of section 6 to recommendations since the higher level TLVs 174 that this encoding will be used in is somewhat protocol specific. 176 1.1.3. Changes from 02 draft 178 Removed inconsistent text concerning link local identifiers and the 179 link set field in section 3.1. 181 Added E bit to the Wavelength Converter Set Field. 183 Added bidirectional connectivity matrix example. Added simple link 184 set example. Edited examples for consistency. 186 2. Terminology 188 CWDM: Coarse Wavelength Division Multiplexing. 190 DWDM: Dense Wavelength Division Multiplexing. 192 FOADM: Fixed Optical Add/Drop Multiplexer. 194 ROADM: Reconfigurable Optical Add/Drop Multiplexer. A reduced port 195 count wavelength selective switching element featuring ingress and 196 egress line side ports as well as add/drop side ports. 198 RWA: Routing and Wavelength Assignment. 200 Wavelength Conversion. The process of converting an information 201 bearing optical signal centered at a given wavelength to one with 202 "equivalent" content centered at a different wavelength. Wavelength 203 conversion can be implemented via an optical-electronic-optical (OEO) 204 process or via a strictly optical process. 206 WDM: Wavelength Division Multiplexing. 208 Wavelength Switched Optical Network (WSON): A WDM based optical 209 network in which switching is performed selectively based on the 210 center wavelength of an optical signal. 212 3. Common Field Encoding 214 In encoding WSON information both sets of links and sets of 215 wavelengths frequently arise. In the following we specify the 216 encoding of these repeatedly used fields. 218 3.1. Link Set Field 220 We will frequently need to describe properties of groups of links. To 221 do so efficiently we can make use of a link set concept similar to 222 the label set concept of [RFC3471]. The information carried in a Link 223 Set is defined by: 225 0 1 2 3 226 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 227 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 228 | Action |Dir| Format | Length | 229 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 230 | Link Identifier 1 | 231 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 232 : : : 233 : : : 234 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 235 | Link Identifier N | 236 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 238 Action: 8 bits 240 0 - Inclusive List 242 Indicates that one or more link identifiers are included in the Link 243 Set. Each identifies a separate link that is part of the set. 245 1 - Inclusive Range 247 Indicates that the Link Set defines a range of links. It contains 248 two link identifiers. The first identifiers indicates the start of 249 the range (inclusive). The second identifiers indicates the end of 250 the range (inclusive). All links with numeric values between the 251 bounds are considered to be part of the set. A value of zero in 252 either position indicates that there is no bound on the corresponding 253 portion of the range. Note that the Action field can be set to 254 0x02(Inclusive Range) only when unnumbered link identifier is used. 256 Dir: Directionality of the Link Set (2 bits) 258 0 -- bidirectional 259 1 -- ingress 261 2 -- egress 263 In optical networks we think in terms of unidirectional as well as 264 bidirectional links. For example, wavelength restrictions or 265 connectivity may be different for an ingress port, than for its 266 "companion" egress port if one exists. Note that "interfaces" such as 267 those discussed in the Interfaces MIB [RFC2863] are assumed to be 268 bidirectional. This also applies to the links advertised in various 269 link state routing protocols. 271 Format: The format of the link identifier (6 bits) 273 0 -- Link Local Identifier 275 Indicates that the links in the Link Set are identified by link local 276 identifiers. All link local identifiers are supplied in the context 277 of the advertising node. 279 1 -- Local Interface IPv4 Address 281 2 -- Local Interface IPv6 Address 283 Indicates that the links in the Link Set are identified by Local 284 Interface IP Address. All Local Interface IP Address are supplied in 285 the context of the advertising node. 287 Others TBD. 289 Note that all link identifiers in the same list must be of the same 290 type. 292 Length: 16 bits 294 This field indicates the total length in bytes of the Link Set field. 296 Link Identifier: length is dependent on the link format 298 The link identifier represents the port which is being described 299 either for connectivity or wavelength restrictions. This can be the 300 link local identifier of [RFC4202], GMPLS routing, [RFC4203] GMPLS 301 OSPF routing, and [RFC5307] IS-IS GMPLS routing. The use of the link 302 local identifier format can result in more compact WSON encodings 303 when the assignments are done in a reasonable fashion. 305 3.2. Wavelength Information Encoding 307 This document makes frequent use of the lambda label format defined 308 in [Otani] shown below strictly for reference purposes: 310 0 1 2 3 311 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 312 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 313 |Grid | C.S. | Reserved | n | 314 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 315 Where 317 Grid is used to indicate which ITU-T grid specification is being 318 used. 320 C.S. = Channel spacing used in a DWDM system, i.e., with an ITU-T 321 G.694.1 grid. 323 n = Used to specify the frequency as 193.1THz +/- n*(channel spacing) 324 and n is a two's complement integer that takes either a negative, 325 zero or a positive value. 327 3.3. Wavelength Set Field 329 Wavelength sets come up frequently in WSONs to describe the range of 330 a laser transmitter, the wavelength restrictions on ROADM ports, or 331 the availability of wavelengths on a DWDM link. The general format 332 for a wavelength set is given below. This format uses the Action 333 concept from [RFC3471] with an additional Action to define a "bit 334 map" type of label set. Note that the second 32 bit field is a lambda 335 label in the previously defined format. This provides important 336 information on the WDM grid type and channel spacing that will be 337 used in the compact encodings listed. 339 0 1 2 3 340 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 341 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 342 | Action| Num Wavelengths | Length | 343 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 344 |Grid | C.S. | Reserved | n for lowest frequency | 345 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 346 | Additional fields as necessary per action | 347 | 349 Action: 351 0 - Inclusive List 353 1 - Exclusive List 354 2 - Inclusive Range 356 3 - Exclusive Range 358 4 - Bitmap Set 360 Length is the length in bytes of the entire field. 362 3.3.1. Inclusive/Exclusive Wavelength Lists 364 In the case of the inclusive/exclusive lists the wavelength set 365 format is given by: 367 0 1 2 3 368 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 369 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 370 |0 or 1 | Num Wavelengths | Length | 371 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 372 |Grid | C.S. | Reserved | n for lowest frequency | 373 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 374 | n2 | n3 | 375 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 376 : : 377 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 378 | nm | | 379 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 381 Where: 383 Num Wavelengths tells us the number of wavelength in this inclusive 384 or exclusive list including the initial wavelength in the list. Hence 385 if the number of wavelengths is even then zero padding of the last 386 half word is required. 388 n2 - nm, are used to specify the frequency as 193.1THz +/- n*(channel 389 spacing) and is a two's complement integer. Note that the channel 390 spacing is given by C.S. and is the same for all frequencies on the 391 list. 393 3.3.2. Inclusive/Exclusive Wavelength Ranges 395 In the case of inclusive/exclusive ranges the wavelength set format 396 is given by: 398 0 1 2 3 399 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 400 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 401 |2 or 3 | Num Wavelengths | Length | 402 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 403 |Grid | C.S. | Reserved | n for lowest frequency | 404 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 406 In this case Num Wavelengths specifies the number of wavelengths in 407 the range starting at the given wavelength and incrementing the Num 408 Wavelengths number of channel spacing up in frequency. 410 3.3.3. Bitmap Wavelength Set 412 In the case of Action = 4, the bitmap the wavelength set format is 413 given by: 415 0 1 2 3 416 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 417 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 418 | 4 | Num Wavelengths | Length | 419 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 420 |Grid | C.S. | Reserved | n for lowest frequency | 421 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 422 | Bit Map Word #1 (Lowest frequency channels) | 423 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 424 : : 425 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 426 | Bit Map Word #N (Highest frequency channels) | 427 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 429 Where Num Wavelengths in this case tells us the number of wavelengths 430 represented by the bit map. Each bit in the bit map represents a 431 particular frequency with a value of 1/0 indicating whether the 432 frequency is in the set or not. Bit position zero represents the 433 lowest frequency, while each succeeding bit position represents the 434 next frequency a channel spacing (C.S.) above the previous. 436 The size of the bit map is Num Wavelengths bits, but the bit map is 437 padded out to a full multiple of 32 bits so that the TLV is a 438 multiple of four bytes. Bits that do not represent wavelengths (i.e., 439 those in positions (Num Wavelengths) and beyond SHOULD be set to zero 440 and MUST be ignored. 442 4. Wavelength and Connectivity sub-TLV Encodings 444 A type-length-value (TLV) encoding of the high level WSON information 445 model [WSON-Info] is given in the following sections. This encoding 446 is designed to be suitable for use in the GMPLS routing protocols 447 OSPF [RFC4203] and IS-IS [RFC5307] and in the PCE protocol PCEP 448 [PCEP]. Note that the information distributed in [RFC4203] and 449 [RFC5307] is arranged via the nesting of sub-TLVs within TLVs and 450 this document makes use of such constructs. 452 4.1. Available Wavelengths Sub-TLV 454 To indicate the wavelengths available for use on a link the Available 455 Wavelengths sub-TLV consists of a single variable length wavelength 456 set field as follows: 458 0 1 2 3 459 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 460 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 461 | Wavelength Set Field | 462 : : 463 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 465 4.2. Shared Backup Wavelengths Sub-TLV 467 To indicate the wavelengths available for shared backup use on a link 468 the Shared Backup Wavelengths sub-TLV consists of a single variable 469 length wavelength set field as follows: 471 0 1 2 3 472 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 473 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 474 | Wavelength Set Field | 475 : : 476 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 478 4.3. Connectivity Matrix Sub-TLV 480 The switch and fixed connectivity matrices of [WSON-Info] can be 481 compactly represented in terms of a minimal list of ingress and 482 egress port set pairs that have mutual connectivity. As described in 483 [Switch] such a minimal list representation leads naturally to a 484 graph representation for path computation purposes that involves the 485 fewest additional nodes and links. 487 A TLV encoding of this list of link set pairs is: 489 0 1 2 3 490 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 491 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 492 | Connectivity | MatrixID | Reserved | 493 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 494 | Link Set A #1 | 495 : : : 496 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 497 | Link Set B #1 : 498 : : : 499 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 500 | Additional Link set pairs as needed | 501 : to specify connectivity : 502 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 504 Where 506 Connectivity is the device type. 508 0 -- the device is fixed 510 1 -- the device is switched(e.g., ROADM/OXC) 512 MatrixID represents the ID of the connectivity matrix and is an 8 bit 513 integer. The value of 0xFF is reserved for use with port wavelength 514 constraints and should not be used to identify a connectivity matrix. 516 There are two permitted combinations for the link set field parameter 517 "dir" for Link Set A and B pairs: 519 o Link Set A dir=ingress, Link Set B dir=egress 521 In this case any signal on the ingress links in set A can be 522 potentially switched out of an egress link in set B. 524 o Link Set A dir=bidirectional, Link Set B dir=bidirectional 526 In this case any ingress signal on the links in set A can 527 potentially egress on a link in set B, and any ingress signal on 528 the links in set B can potentially egress on a link in set A. 530 See Appendix A for examples of both types of encodings. 532 4.4. Port Wavelength Restriction sub-TLV 534 The port wavelength restriction of [WSON-Info] can be encoded as a 535 sub-TLV as follows. More than one of these sub-TLVs may be needed to 536 fully specify a complex port constraint. When more than one of these 537 sub-TLVs are present the resulting restriction is the intersection of 538 the restrictions expressed in each sub-TLV. To indicate that a 539 restriction applies to the port in general and not to a specific 540 connectivity matrix use the reserved value of 0xFF for the MatrixID. 542 0 1 2 3 543 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 544 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 545 | MatrixID | RestrictionType | Reserved/Parameter | 546 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 547 | Additional Restriction Parameters per RestrictionType | 548 : : 549 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 551 Where: 553 MatrixID: either is the value in the corresponding Connectivity 554 Matrix sub-TLV or takes the value OxFF to indicate the restriction 555 applies to the port regardless of any Connectivity Matrix. 557 RestrictionType can take the following values and meanings: 559 0: SIMPLE_WAVELENGTH (Simple wavelength selective restriction) 561 1: CHANNEL_COUNT (Channel count restriction) 563 2: WAVEBAND1 (Waveband device with a tunable center frequency 564 and passband) 566 3: SIMPLE_WAVELENGTH & CHANNEL_COUNT (Combination of 567 SIMPLE_WAVELENGTH and CHANNEL_COUNT restriction. The 568 accompanying wavelength set and channel count indicate 569 wavelength permitted on the port and the maximum number of 570 channels that can be simultaneously used on the port) 572 4.4.1. SIMPLE_WAVELENGTH 574 In the case of the SIMPLE_WAVELENGTH the GeneralPortRestrictions (or 575 MatrixSpecificRestrictions) format is given by: 577 0 1 2 3 578 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 579 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 580 | MatrixID | RstType = 0 | Reserved | 581 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 582 | Wavelength Set Field | 583 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 585 In this case the accompanying wavelength set indicates the 586 wavelengths permitted on the port. 588 4.4.2. CHANNEL_COUNT 590 In the case of the CHANNEL_COUNT the format is given by: 592 0 1 2 3 593 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 594 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 595 | MatrixID | RstType = 1 | MaxNumChannels | 596 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 598 In this case the accompanying MaxNumChannels indicates the maximum 599 number of channels that can be simultaneously used on the 600 port/matrix. 602 4.4.3. WAVEBAND1 604 In the case of the WAVEBAND1 the GeneralPortRestrictions (or 605 MatrixSpecificRestrictions) format is given by: 607 0 1 2 3 608 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 609 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 610 | MatrixID | RstType = 2 | MaxWaveBandWidth | 611 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 612 | Wavelength Set | 613 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 615 In this case the accompanying MaxWaveBandWidth indicates the maximum 616 width of the waveband in terms of the channels spacing given in the 617 wavelength set. The corresponding wavelength set is used to indicate 618 the overall tuning range. Specific center frequency tuning 619 information can be obtained from dynamic channel in use information. 620 It is assumed that both center frequency and bandwidth (Q) tuning can 621 be done without causing faults in existing signals. 623 4.4.4. SIMPLE_WAVELENGTH & CHANNEL_COUNT 625 In the case of the SIMPLE_WAVELENGTH & CHANNEL_COUNT the format is 626 given by: 628 0 1 2 3 629 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 630 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 631 | MatrixInfo | RstType = 3 | MaxNumChannels | 632 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 633 | Wavelength Set Field | 634 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 636 In this case the accompanying wavelength set and MaxNumChannels 637 indicate wavelength permitted on the port and the maximum number of 638 channels that can be simultaneously used on the port. 640 5. Wavelength Converter Pool Encoding 642 The encoding of structure and properties of a general wavelength 643 converter pool utilizes a converter accessibility sub-TLV, a 644 wavelength converter range sub-TLV, and a wavelength converter state 645 sub-TLV. All these sub-TLVs make use of the wavelength converter set 646 field. 648 5.1. Wavelength Converter Set Field 650 A WSON node may include a set of wavelength converters (WC) and such 651 information frequently is used in describing the wavelength converter 652 pool and its properties. The WC Set field is defined in a similar 653 manner to the label set concept of [RFC3471]. 655 The information carried in a WC set field is defined by: 657 0 1 2 3 658 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 659 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 660 | Action |E| Reserved | Length | 661 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 662 | WC Identifier 1 | WC Identifier 2 | 663 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 664 : : : 665 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 666 | WC Identifier n-1 | WC Identifier n | 667 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 669 Action: 8 bits 671 0 - Inclusive List 673 Indicates that the TLV contains one or more WC elements that are 674 included in the list. 676 2 - Inclusive Range 678 Indicates that the TLV contains a range of WCs. The object/TLV 679 contains two WC elements. The first element indicates the start of 680 the range. The second element indicates the end of the range. A value 681 of zero indicates that there is no bound on the corresponding portion 682 of the range. 684 E (Even bit): Set to 0 denotes an odd number of WC identifiers in 685 the list (last entry zero pad); Set to 1 denotes an even number of WC 686 identifiers in the list (no zero padding). 688 Reserved: 7 bits 690 This field is reserved. It MUST be set to zero on transmission and 691 MUST be ignored on receipt. 693 Length: 16 bits 695 The total length of this field in bytes. 697 WC Identifier: 699 The WC identifier represents the ID of the wavelength convertor which 700 is a 16 bit integer. 702 5.2. Wavelength Converter Accessibility Sub-TLV 704 This sub-TLV describes the structure of the wavelength converter pool 705 in relation to the switching device. In particular it gives the 706 ability of an ingress port to reach a wavelength converter and of a 707 wavelength converter to reach a particular egress port. This is the 708 PoolIngressMatrix and PoolEgressMatrix of [WSON-Info]. 710 The wavelength converter accessibility sub-TLV is defined by: 712 0 1 2 3 713 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 714 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 715 | Ingress Link Set Field A #1 | 716 : : 717 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 718 | WC Set Field A #1 | 719 : : 720 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 721 | Additional Link set and WC set pairs as needed to | 722 : specify PoolIngressMatrix : 723 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 724 | WC Set B Field #1 (for egress connectivity) | 725 : : 726 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 727 | Egress link Set Field B #1 | 728 : : 729 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 730 | Additional WC set and egress link set pairs | 731 : as needed to specify PoolEgressMatrix : 732 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 734 Note that the direction parameter within the Link Set Field is used 735 to indicate whether the link set is an ingress or egress link set, 736 and the bidirectional value for this parameter is not permitted in 737 this sub-TLV. 739 5.3. Wavelength Conversion Range Sub-TLV 741 Wavelength converters may have a limited input or output range. 742 Additionally, due to the structure of the optical system not all 743 wavelengths can necessarily reach or leave all the converters. These 744 properties are described by using one or more wavelength conversion 745 sub-TLVs as defined below: 747 0 1 2 3 748 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 749 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 750 | WC Set Field | 751 : : 752 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 753 | Input Wavelength Set Field | 754 : : 755 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 756 | Output Wavelength Set Field | 757 : : 758 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 760 WC Set Field: 762 A set of wavelength converters (WCs) which have the same conversion 763 range. 765 Input Wavelength Set Field: 767 Indicates the wavelength input range of the WCs in the corresponding 768 WC set. 770 Output Wavelength Set Field: 772 Indicates the wavelength output range of WCs in the corresponding WC 773 set. 775 5.4. Wavelength Converter Usage State Sub-TLV 777 The usage state of a wavelength converter is encoded as a bit map 778 indicating whether the converter is available or in use. This 779 information can be relatively dynamic, i.e., can change when a 780 connection is established or torn down. This bit map is in 781 correspondence with a wavelength converter set as follows: 783 0 1 2 3 784 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 785 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 786 | WC Set Field | 787 : : 788 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 789 | WC Usage state bitmap | 790 : : 791 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 792 | ...... | Padding bits | 793 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 795 WC Usage state: Variable Length but must be a multiple of 4 byes. 797 Each bit indicates the usage status of one WC with 0 indicating the 798 WC is available and 1 indicating the WC is in used. The sequence of 799 the bit map is ordered according to the WC Set field with this sub- 800 TLV. 802 Padding bits: Variable Length 804 6. WSON Encoding Usage Recommendations 806 In this section we give recommendations of typical usage of the 807 previously defined sub-TLVs. Typically the sub-TLVs defined in the 808 preceding sections would be incorporated into some kind of composite 809 TLV. The example composite TLVs in the following sections are based 810 on the four high level information bundles of [WSON-Info]. 812 6.1. WSON Node TLV 814 The WSON Node TLV could consist of the following list of sub-TLVs: 816 ::= [Other GMPLS sub- 817 TLVs][...] 818 [][] 820 6.2. WSON Dynamic Node TLV 822 If the protocol supports the separation of dynamic information from 823 relatively static information then the wavelength converter pool 824 state can be separated from the general Node TLV into a dynamic Node 825 TLV as follows. 827 ::= [] 828 Note that currently the only dynamic information modeled with a node 829 is associated with the status of the wavelength converter pool. 831 6.3. WSON Link TLV 833 The new link related sub-TLVs could be incorporated into a composite 834 link TLV as follows: 836 ::= [Other GMPLS sub-TLVs] 837 [...][] 838 [] 840 6.4. WSON Dynamic Link TLV 842 If the protocol supports the separation of dynamic information from 843 relatively static information then the available wavelength and 844 shared backup status can be separated from the general link TLV into 845 a TLV for dynamic link information. 847 ::= 848 [] 850 7. Security Considerations 852 This document defines protocol-independent encodings for WSON 853 information and does not introduce any security issues. 855 However, other documents that make use of these encodings within 856 protocol extensions need to consider the issues and risks associated 857 with, inspection, interception, modification, or spoofing of any of 858 this information. It is expected that any such documents will 859 describe the necessary security measures to provide adequate 860 protection. 862 8. IANA Considerations 864 TBD. Once our approach is finalized we may need identifiers for the 865 various TLVs and sub-TLVs. 867 9. Acknowledgments 869 This document was prepared using 2-Word-v2.0.template.dot. 871 APPENDIX A: Encoding Examples 873 A.1. Link Set Field 875 Suppose that we wish to describe a set of ingress ports that are have 876 link local identifiers number 3 through 42. In the link set field we 877 set the Action = 1 to denote an inclusive range; the Dir = 1 to 878 denote ingress links; and, the Format = 0 to denote link local 879 identifiers. In particular we have: 881 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 882 | Action=1 |0 1|0 0 0 0 0 0| Length = 12 | 883 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 884 | Link Local Identifier = #3 | 885 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 886 | Link Local Identifier = #42 | 887 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 889 A.2. Wavelength Set Field 891 Example: 893 A 40 channel C-Band DWDM system with 100GHz spacing with lowest 894 frequency 192.0THz (1561.4nm) and highest frequency 195.9THz 895 (1530.3nm). These frequencies correspond to n = -11, and n = 28 896 respectively. Now suppose the following channels are available: 898 Frequency (THz) n Value bit map position 899 -------------------------------------------------- 900 192.0 -11 0 901 192.5 -6 5 902 193.1 0 11 903 193.9 8 19 904 194.0 9 20 905 195.2 21 32 906 195.8 27 38 908 With the Grid value set to indicate an ITU-T G.694.1 DWDM grid, C.S. 909 set to indicate 100GHz this lambda bit map set would then be encoded 910 as follows: 912 0 1 2 3 913 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 914 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 915 | 4 | Num Wavelengths = 40 | Length = 16 bytes | 916 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 917 |Grid | C.S. | Reserved | n for lowest frequency = -11 | 918 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 919 |1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0| 920 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 921 |1 0 0 0 0 0 1 0| Not used in 40 Channel system (all zeros) | 922 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 924 To encode this same set as an inclusive list we would have: 926 0 1 2 3 927 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 928 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 929 | 0 | Num Wavelengths = 40 | Length = 20 bytes | 930 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 931 |Grid | C.S. | Reserved | n for lowest frequency = -11 | 932 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 933 | n2 = -6 | n3 = 0 | 934 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 935 | n4 = 8 | n5 = 9 | 936 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 937 | n6 = 21 | n7 = 27 | 938 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 940 A.3. Connectivity Matrix Sub-TLV 942 Example: 944 Suppose we have a typical 2-degree 40 channel ROADM. In addition to 945 its two line side ports it has 80 add and 80 drop ports. The picture 946 below illustrates how a typical 2-degree ROADM system that works with 947 bi-directional fiber pairs is a highly asymmetrical system composed 948 of two unidirectional ROADM subsystems. 950 (Tributary) Ports #3-#42 951 Ingress added to Egress dropped from 952 West Line Egress East Line Ingress 953 vvvvv ^^^^^ 954 | |||.| | |||.| 955 +-----| |||.|--------| |||.|------+ 956 | +----------------------+ | 957 | | | | 958 Egress | | Unidirectional ROADM | | Ingress 959 -----------------+ | | +-------------- 960 <=====================| |===================< 961 -----------------+ +----------------------+ +-------------- 962 | | 963 Port #1 | | Port #2 964 (West Line Side) | |(East Line Side) 965 -----------------+ +----------------------+ +-------------- 966 >=====================| |===================> 967 -----------------+ | Unidirectional ROADM | +-------------- 968 Ingress | | | | Egress 969 | | _ | | 970 | +----------------------+ | 971 +-----| |||.|--------| |||.|------+ 972 | |||.| | |||.| 973 vvvvv ^^^^^ 974 (Tributary) Ports #43-#82 975 Egress dropped from Ingress added to 976 West Line ingress East Line egress 978 Referring to the figure we see that the ingress direction of ports 979 #3-#42 (add ports) can only connect to the egress on port #1. While 980 the ingress side of port #2 (line side) can only connect to the 981 egress on ports #3-#42 (drop) and to the egress on port #1 (pass 982 through). Similarly, the ingress direction of ports #43-#82 can only 983 connect to the egress on port #2 (line). While the ingress direction 984 of port #1 can only connect to the egress on ports #43-#82 (drop) or 985 port #2 (pass through). We can now represent this potential 986 connectivity matrix as follows. This representation uses only 30 32- 987 bit words. 989 0 1 2 3 990 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 991 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 992 | Conn = 1 | MatrixID | Reserved |1 993 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 994 Note: adds to line 995 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 996 | Action=1 |0 1|0 0 0 0 0 0| Length = 12 |2 997 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 998 | Link Local Identifier = #3 |3 999 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1000 | Link Local Identifier = #42 |4 1001 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1002 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 |5 1003 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1004 | Link Local Identifier = #1 |6 1005 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1006 Note: line to drops 1007 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1008 | Action=0 |0 1|0 0 0 0 0 0| Length = 8 |7 1009 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1010 | Link Local Identifier = #2 |8 1011 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1012 | Action=1 |1 0|0 0 0 0 0 0| Length = 12 |9 1013 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1014 | Link Local Identifier = #3 |10 1015 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1016 | Link Local Identifier = #42 |11 1017 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1018 Note: line to line 1019 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1020 | Action=0 |0 1|0 0 0 0 0 0| Length = 8 |12 1021 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1022 | Link Local Identifier = #2 |13 1023 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1024 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 |14 1025 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1026 | Link Local Identifier = #1 |15 1027 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1028 Note: adds to line 1029 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1030 | Action=1 |0 1|0 0 0 0 0 0| Length = 12 |16 1031 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1032 | Link Local Identifier = #43 |17 1033 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1034 | Link Local Identifier = #82 |18 1035 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1036 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 |19 1037 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1038 | Link Local Identifier = #2 |20 1039 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1040 Note: line to drops 1041 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1042 | Action=0 |0 1|0 0 0 0 0 0|| Length = 8 |21 1043 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1044 | Link Local Identifier = #1 |22 1045 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1046 | Action=1 |1 0|0 0 0 0 0 0| Length = 12 |23 1047 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1048 | Link Local Identifier = #43 |24 1049 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1050 | Link Local Identifier = #82 |25 1051 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1052 Note: line to line 1053 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1054 | Action=0 |0 1|0 0 0 0 0 0| Length = 8 |26 1055 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1056 | Link Local Identifier = #1 |27 1057 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1058 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 |28 1059 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1060 | Link Local Identifier = #2 |30 1061 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1063 A.4. Connectivity Matrix with Bi-directional Symmetry 1065 If one has the ability to renumber the ports of the previous example 1066 as shown in the next figure then we can take advantage of the bi- 1067 directional symmetry and use bi-directional encoding of the 1068 connectivity matrix. Note that we set dir=bidirectional in the link 1069 set fields. 1071 (Tributary) 1072 Ports #3-42 Ports #43-82 1073 West Line Egress East Line Ingress 1074 vvvvv ^^^^^ 1075 | |||.| | |||.| 1076 +-----| |||.|--------| |||.|------+ 1077 | +----------------------+ | 1078 | | | | 1079 Egress | | Unidirectional ROADM | | Ingress 1080 -----------------+ | | +-------------- 1081 <=====================| |===================< 1082 -----------------+ +----------------------+ +-------------- 1083 | | 1084 Port #1 | | Port #2 1085 (West Line Side) | |(East Line Side) 1086 -----------------+ +----------------------+ +-------------- 1087 >=====================| |===================> 1088 -----------------+ | Unidirectional ROADM | +-------------- 1089 Ingress | | | | Egress 1090 | | _ | | 1091 | +----------------------+ | 1092 +-----| |||.|--------| |||.|------+ 1093 | |||.| | |||.| 1094 vvvvv ^^^^^ 1095 Ports #3-#42 Ports #43-82 1096 Egress dropped from Ingress added to 1097 West Line ingress East Line egress 1099 0 1 2 3 1100 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1101 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1102 | Conn = 1 | MatrixID | Reserved |1 1103 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1104 Add/Drops #3-42 to Line side #1 1105 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1106 | Action=1 |0 0|0 0 0 0 0 0| Length = 12 |2 1107 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1108 | Link Local Identifier = #3 |3 1109 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1110 | Link Local Identifier = #42 |4 1111 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1112 | Action=0 |0 0|0 0 0 0 0 0| Length = 8 |5 1113 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1114 | Link Local Identifier = #1 |6 1115 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1116 Note: line #2 to add/drops #43-82 1117 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1118 | Action=0 |0 0|0 0 0 0 0 0| Length = 8 |7 1119 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1120 | Link Local Identifier = #2 |8 1121 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1122 | Action=1 |0 0|0 0 0 0 0 0| Length = 12 |9 1123 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1124 | Link Local Identifier = #43 |10 1125 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1126 | Link Local Identifier = #82 |11 1127 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1128 Note: line to line 1129 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1130 | Action=0 |0 0|0 0 0 0 0 0| Length = 8 |12 1131 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1132 | Link Local Identifier = #1 |13 1133 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1134 | Action=0 |0 0|0 0 0 0 0 0| Length = 8 |14 1135 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1136 | Link Local Identifier = #2 |15 1137 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1139 A.5. Wavelength Converter Accessibility Sub-TLV 1141 Example: 1143 Figure 1 shows a wavelength converter pool architecture know as 1144 "shared per fiber". In this case the ingress and egress pool matrices 1145 are simply: 1147 +-----+ +-----+ 1148 | 1 1 | | 1 0 | 1149 WI =| |, WE =| | 1150 | 1 1 | | 0 1 | 1151 +-----+ +-----+ 1153 +-----------+ +------+ 1154 | |--------------------->| | 1155 | |--------------------->| C | 1156 /| | |--------------------->| o | 1157 /D+--->| |--------------------->| m | 1158 + e+--->| | | b |========> 1159 ========>| M| | Optical | +-----------+ | i | Port E1 1160 Port I1 + u+--->| Switch | | WC Pool | | n | 1161 \x+--->| | | +-----+ | | e | 1162 \| | +----+->|WC #1|--+---->| r | 1163 | | | +-----+ | +------+ 1164 | | | | +------+ 1165 /| | | | +-----+ | | | 1166 /D+--->| +----+->|WC #2|--+---->| C | 1167 + e+--->| | | +-----+ | | o | 1168 ========>| M| | | +-----------+ | m |========> 1169 Port I2 + u+--->| | | b | Port E2 1170 \x+--->| |--------------------->| i | 1171 \| | |--------------------->| n | 1172 | |--------------------->| e | 1173 | |--------------------->| r | 1174 +-----------+ +------+ 1175 Figure 1 An optical switch featuring a shared per fiber wavelength 1176 converter pool architecture. 1178 This wavelength converter pool can be encoded as follows: 1180 0 1 2 3 1181 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1182 Note: I1,I2 can connect to either WC1 or WC2 1183 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1184 | Action=0 |0 1|0 0 0 0 0 0| Length = 12 | 1185 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1186 | Link Local Identifier = #1 | 1187 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1188 | Link Local Identifier = #2 | 1189 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1190 | Action=0 |1| Reserved | Length = 8 | 1191 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1192 | WC ID = #1 | WC ID = #2 | 1193 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1194 Note: WC1 can only connect to E1 1195 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1196 | Action=0 |0| Reserved | Length = 8 | 1197 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1198 | WC ID = #1 | zero padding | 1199 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1200 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 | 1201 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1202 | Link Local Identifier = #1 | 1203 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1204 Note: WC2 can only connect to E2 1205 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1206 | Action=0 |0| | Length = 8 | 1207 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1208 | WC ID = #2 | zero padding | 1209 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1210 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 | 1211 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1212 | Link Local Identifier = #2 | 1213 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1215 A.6. Wavelength Conversion Range Sub-TLV 1217 Example: 1219 We give an example based on figure 1 about how to represent the 1220 wavelength conversion range of wavelength converters. Suppose the 1221 wavelength range of input and output of WC1 and WC2 are {L1, L2, L3, 1222 L4}: 1224 0 1 2 3 1225 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1226 Note: WC Set 1227 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1228 | Action=0 |1| Reserved | Length = 8 | 1229 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1230 | WC ID = #1 | WC ID = #2 | 1231 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1232 Note: wavelength input range 1233 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1234 | 2 | Num Wavelengths = 4 | Length = 8 | 1235 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1236 |Grid | C.S. | Reserved | n for lowest frequency = 1 | 1237 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1238 Note: wavelength output range 1239 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1240 | 2 | Num Wavelengths = 4 | Length = 8 | 1241 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1242 |Grid | C.S. | Reserved | n for lowest frequency = 1 | 1243 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1245 10. References 1247 10.1. Normative References 1249 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 1250 Requirement Levels", BCP 14, RFC 2119, March 1997. 1252 [RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group 1253 MIB", RFC 2863, June 2000. 1255 [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching 1256 (GMPLS) Signaling Functional Description", RFC 3471, 1257 January 2003. 1259 [G.694.1] ITU-T Recommendation G.694.1, "Spectral grids for WDM 1260 applications: DWDM frequency grid", June, 2002. 1262 [RFC4202] Kompella, K., Ed., and Y. Rekhter, Ed., "Routing Extensions 1263 in Support of Generalized Multi-Protocol Label Switching 1264 (GMPLS)", RFC 4202, October 2005 1266 [RFC4203] Kompella, K., Ed., and Y. Rekhter, Ed., "OSPF Extensions in 1267 Support of Generalized Multi-Protocol Label Switching 1268 (GMPLS)", RFC 4203, October 2005. 1270 10.2. Informative References 1272 [G.694.1] ITU-T Recommendation G.694.1, Spectral grids for WDM 1273 applications: DWDM frequency grid, June 2002. 1275 [G.694.2] ITU-T Recommendation G.694.2, Spectral grids for WDM 1276 applications: CWDM wavelength grid, December 2003. 1278 [Otani] T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized 1279 Labels for G.694 Lambda-Switching Capable Label Switching 1280 Routers", work in progress: draft-ietf-ccamp-gmpls-g-694- 1281 lambda-labels. 1283 [RFC5307] Kompella, K., Ed., and Y. Rekhter, Ed., "IS-IS Extensions 1284 in Support of Generalized Multi-Protocol Label Switching 1285 (GMPLS)", RFC 5307, October 2008. 1287 [Switch] G. Bernstein, Y. Lee, A. Gavler, J. Martensson, " Modeling 1288 WDM Wavelength Switching Systems for Use in GMPLS and Automated 1289 Path Computation", Journal of Optical Communications and 1290 Networking, vol. 1, June, 2009, pp. 187-195. 1292 [WSON-Frame] Y. Lee, G. Bernstein, W. Imajuku, "Framework for GMPLS 1293 and PCE Control of Wavelength Switched Optical Networks", 1294 work in progress: draft-ietf-ccamp-wavelength-switched- 1295 framework, Marh 2009. 1297 [WSON-Info] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and 1298 Wavelength Assignment Information Model for Wavelength 1299 Switched Optical Networks", work in progress: draft-ietf- 1300 ccamp-rwa-info, March 2009. 1302 [PCEP] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation 1303 Element (PCE) communication Protocol (PCEP) - Version 1", 1304 RFC5440. 1306 11. Contributors 1308 Diego Caviglia 1309 Ericsson 1310 Via A. Negrone 1/A 16153 1311 Genoa Italy 1313 Phone: +39 010 600 3736 1314 Email: diego.caviglia@(marconi.com, ericsson.com) 1316 Anders Gavler 1317 Acreo AB 1318 Electrum 236 1319 SE - 164 40 Kista Sweden 1321 Email: Anders.Gavler@acreo.se 1323 Jonas Martensson 1324 Acreo AB 1325 Electrum 236 1326 SE - 164 40 Kista, Sweden 1328 Email: Jonas.Martensson@acreo.se 1330 Itaru Nishioka 1331 NEC Corp. 1332 1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666 1333 Japan 1335 Phone: +81 44 396 3287 1336 Email: i-nishioka@cb.jp.nec.com 1338 Authors' Addresses 1340 Greg M. Bernstein (ed.) 1341 Grotto Networking 1342 Fremont California, USA 1344 Phone: (510) 573-2237 1345 Email: gregb@grotto-networking.com 1346 Young Lee (ed.) 1347 Huawei Technologies 1348 1700 Alma Drive, Suite 100 1349 Plano, TX 75075 1350 USA 1352 Phone: (972) 509-5599 (x2240) 1353 Email: ylee@huawei.com 1355 Dan Li 1356 Huawei Technologies Co., Ltd. 1357 F3-5-B R&D Center, Huawei Base, 1358 Bantian, Longgang District 1359 Shenzhen 518129 P.R.China 1361 Phone: +86-755-28973237 1362 Email: danli@huawei.com 1364 Wataru Imajuku 1365 NTT Network Innovation Labs 1366 1-1 Hikari-no-oka, Yokosuka, Kanagawa 1367 Japan 1369 Phone: +81-(46) 859-4315 1370 Email: imajuku.wataru@lab.ntt.co.jp 1372 Jianrui Han 1373 Huawei Technologies Co., Ltd. 1374 F3-5-B R&D Center, Huawei Base, 1375 Bantian, Longgang District 1376 Shenzhen 518129 P.R.China 1378 Phone: +86-755-28972916 1379 Email: hanjianrui@huawei.com 1381 Intellectual Property Statement 1383 The IETF Trust takes no position regarding the validity or scope of 1384 any Intellectual Property Rights or other rights that might be 1385 claimed to pertain to the implementation or use of the technology 1386 described in any IETF Document or the extent to which any license 1387 under such rights might or might not be available; nor does it 1388 represent that it has made any independent effort to identify any 1389 such rights. 1391 Copies of Intellectual Property disclosures made to the IETF 1392 Secretariat and any assurances of licenses to be made available, or 1393 the result of an attempt made to obtain a general license or 1394 permission for the use of such proprietary rights by implementers or 1395 users of this specification can be obtained from the IETF on-line IPR 1396 repository at http://www.ietf.org/ipr 1398 The IETF invites any interested party to bring to its attention any 1399 copyrights, patents or patent applications, or other proprietary 1400 rights that may cover technology that may be required to implement 1401 any standard or specification contained in an IETF Document. Please 1402 address the information to the IETF at ietf-ipr@ietf.org. 1404 Disclaimer of Validity 1406 All IETF Documents and the information contained therein are provided 1407 on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE 1408 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE 1409 IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL 1410 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 1411 WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE 1412 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS 1413 FOR A PARTICULAR PURPOSE. 1415 Acknowledgment 1417 Funding for the RFC Editor function is currently provided by the 1418 Internet Society.