idnits 2.17.1 draft-ietf-ccamp-rwa-wson-encode-08.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (March 1, 2011) is 4797 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Unused Reference: 'G.694.1' is defined on line 1204, but no explicit reference was found in the text == Unused Reference: 'G.694.2' is defined on line 1207, but no explicit reference was found in the text -- Possible downref: Non-RFC (?) normative reference: ref. 'G.694.1' -- No information found for draft-ietf-ccamp-general-ext-encode - is the name correct? Summary: 0 errors (**), 0 flaws (~~), 3 warnings (==), 3 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 1 Network Working Group G. Bernstein 2 Internet Draft Grotto Networking 3 Intended status: Standards Track Y. Lee 4 Expires: September 2011 D. Li 5 Huawei 6 W. Imajuku 7 NTT 9 March 1, 2011 11 Routing and Wavelength Assignment Information Encoding for 12 Wavelength Switched Optical Networks 14 draft-ietf-ccamp-rwa-wson-encode-08.txt 16 Status of this Memo 18 This Internet-Draft is submitted to IETF in full conformance with the 19 provisions of BCP 78 and BCP 79. 21 Internet-Drafts are working documents of the Internet Engineering 22 Task Force (IETF), its areas, and its working groups. Note that 23 other groups may also distribute working documents as Internet- 24 Drafts. 26 Internet-Drafts are draft documents valid for a maximum of six months 27 and may be updated, replaced, or obsoleted by other documents at any 28 time. It is inappropriate to use Internet-Drafts as reference 29 material or to cite them other than as "work in progress." 31 The list of current Internet-Drafts can be accessed at 32 http://www.ietf.org/ietf/1id-abstracts.txt 34 The list of Internet-Draft Shadow Directories can be accessed at 35 http://www.ietf.org/shadow.html 37 This Internet-Draft will expire on September 1, 2011. 39 Copyright Notice 41 Copyright (c) 2011 IETF Trust and the persons identified as the 42 document authors. All rights reserved. 44 This document is subject to BCP 78 and the IETF Trust's Legal 45 Provisions Relating to IETF Documents 46 (http://trustee.ietf.org/license-info) in effect on the date of 47 publication of this document. Please review these documents 48 carefully, as they describe your rights and restrictions with respect 49 to this document. Code Components extracted from this document must 50 include Simplified BSD License text as described in Section 4.e of 51 the Trust Legal Provisions and are provided without warranty as 52 described in the Simplified BSD License. 54 Abstract 56 A wavelength switched optical network (WSON) requires that certain 57 key information elements are made available to facilitate path 58 computation and the establishment of label switching paths (LSPs). 59 The information model described in "Routing and Wavelength Assignment 60 Information for Wavelength Switched Optical Networks" shows what 61 information is required at specific points in the WSON. Part of the 62 WSON information model contains aspects that may be of general 63 applicability to other technologies, while other parts are fairly 64 specific to WSONs. 66 This document provides efficient, protocol-agnostic encodings for the 67 WSON specific information elements. It is intended that protocol- 68 specific documents will reference this memo to describe how 69 information is carried for specific uses. Such encodings can be used 70 to extend GMPLS signaling and routing protocols. In addition these 71 encodings could be used by other mechanisms to convey this same 72 information to a path computation element (PCE). 74 Conventions used in this document 76 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 77 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 78 document are to be interpreted as described in RFC-2119 [RFC2119]. 80 Table of Contents 82 1. Introduction...................................................3 83 1.1. Revision History..........................................4 84 1.1.1. Changes from 00 draft................................4 85 1.1.2. Changes from 01 draft................................4 86 1.1.3. Changes from 02 draft................................5 87 1.1.4. Changes from 03 draft................................5 88 1.1.5. Changes from 04 draft................................5 89 1.1.6. Changes from 05 draft................................5 90 1.1.7. Changes from 06 draft................................5 91 1.1.8. Changes from 07 draft................................5 92 2. Terminology....................................................6 93 3. Resource Pool Accessibility/Availability.......................6 94 3.1. Resource Pool Block Accessibility Sub-TLV.................8 95 3.2. Resource Block Wavelength Constraints Sub-TLV.............9 96 3.3. Block Pool State Sub-TLV.................................10 97 3.4. Block Shared Access Wavelength Availability sub-TLV......12 98 4. Resource Properties Encoding..................................13 99 4.1. Resource Block Information Sub-TLV.......................13 100 4.2. Input Modulation Format List Sub-Sub-TLV.................14 101 4.2.1. Modulation Format Field.............................15 102 4.3. Input FEC Type List Sub-Sub-TLV..........................16 103 4.3.1. FEC Type Field......................................17 104 4.4. Input Bit Range List Sub-Sub-TLV.........................19 105 4.4.1. Bit Range Field.....................................19 106 4.5. Input Client Signal List Sub-Sub-TLV.....................20 107 4.6. Processing Capability List Sub-Sub-TLV...................21 108 4.6.1. Processing Capabilities Field.......................21 109 4.7. Output Modulation Format List Sub-Sub-TLV................23 110 4.8. Output FEC Type List Sub-Sub-TLV.........................23 111 5. Security Considerations.......................................23 112 6. IANA Considerations...........................................24 113 7. Acknowledgments...............................................24 114 APPENDIX A: Encoding Examples....................................25 115 A.1. Wavelength Converter Accessibility Sub-TLV...............25 116 A.2. Wavelength Conversion Range Sub-TLV......................26 117 A.3. An OEO Switch with DWDM Optics...........................27 118 8. References....................................................31 119 8.1. Normative References.....................................31 120 8.2. Informative References...................................31 121 9. Contributors..................................................32 122 Authors' Addresses...............................................33 123 Intellectual Property Statement..................................34 124 Disclaimer of Validity...........................................34 126 1. Introduction 128 A Wavelength Switched Optical Network (WSON) is a Wavelength Division 129 Multiplexing (WDM) optical network in which switching is performed 130 selectively based on the center wavelength of an optical signal. 132 [WSON-Frame] describes a framework for Generalized Multiprotocol 133 Label Switching (GMPLS) and Path Computation Element (PCE) control of 134 a WSON. Based on this framework, [WSON-Info] describes an information 135 model that specifies what information is needed at various points in 136 a WSON in order to compute paths and establish Label Switched Paths 137 (LSPs). 139 This document provides efficient encodings of information needed by 140 the routing and wavelength assignment (RWA) process in a WSON. Such 141 encodings can be used to extend GMPLS signaling and routing 142 protocols. In addition these encodings could be used by other 143 mechanisms to convey this same information to a path computation 144 element (PCE). Note that since these encodings are relatively 145 efficient they can provide more accurate analysis of the control 146 plane communications/processing load for WSONs looking to utilize a 147 GMPLS control plane. 149 Note that encodings of information needed by the routing and label 150 assignment process applicable to general networks beyond WSON are 151 addressed in a separate document [Gen-Encode]. 153 1.1. Revision History 155 1.1.1. Changes from 00 draft 157 Edits to make consistent with update to [Otani], i.e., removal of 158 sign bit. 160 Clarification of TBD on connection matrix type and possibly 161 numbering. 163 New sections for wavelength converter pool encoding: Wavelength 164 Converter Set Sub-TLV, Wavelength Converter Accessibility Sub-TLV, 165 Wavelength Conversion Range Sub-TLV, WC Usage State Sub-TLV. 167 Added optional wavelength converter pool TLVs to the composite node 168 TLV. 170 1.1.2. Changes from 01 draft 172 The encoding examples have been moved to an appendix. Classified and 173 corrected information elements as either reusable fields or sub-TLVs. 174 Updated Port Wavelength Restriction sub-TLV. Added available 175 wavelength and shared backup wavelength sub-TLVs. Changed the title 176 and scope of section 6 to recommendations since the higher level TLVs 177 that this encoding will be used in is somewhat protocol specific. 179 1.1.3. Changes from 02 draft 181 Removed inconsistent text concerning link local identifiers and the 182 link set field. 184 Added E bit to the Wavelength Converter Set Field. 186 Added bidirectional connectivity matrix example. Added simple link 187 set example. Edited examples for consistency. 189 1.1.4. Changes from 03 draft 191 Removed encodings for general concepts to [Gen-Encode]. 193 Added in WSON signal compatibility and processing capability 194 information encoding. 196 1.1.5. Changes from 04 draft 198 Added encodings to deal with access to resource blocks via shared 199 fiber. 201 1.1.6. Changes from 05 draft 203 Revised the encoding for the "shared access" indicators to only use 204 one bit each for ingress and egress. 206 1.1.7. Changes from 06 draft 208 Removed section on "WSON Encoding Usage Recommendations" 210 1.1.8. Changes from 07 draft 212 Section 3: Enhanced text to clarify relationship between pools, 213 blocks and resources. Section 3.1, 3.2: Change title to clarify Pool- 214 Block relationship. Section 3.3: clarify block-resource state. 216 Section 4: Deleted reference to previously removed RBNF element. 217 Fixed TLV figures and descriptions for consistent sub-sub-TLV 218 nomenclature. 220 2. Terminology 222 CWDM: Coarse Wavelength Division Multiplexing. 224 DWDM: Dense Wavelength Division Multiplexing. 226 FOADM: Fixed Optical Add/Drop Multiplexer. 228 ROADM: Reconfigurable Optical Add/Drop Multiplexer. A reduced port 229 count wavelength selective switching element featuring ingress and 230 egress line side ports as well as add/drop side ports. 232 RWA: Routing and Wavelength Assignment. 234 Wavelength Conversion. The process of converting an information 235 bearing optical signal centered at a given wavelength to one with 236 "equivalent" content centered at a different wavelength. Wavelength 237 conversion can be implemented via an optical-electronic-optical (OEO) 238 process or via a strictly optical process. 240 WDM: Wavelength Division Multiplexing. 242 Wavelength Switched Optical Network (WSON): A WDM based optical 243 network in which switching is performed selectively based on the 244 center wavelength of an optical signal. 246 3. Resource Pool Accessibility/Availability 248 In this section we define the sub-TLVs for dealing with accessibility 249 and availability of resource blocks within a pool of resources. These 250 include the ResourceBlockAccessibility, ResourceWaveConstraints, and 251 RBPoolState sub-TLVs. All these sub-TLVs are concerned with sets of 252 resources. As described in [WSON-Info] a resource pool is composed of 253 blocks of resources with similar properties and accessibility 254 characteristics. 256 In a WSON node that includes resource blocks (RB) we will want to 257 denote subsets these blocks to efficiently describe common properties 258 the blocks and to describe the structure, if non-trivial, of the 259 resource pool. The RB Set field is defined in a similar manner to the 260 label set concept of [RFC3471]. 262 The information carried in a RB set field is defined by: 264 0 1 2 3 265 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 266 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 267 | Action |E|C| Reserved | Length | 268 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 269 | RB Identifier 1 | RB Identifier 2 | 270 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 271 : : : 272 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 273 | RB Identifier n-1 | RB Identifier n | 274 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 276 Action: 8 bits 278 0 - Inclusive List 280 Indicates that the TLV contains one or more RB elements that are 281 included in the list. 283 2 - Inclusive Range 285 Indicates that the TLV contains a range of RBs. The object/TLV 286 contains two WC elements. The first element indicates the start of 287 the range. The second element indicates the end of the range. A value 288 of zero indicates that there is no bound on the corresponding portion 289 of the range. 291 E (Even bit): Set to 0 denotes an odd number of RB identifiers in 292 the list (last entry zero pad); Set to 1 denotes an even number of RB 293 identifiers in the list (no zero padding). 295 C (Connectivity bit): Set to 0 to denote fixed (possibly multi- 296 cast) connectivity; Set to 1 to denote potential (switched) 297 connectivity. Used in resource pool accessibility sub-TLV. Ignored 298 elsewhere. 300 Reserved: 6 bits 302 This field is reserved. It MUST be set to zero on transmission and 303 MUST be ignored on receipt. 305 Length: 16 bits 307 The total length of this field in bytes. 309 RB Identifier: 311 The RB identifier represents the ID of the resource block which is a 312 16 bit integer. 314 3.1. Resource Pool Block Accessibility Sub-TLV 316 This sub-TLV describes the structure of the resource pool in relation 317 to the switching device. In particular it indicates the ability of an 318 ingress port to reach a resource block and of a resource block to 319 reach a particular egress port. This is the PoolIngressMatrix and 320 PoolEgressMatrix of [WSON-Info]. 322 The resource block accessibility sub-TLV is defined by: 324 0 1 2 3 325 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 326 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 327 | Connectivity | Reserved | 328 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 329 | Ingress Link Set Field A #1 | 330 : : 331 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 332 | RB Set Field A #1 | 333 : : 334 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 335 | Additional Link set and RB set pairs as needed to | 336 : specify PoolIngressMatrix : 337 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 338 | Egress Link Set Field B #1 | 339 : : 340 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 341 | RB Set B Field #1 (for egress connectivity) | 342 : : 343 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 344 | Additional Link Set and RB set pairs as needed to | 345 : specify PoolEgressMatrix : 346 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 348 Where 350 Connectivity indicates how the ingress/egress ports connect to the 351 resource blocks. 353 0 -- the device is fixed (e.g. a connected port must go through 354 the resource block) 355 1 -- the device is switched(e.g., a port can be configured to 356 go through a resource but isn't required ) 358 The Link Set Field is defined in [Gen-Encode]. 360 Note that the direction parameter within the Link Set Field is used 361 to indicate whether the link set is an ingress or egress link set, 362 and the bidirectional value for this parameter is not permitted in 363 this sub-TLV. 365 See Appendix A.1 for an illustration of this encoding. 367 3.2. Resource Block Wavelength Constraints Sub-TLV 369 Resources, such as wavelength converters, etc., may have a limited 370 input or output wavelength ranges. Additionally, due to the structure 371 of the optical system not all wavelengths can necessarily reach or 372 leave all the resources. These properties are described by using one 373 or more resource wavelength restrictions sub-TLVs as defined below: 375 0 1 2 3 376 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 377 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 378 | RB Set Field | 379 : : 380 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 381 | Input Wavelength Set Field | 382 : : 383 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 384 | Output Wavelength Set Field | 385 : : 386 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 388 RB Set Field: 390 A set of resource blocks (RBs) which have the same wavelength 391 restrictions. 393 Input Wavelength Set Field: 395 Indicates the wavelength input restrictions of the RBs in the 396 corresponding RB set. 398 Output Wavelength Set Field: 400 Indicates the wavelength output restrictions of RBs in the 401 corresponding RB set. 403 3.3. Block Pool State Sub-TLV 405 The usage state of resources within a block is encoded as either a 406 list of 16 bit integer values or a bit map indicating whether a 407 single resource is available or in use. The bit map encoding is 408 appropriate when resource blocks consist of a single resource. This 409 information can be relatively dynamic, i.e., can change when a 410 connection is established or torn down. 412 0 1 2 3 413 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 414 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 415 | Action | Reserved | 416 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 417 | RB Set Field | 418 : : 419 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 420 | RB Usage state | 421 : : 422 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 424 Where Action = 0 denotes a list of 16 bit integers and Action = 1 425 denotes a bit map. In both cases the elements of the RB Set field are 426 in a one-to-one correspondence with the values in the usage RB usage 427 state area. 429 0 1 2 3 430 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 431 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 432 | Action = 0 | Reserved | 433 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 434 | RB Set Field | 435 : : 436 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 437 | RB#1 state | RB#2 state | 438 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 439 : : 440 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 441 | RB#n-1 state | RB#n state or Padding | 442 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 444 Whether the last 16 bits is a wavelength converter (RB) state or 445 padding is determined by the number of elements in the RB set field. 447 0 1 2 3 448 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 449 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 450 | Action = 1 | Reserved | 451 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 452 | RB Set Field | 453 : : 454 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 455 | RB Usage state bitmap | 456 : : 458 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 459 | ...... | Padding bits | 460 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 462 RB Usage state: Variable Length but must be a multiple of 4 byes. 464 Each bit indicates the usage status of one RB with 0 indicating the 465 RB is available and 1 indicating the RB is in used. The sequence of 466 the bit map is ordered according to the RB Set field with this sub- 467 TLV. 469 Padding bits: Variable Length 471 3.4. Block Shared Access Wavelength Availability sub-TLV 473 Resources blocks may be accessed via a shared fiber. If this is the 474 case then wavelength availability on these shared fibers is needed to 475 understand resource availability. 477 0 1 2 3 478 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 479 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 480 | Resource Block ID |I|E| Reserved | 481 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 482 | Ingress Available Wavelength Set Field | 483 : : 484 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 485 | Egress Available Wavelength Set Field | 486 : : 487 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 489 Resource Block ID: 491 The 16 bit integer used to identify a particular resource block. 493 I bit: 495 Indicates whether the ingress available wavelength set field is 496 included (1) or not (0). 498 E bit: 500 Indicates whether the egress available wavelength set field is 501 included (1) or not (0). 503 Ingress Available Wavelength Set Field: 505 Indicates the wavelengths currently available (not being used) on the 506 ingress fiber to this resource block. 508 Egress Available Wavelength Set Field: 510 Indicates the wavelengths currently available (not being used) on the 511 egress fiber from this resource block. 513 4. Resource Properties Encoding 515 Within a WSON network element (NE) there may be resources with signal 516 compatibility constraints. Such resources typically come in "blocks" 517 which contain a group on identical and indistinguishable individual 518 resources. These resource blocks may consist of regenerators, 519 wavelength converters, etc... Such resource blocks may also 520 constitute the network element as a whole as in the case of an 521 electro optical switch. In this section we primarily focus on the 522 signal compatibility and processing properties of such a resource 523 block, the accessibility aspects of a resource in a shared pool, 524 except for the shared access indicators, were encoded in the previous 525 section. 527 The fundamental properties of a resource block, such as a regenerator 528 or wavelength converter, are: 530 (a)Input constraints (shared ingress, modulation, FEC, bit rate, 531 GPID) 533 (b)Processing capabilities (number of resources in a block, 534 regeneration, performance monitoring, vendor specific) 536 (c)Output Constraints (shared egress, modulation, FEC) 538 4.1. Resource Block Information Sub-TLV 540 Resource Block descriptor sub-TLVs are used to convey relatively 541 static information about individual resource blocks including the 542 resource block properties of section 3. and the number of resources 543 in a block. 545 This sub-TLV has the following format: 547 0 1 2 3 548 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 549 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 550 | RB Set Field | 551 : : 552 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 553 |I|E| Reserved | 554 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 555 | Input Modulation Type List Sub-Sub-TLV (opt) | 556 : : 557 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 558 | Input FEC Type List Sub-Sub-TLV (opt) | 559 : : 560 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 561 | Input Client Signal Type Sub-Sub-TLV (opt) | 562 : : 563 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 564 | Input Bit Rate Range List Sub-Sub-TLV (opt) | 565 : : 566 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 567 | Processing Capabilities List Sub-Sub-TLV (opt) | 568 : : 569 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 570 | Output Modulation Type List Sub-Sub-TLV (opt) | 571 : : 572 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 573 | Output FEC Type List Sub-Sub-TLV (opt) | 574 : : 575 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 577 Where I and E, the shared ingress/egress indicator, is set to 1 if 578 the resource blocks identified in the RB set field utilized a shared 579 fiber for ingress/egress access and set to 0 otherwise. 581 4.2. Input Modulation Format List Sub-Sub-TLV 583 This sub-sub-TLV contains a list of acceptable input modulation 584 formats. 586 Type := Input Modulation Format List 588 Value := A list of Modulation Format Fields 589 4.2.1. Modulation Format Field 591 Two different types of modulation format fields are defined: a 592 standard modulation field and a vendor specific modulation field. 593 Both start with the same 32 bit header shown below. 595 0 1 2 3 596 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 597 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 598 |S|I| Modulation ID | Length | 599 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 601 Where S bit set to 1 indicates a standardized modulation format and S 602 bit set to 0 indicates a vendor specific modulation format. The 603 length is the length in bytes of the entire modulation type field. 605 Where I bit set to 1 indicates it is an input modulation constraint 606 and I bit set to 0 indicates it is an output modulation constraint. 608 Note that if an output modulation is not specified then it is implied 609 that it is the same as the input modulation. In such case, no 610 modulation conversion is performed. 612 The format for the standardized type for the input modulation is 613 given by: 615 0 1 2 3 616 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 617 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 618 |1|1| Modulation ID | Length | 619 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 620 | Possible additional modulation parameters depending upon | 621 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 622 : the modulation ID : 623 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 625 Modulation ID (S bit = 1); Input modulation (I bit = 1) 627 Takes on the following currently defined values: 629 0 Reserved 631 1 optical tributary signal class NRZ 1.25G 632 2 optical tributary signal class NRZ 2.5G 634 3 optical tributary signal class NRZ 10G 636 4 optical tributary signal class NRZ 40G 638 5 optical tributary signal class RZ 40G 640 Note that future modulation types may require additional parameters 641 in their characterization. 643 The format for vendor specific modulation field (for input 644 constraint) is given by: 646 0 1 2 3 647 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 648 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 649 |0|1| Vendor Modulation ID | Length | 650 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 651 | Enterprise Number | 652 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 653 : Any vendor specific additional modulation parameters : 654 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 656 Vendor Modulation ID 658 This is a vendor assigned identifier for the modulation type. 660 Enterprise Number 662 A unique identifier of an organization encoded as a 32-bit integer. 663 Enterprise Numbers are assigned by IANA and managed through an IANA 664 registry [RFC2578]. 666 Vendor Specific Additional parameters 668 There can be potentially additional parameters characterizing the 669 vendor specific modulation. 671 4.3. Input FEC Type List Sub-Sub-TLV 673 This sub-sub-TLV contains a list of acceptable FEC types. 675 Type := Input FEC Type field List 677 Value:= A list of FEC type Fields 679 4.3.1. FEC Type Field 681 The FEC type Field may consist of two different formats of fields: a 682 standard FEC field or a vendor specific FEC field. Both start with 683 the same 32 bit header shown below. 685 0 1 2 3 686 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 687 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 688 |S|I| FEC ID | Length | 689 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 690 | Possible additional FEC parameters depending upon | 691 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 692 : the FEC ID : 693 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 695 Where S bit set to 1 indicates a standardized FEC format and S bit 696 set to 0 indicates a vendor specific FEC format. The length is the 697 length in bytes of the entire FEC type field. 699 Where I bit set to 1 indicates it is an input FEC constraint and I 700 bit set to 0 indicates it is an output FEC constraint. 702 Note that if an output FEC is not specified then it is implied that 703 it is the same as the input FEC. In such case, no FEC conversion is 704 performed. 706 The length is the length in bytes of the entire FEC type field. 708 The format for input standard FEC field is given by: 710 0 1 2 3 711 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 712 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 713 |1|1| FEC ID | Length | 714 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 715 | Possible additional FEC parameters depending upon | 716 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 717 : the FEC ID : 718 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 720 Takes on the following currently defined values for the standard 721 FEC ID: 723 0 Reserved 725 1 G.709 RS FEC 727 2 G.709V compliant Ultra FEC 729 3 G.975.1 Concatenated FEC 730 (RS(255,239)/CSOC(n0/k0=7/6,J=8)) 732 4 G.975.1 Concatenated FEC (BCH(3860,3824)/BCH(2040,1930)) 734 5 G.975.1 Concatenated FEC (RS(1023,1007)/BCH(2407,1952)) 736 6 G.975.1 Concatenated FEC (RS(1901,1855)/Extended Hamming 737 Product Code (512,502)X(510,500)) 739 7 G.975.1 LDPC Code 741 8 G.975.1 Concatenated FEC (Two orthogonally concatenated 742 BCH codes) 744 9 G.975.1 RS(2720,2550) 746 10 G.975.1 Concatenated FEC (Two interleaved extended BCH 747 (1020,988) codes) 749 Where RS stands for Reed-Solomon and BCH for Bose-Chaudhuri- 750 Hocquengham. 752 The format for input vendor-specific FEC field is given by: 754 0 1 2 3 755 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 756 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 757 |0|1| Vendor FEC ID | Length | 758 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 759 | Enterprise Number | 760 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 761 : Any vendor specific additional FEC parameters : 762 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 764 Vendor FEC ID 766 This is a vendor assigned identifier for the FEC type. 768 Enterprise Number 770 A unique identifier of an organization encoded as a 32-bit integer. 771 Enterprise Numbers are assigned by IANA and managed through an IANA 772 registry [RFC2578]. 774 Vendor Specific Additional FEC parameters 776 There can be potentially additional parameters characterizing the 777 vendor specific FEC. 779 4.4. Input Bit Range List Sub-Sub-TLV 781 This sub-sub-TLV contains a list of acceptable input bit rate ranges. 783 Type := Input Bit Range List 785 Value:= A list of Bit Range Fields 787 4.4.1. Bit Range Field 789 The bit rate range list sub-TLV makes use of the following bit rate 790 range field: 792 0 1 2 3 793 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 794 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 795 | Starting Bit Rate | 796 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 797 | Ending Bit Rate | 798 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 800 The starting and ending bit rates are given as 32 bit IEEE floating 801 point numbers in bits per second. Note that the starting bit rate is 802 less than or equal to the ending bit rate. 804 The bit rate range list sub-TLV is then given by: 806 0 1 2 3 807 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 808 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 809 | | 810 +-+-+-+-+-+-+-+-+-+-+-+-+ Bit Range Field #1 +-+-+-+-+-+-+-+-+-+ 811 | | 812 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 813 : : : 814 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 815 | | 816 +-+-+-+-+-+-+-+-+-+-+-+-+ Bit Range Field #M +-+-+-+-+-+-+-+-+-+ 817 | | 818 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 820 4.5. Input Client Signal List Sub-Sub-TLV 822 This sub-sub-TLV contains a list of acceptable input client signal 823 types. 825 Type := Input Client Signal List 827 Value:= A list of GPIDs 829 The acceptable client signal list sub-TLV is a list of Generalized 830 Protocol Identifiers (GPIDs). GPIDs are assigned by IANA and many are 831 defined in [RFC3471] and [RFC4328]. 833 0 1 2 3 834 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 835 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 836 | Number of GPIDs | GPID #1 | 837 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 838 : | : 839 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 840 | GPID #N | | 841 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 843 Where the number of GPIDs is an integer greater than or equal to one. 845 4.6. Processing Capability List Sub-Sub-TLV 847 This sub-sub-TLV contains a list of resource block processing 848 capabilities. 850 Type := Processing Capabilities List 852 Value:= A list of Processing Capabilities Fields 854 The processing capability list sub-TLV is a list of WSON network 855 element (NE) that can perform signal processing functions including: 857 1. Number of Resources within the block 859 2. Regeneration capability 861 3. Fault and performance monitoring 863 4. Vendor Specific capability 865 Note that the code points for Fault and performance monitoring and 866 vendor specific capability are subject to further study. 868 4.6.1. Processing Capabilities Field 870 The processing capability field is then given by: 872 0 1 2 3 873 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 874 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 875 | Processing Cap ID | Length | 876 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 877 | Possible additional capability parameters depending upon | 878 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 879 : the processing ID : 880 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 882 When the processing Cap ID is "number of resources" the format is 883 simply: 885 0 1 2 3 886 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 887 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 888 | Processing Cap ID | Length = 8 | 889 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 890 | Number of resources per block | 891 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 893 When the processing Cap ID is "regeneration capability", the 894 following additional capability parameters are provided in the sub- 895 TLV: 897 0 1 2 3 898 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 899 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 900 | T | C | Reserved | 901 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 903 Where T bit indicates the type of regenerator: 905 T=0: Reserved 907 T=1: 1R Regenerator 909 T=2: 2R Regenerator 911 T=3: 3R Regenerator 913 Where C bit indicates the capability of regenerator: 915 C=0: Reserved 917 C=1: Fixed Regeneration Point 919 C=2: Selective Regeneration Point 921 Note that when the capability of regenerator is indicated to be 922 Selective Regeneration Pools, regeneration pool properties such as 923 ingress and egress restrictions and availability need to be 924 specified. This encoding is to be determined in the later revision. 926 4.7. Output Modulation Format List Sub-Sub-TLV 928 This sub-sub-TLV contains a list of available output modulation 929 formats. 931 Type := Output Modulation Format List 933 Value:= A list of Modulation Format Fields 935 4.8. Output FEC Type List Sub-Sub-TLV 937 This sub-sub-TLV contains a list of output FEC types. 939 Type := Output FEC Type field List 941 Value:= A list of FEC type Fields 943 5. Security Considerations 945 This document defines protocol-independent encodings for WSON 946 information and does not introduce any security issues. 948 However, other documents that make use of these encodings within 949 protocol extensions need to consider the issues and risks associated 950 with, inspection, interception, modification, or spoofing of any of 951 this information. It is expected that any such documents will 952 describe the necessary security measures to provide adequate 953 protection. 955 6. IANA Considerations 957 TBD. Once our approach is finalized we may need identifiers for the 958 various sub-sub-TLVs. 960 7. Acknowledgments 962 This document was prepared using 2-Word-v2.0.template.dot. 964 APPENDIX A: Encoding Examples 966 A.1. Wavelength Converter Accessibility Sub-TLV 968 Example: 970 Figure 1 shows a wavelength converter pool architecture know as 971 "shared per fiber". In this case the ingress and egress pool matrices 972 are simply: 974 +-----+ +-----+ 975 | 1 1 | | 1 0 | 976 WI =| |, WE =| | 977 | 1 1 | | 0 1 | 978 +-----+ +-----+ 980 +-----------+ +------+ 981 | |--------------------->| | 982 | |--------------------->| C | 983 /| | |--------------------->| o | 984 /D+--->| |--------------------->| m | 985 + e+--->| | | b |========> 986 ========>| M| | Optical | +-----------+ | i | Port E1 987 Port I1 + u+--->| Switch | | WC Pool | | n | 988 \x+--->| | | +-----+ | | e | 989 \| | +----+->|WC #1|--+---->| r | 990 | | | +-----+ | +------+ 991 | | | | +------+ 992 /| | | | +-----+ | | | 993 /D+--->| +----+->|WC #2|--+---->| C | 994 + e+--->| | | +-----+ | | o | 995 ========>| M| | | +-----------+ | m |========> 996 Port I2 + u+--->| | | b | Port E2 997 \x+--->| |--------------------->| i | 998 \| | |--------------------->| n | 999 | |--------------------->| e | 1000 | |--------------------->| r | 1001 +-----------+ +------+ 1002 Figure 1 An optical switch featuring a shared per fiber wavelength 1003 converter pool architecture. 1005 This wavelength converter pool can be encoded as follows: 1007 0 1 2 3 1008 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1009 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1010 | Connectivity=1| Reserved | 1011 Note: I1,I2 can connect to either WC1 or WC2 1012 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1013 | Action=0 |0 1|0 0 0 0 0 0| Length = 12 | 1014 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1015 | Link Local Identifier = #1 | 1016 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1017 | Link Local Identifier = #2 | 1018 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1019 | Action=0 |1| Reserved | Length = 8 | 1020 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1021 | RB ID = #1 | RB ID = #2 | 1022 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1023 Note: WC1 can only connect to E1 1024 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1025 | Action=0 |0| Reserved | Length = 8 | 1026 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1027 | RB ID = #1 | zero padding | 1028 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1029 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 | 1030 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1031 | Link Local Identifier = #1 | 1032 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1033 Note: WC2 can only connect to E2 1034 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1035 | Action=0 |0| | Length = 8 | 1036 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1037 | RB ID = #2 | zero padding | 1038 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1039 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 | 1040 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1041 | Link Local Identifier = #2 | 1042 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1044 A.2. Wavelength Conversion Range Sub-TLV 1046 Example: 1048 We give an example based on figure 1 about how to represent the 1049 wavelength conversion range of wavelength converters. Suppose the 1050 wavelength range of input and output of WC1 and WC2 are {L1, L2, L3, 1051 L4}: 1053 0 1 2 3 1054 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1055 Note: WC Set 1056 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1057 | Action=0 |1| Reserved | Length = 8 | 1058 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1059 | WC ID = #1 | WC ID = #2 | 1060 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1061 Note: wavelength input range 1062 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1063 | 2 | Num Wavelengths = 4 | Length = 8 | 1064 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1065 |Grid | C.S. | Reserved | n for lowest frequency = 1 | 1066 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1067 Note: wavelength output range 1068 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1069 | 2 | Num Wavelengths = 4 | Length = 8 | 1070 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1071 |Grid | C.S. | Reserved | n for lowest frequency = 1 | 1072 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1074 A.3. An OEO Switch with DWDM Optics 1076 In Figure 2 we show an electronic switch fabric surrounded by DWDM 1077 optics. In this example the electronic fabric can can handle either 1078 G.709 or SDH signals only (2.5 or 10 Gbps). To describe this node we 1079 have the potential information: 1081 ::= [Other GMPLS sub- 1082 TLVs][...] [][] 1084 In this case there is complete port to port connectivity so the 1085 is not required. In addition since there are 1086 sufficient ports to handle all wavelength signals we will not need 1087 the element. 1089 Hence our attention will be focused on the sub-TLV: 1091 ::= 1092 [...][...] 1094 /| +-----------+ +-------------+ +------+ 1095 /D+--->| +--->|Tunable Laser|-->| | 1096 + e+--->| | +-------------+ | C | 1097 ========>| M| | | ... | o |========> 1098 Port I1 + u+--->| | +-------------+ | m | Port E1 1099 \x+--->| |--->|Tunable Laser|-->| b | 1100 \| | Electric | +-------------+ +------+ 1101 | Switch | 1102 /| | | +-------------+ +------+ 1103 /D+--->| +--->|Tunable Laser|-->| | 1104 + e+--->| | +-------------+ | C | 1105 ========>| M| | | ... | o |========> 1106 Port I2 + u+--->| | +-------------+ | m | Port E2 1107 \x+--->| +--->|Tunable Laser|-->| b | 1108 \| | | +-------------+ +------+ 1109 | | 1110 /| | | +-------------+ +------+ 1111 /D+--->| |--->|Tunable Laser|-->| | 1112 + e+--->| | +-------------+ | C | 1113 ========>| M| | | ... | o |========> 1114 Port I3 + u+--->| | +-------------+ | m | Port E3 1115 \x+--->| |--->|Tunable Laser|-->| b | 1116 \| +-----------+ +-------------+ +------+ 1118 Figure 2 An optical switch built around an electronic switching 1119 fabric. 1121 The resource block information will tell us about the processing 1122 constraints of the receivers, transmitters and the electronic switch. 1123 The resource availability information, although very simple, tells us 1124 that all signals must traverse the electronic fabric (fixed 1125 connectivity). The resource wavelength constraints are not needed 1126 since there are no special wavelength constraints for the resources 1127 that would not appear as port/wavelength constraints. 1129 : 1131 0 1 2 3 1132 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1133 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1134 | RB Set Field | 1135 : (only one resource block in this example with shared | 1136 | input/output case) | 1137 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1138 |0|0| Reserved | 1139 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1140 | Input Modulation Type List Sub-Sub-TLV | 1141 : (The receivers can only process NRZ) : 1142 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1143 | Input FEC Type List Sub-Sub-TLV | 1144 : (Only Standard SDH and G.709 FECs) : 1145 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1146 | Input Client Signal Type Sub-TLV | 1147 : (GPIDs for SDH and G.709) : 1148 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1149 | Input Bit Rate Range List Sub-Sub-TLV | 1150 : (2.5Gbps, 10Gbps) : 1151 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1152 | Processing Capabilities List Sub-Sub-TLV | 1153 : Fixed (non optional) 3R regeneration : 1154 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1155 | Output Modulation Type List Sub-Sub-TLV | 1156 : NRZ : 1157 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1158 | Output FEC Type List Sub-Sub-TLV | 1159 : Standard SDH, G.709 FECs : 1160 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1162 Since we have fixed connectivity to resource block (the electronic 1163 switch) we get : 1165 0 1 2 3 1166 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1167 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1168 | Connectivity=1|Reserved | 1169 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1170 | Ingress Link Set Field A #1 | 1171 : (All ingress links connect to resource) : 1172 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1173 | RB Set Field A #1 | 1174 : (trivial set only one resource block) : 1175 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1176 | Egress Link Set Field B #1 | 1177 : (All egress links connect to resource) : 1178 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1180 8. References 1182 8.1. Normative References 1184 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 1185 Requirement Levels", BCP 14, RFC 2119, March 1997. 1187 [RFC2578] McCloghrie, K., Perkins, D., and J. Schoenwaelder, 1188 "Structure of Management Information Version 2 (SMIv2)", 1189 STD 58, RFC 2578, April 1999. 1191 [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching 1192 (GMPLS) Signaling Functional Description", RFC 3471, 1193 January 2003. 1195 [RFC4328] Papadimitriou, D., Ed., "Generalized Multi-Protocol Label 1196 Switching (GMPLS) Signaling Extensions for G.709 Optical 1197 Transport Networks Control", RFC 4328, January 2006. 1199 [G.694.1] ITU-T Recommendation G.694.1, "Spectral grids for WDM 1200 applications: DWDM frequency grid", June, 2002. 1202 8.2. Informative References 1204 [G.694.1] ITU-T Recommendation G.694.1, Spectral grids for WDM 1205 applications: DWDM frequency grid, June 2002. 1207 [G.694.2] ITU-T Recommendation G.694.2, Spectral grids for WDM 1208 applications: CWDM wavelength grid, December 2003. 1210 [Gen-Encode] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "General 1211 Network Element Constraint Encoding for GMPLS Controlled 1212 Networks", work in progress: draft-ietf-ccamp-general-ext- 1213 encode-00.txt. 1215 [Otani] T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized 1216 Labels for G.694 Lambda-Switching Capable Label Switching 1217 Routers", work in progress: draft-ietf-ccamp-gmpls-g-694- 1218 lambda-labels. 1220 [WSON-Frame] Y. Lee, G. Bernstein, W. Imajuku, "Framework for GMPLS 1221 and PCE Control of Wavelength Switched Optical Networks", 1222 work in progress: draft-ietf-ccamp-wavelength-switched- 1223 framework, Marh 2009. 1225 [WSON-Info] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and 1226 Wavelength Assignment Information Model for Wavelength 1227 Switched Optical Networks", work in progress: draft-ietf- 1228 ccamp-rwa-info, March 2009. 1230 9. Contributors 1232 Diego Caviglia 1233 Ericsson 1234 Via A. Negrone 1/A 16153 1235 Genoa Italy 1237 Phone: +39 010 600 3736 1238 Email: diego.caviglia@(marconi.com, ericsson.com) 1240 Anders Gavler 1241 Acreo AB 1242 Electrum 236 1243 SE - 164 40 Kista Sweden 1245 Email: Anders.Gavler@acreo.se 1247 Jonas Martensson 1248 Acreo AB 1249 Electrum 236 1250 SE - 164 40 Kista, Sweden 1252 Email: Jonas.Martensson@acreo.se 1254 Itaru Nishioka 1255 NEC Corp. 1256 1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666 1257 Japan 1259 Phone: +81 44 396 3287 1260 Email: i-nishioka@cb.jp.nec.com 1262 Authors' Addresses 1264 Greg M. Bernstein (ed.) 1265 Grotto Networking 1266 Fremont California, USA 1268 Phone: (510) 573-2237 1269 Email: gregb@grotto-networking.com 1271 Young Lee (ed.) 1272 Huawei Technologies 1273 1700 Alma Drive, Suite 100 1274 Plano, TX 75075 1275 USA 1277 Phone: (972) 509-5599 (x2240) 1278 Email: ylee@huawei.com 1280 Dan Li 1281 Huawei Technologies Co., Ltd. 1282 F3-5-B R&D Center, Huawei Base, 1283 Bantian, Longgang District 1284 Shenzhen 518129 P.R.China 1286 Phone: +86-755-28973237 1287 Email: danli@huawei.com 1289 Wataru Imajuku 1290 NTT Network Innovation Labs 1291 1-1 Hikari-no-oka, Yokosuka, Kanagawa 1292 Japan 1294 Phone: +81-(46) 859-4315 1295 Email: imajuku.wataru@lab.ntt.co.jp 1296 Jianrui Han 1297 Huawei Technologies Co., Ltd. 1298 F3-5-B R&D Center, Huawei Base, 1299 Bantian, Longgang District 1300 Shenzhen 518129 P.R.China 1302 Phone: +86-755-28972916 1303 Email: hanjianrui@huawei.com 1305 Intellectual Property Statement 1307 The IETF Trust takes no position regarding the validity or scope of 1308 any Intellectual Property Rights or other rights that might be 1309 claimed to pertain to the implementation or use of the technology 1310 described in any IETF Document or the extent to which any license 1311 under such rights might or might not be available; nor does it 1312 represent that it has made any independent effort to identify any 1313 such rights. 1315 Copies of Intellectual Property disclosures made to the IETF 1316 Secretariat and any assurances of licenses to be made available, or 1317 the result of an attempt made to obtain a general license or 1318 permission for the use of such proprietary rights by implementers or 1319 users of this specification can be obtained from the IETF on-line IPR 1320 repository at http://www.ietf.org/ipr 1322 The IETF invites any interested party to bring to its attention any 1323 copyrights, patents or patent applications, or other proprietary 1324 rights that may cover technology that may be required to implement 1325 any standard or specification contained in an IETF Document. Please 1326 address the information to the IETF at ietf-ipr@ietf.org. 1328 Disclaimer of Validity 1330 All IETF Documents and the information contained therein are provided 1331 on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE 1332 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE 1333 IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL 1334 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 1335 WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE 1336 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS 1337 FOR A PARTICULAR PURPOSE. 1339 Acknowledgment 1341 Funding for the RFC Editor function is currently provided by the 1342 Internet Society.