idnits 2.17.1 draft-ietf-ccamp-rwa-wson-encode-09.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (March 8, 2011) is 4797 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Unused Reference: 'G.694.1' is defined on line 1214, but no explicit reference was found in the text == Unused Reference: 'G.694.2' is defined on line 1217, but no explicit reference was found in the text -- Possible downref: Non-RFC (?) normative reference: ref. 'G.694.1' -- No information found for draft-ietf-ccamp-general-ext-encode - is the name correct? Summary: 0 errors (**), 0 flaws (~~), 3 warnings (==), 3 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 1 Network Working Group G. Bernstein 2 Internet Draft Grotto Networking 3 Intended status: Standards Track Y. Lee 4 Expires: September 2011 D. Li 5 Huawei 6 W. Imajuku 7 NTT 9 March 8, 2011 11 Routing and Wavelength Assignment Information Encoding for 12 Wavelength Switched Optical Networks 14 draft-ietf-ccamp-rwa-wson-encode-09.txt 16 Status of this Memo 18 This Internet-Draft is submitted to IETF in full conformance with the 19 provisions of BCP 78 and BCP 79. 21 Internet-Drafts are working documents of the Internet Engineering 22 Task Force (IETF), its areas, and its working groups. Note that 23 other groups may also distribute working documents as Internet- 24 Drafts. 26 Internet-Drafts are draft documents valid for a maximum of six months 27 and may be updated, replaced, or obsoleted by other documents at any 28 time. It is inappropriate to use Internet-Drafts as reference 29 material or to cite them other than as "work in progress." 31 The list of current Internet-Drafts can be accessed at 32 http://www.ietf.org/ietf/1id-abstracts.txt 34 The list of Internet-Draft Shadow Directories can be accessed at 35 http://www.ietf.org/shadow.html 37 This Internet-Draft will expire on September 8, 2011. 39 Copyright Notice 41 Copyright (c) 2011 IETF Trust and the persons identified as the 42 document authors. All rights reserved. 44 This document is subject to BCP 78 and the IETF Trust's Legal 45 Provisions Relating to IETF Documents 46 (http://trustee.ietf.org/license-info) in effect on the date of 47 publication of this document. Please review these documents 48 carefully, as they describe your rights and restrictions with respect 49 to this document. Code Components extracted from this document must 50 include Simplified BSD License text as described in Section 4.e of 51 the Trust Legal Provisions and are provided without warranty as 52 described in the Simplified BSD License. 54 Abstract 56 A wavelength switched optical network (WSON) requires that certain 57 key information elements are made available to facilitate path 58 computation and the establishment of label switching paths (LSPs). 59 The information model described in "Routing and Wavelength Assignment 60 Information for Wavelength Switched Optical Networks" shows what 61 information is required at specific points in the WSON. Part of the 62 WSON information model contains aspects that may be of general 63 applicability to other technologies, while other parts are fairly 64 specific to WSONs. 66 This document provides efficient, protocol-agnostic encodings for the 67 WSON specific information elements. It is intended that protocol- 68 specific documents will reference this memo to describe how 69 information is carried for specific uses. Such encodings can be used 70 to extend GMPLS signaling and routing protocols. In addition these 71 encodings could be used by other mechanisms to convey this same 72 information to a path computation element (PCE). 74 Conventions used in this document 76 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 77 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 78 document are to be interpreted as described in RFC-2119 [RFC2119]. 80 Table of Contents 82 1. Introduction...................................................3 83 1.1. Revision History..........................................4 84 1.1.1. Changes from 00 draft................................4 85 1.1.2. Changes from 01 draft................................4 86 1.1.3. Changes from 02 draft................................5 87 1.1.4. Changes from 03 draft................................5 88 1.1.5. Changes from 04 draft................................5 89 1.1.6. Changes from 05 draft................................5 90 1.1.7. Changes from 06 draft................................5 91 1.1.8. Changes from 07 draft................................5 92 1.1.9. Changes from 08 draft................................6 93 2. Terminology....................................................6 94 3. Resource Pool Accessibility/Availability.......................6 95 3.1. Resource Pool Accessibility Sub-TLV......................8 96 3.2. Resource Block Wavelength Constraints Sub-TLV............10 97 3.3. Resource Pool State Sub-TLV..............................10 98 3.4. Block Shared Access Wavelength Availability sub-TLV......12 99 4. Resource Properties Encoding..................................13 100 4.1. Resource Block Information Sub-TLV.......................13 101 4.2. Input Modulation Format List Sub-Sub-TLV.................14 102 4.2.1. Modulation Format Field.............................15 103 4.3. Input FEC Type List Sub-Sub-TLV..........................16 104 4.3.1. FEC Type Field......................................17 105 4.4. Input Bit Range List Sub-Sub-TLV.........................19 106 4.4.1. Bit Range Field.....................................19 107 4.5. Input Client Signal List Sub-Sub-TLV.....................20 108 4.6. Processing Capability List Sub-Sub-TLV...................21 109 4.6.1. Processing Capabilities Field.......................21 110 4.7. Output Modulation Format List Sub-Sub-TLV................23 111 4.8. Output FEC Type List Sub-Sub-TLV.........................23 112 5. Security Considerations.......................................23 113 6. IANA Considerations...........................................24 114 7. Acknowledgments...............................................24 115 APPENDIX A: Encoding Examples....................................25 116 A.1. Wavelength Converter Accessibility Sub-TLV...............25 117 A.2. Wavelength Conversion Range Sub-TLV......................26 118 A.3. An OEO Switch with DWDM Optics...........................27 119 8. References....................................................31 120 8.1. Normative References.....................................31 121 8.2. Informative References...................................31 122 9. Contributors..................................................32 123 Authors' Addresses...............................................33 124 Intellectual Property Statement..................................34 125 Disclaimer of Validity...........................................34 127 1. Introduction 129 A Wavelength Switched Optical Network (WSON) is a Wavelength Division 130 Multiplexing (WDM) optical network in which switching is performed 131 selectively based on the center wavelength of an optical signal. 133 [WSON-Frame] describes a framework for Generalized Multiprotocol 134 Label Switching (GMPLS) and Path Computation Element (PCE) control of 135 a WSON. Based on this framework, [WSON-Info] describes an information 136 model that specifies what information is needed at various points in 137 a WSON in order to compute paths and establish Label Switched Paths 138 (LSPs). 140 This document provides efficient encodings of information needed by 141 the routing and wavelength assignment (RWA) process in a WSON. Such 142 encodings can be used to extend GMPLS signaling and routing 143 protocols. In addition these encodings could be used by other 144 mechanisms to convey this same information to a path computation 145 element (PCE). Note that since these encodings are relatively 146 efficient they can provide more accurate analysis of the control 147 plane communications/processing load for WSONs looking to utilize a 148 GMPLS control plane. 150 Note that encodings of information needed by the routing and label 151 assignment process applicable to general networks beyond WSON are 152 addressed in a separate document [Gen-Encode]. 154 1.1. Revision History 156 1.1.1. Changes from 00 draft 158 Edits to make consistent with update to [Otani], i.e., removal of 159 sign bit. 161 Clarification of TBD on connection matrix type and possibly 162 numbering. 164 New sections for wavelength converter pool encoding: Wavelength 165 Converter Set Sub-TLV, Wavelength Converter Accessibility Sub-TLV, 166 Wavelength Conversion Range Sub-TLV, WC Usage State Sub-TLV. 168 Added optional wavelength converter pool TLVs to the composite node 169 TLV. 171 1.1.2. Changes from 01 draft 173 The encoding examples have been moved to an appendix. Classified and 174 corrected information elements as either reusable fields or sub-TLVs. 175 Updated Port Wavelength Restriction sub-TLV. Added available 176 wavelength and shared backup wavelength sub-TLVs. Changed the title 177 and scope of section 6 to recommendations since the higher level TLVs 178 that this encoding will be used in is somewhat protocol specific. 180 1.1.3. Changes from 02 draft 182 Removed inconsistent text concerning link local identifiers and the 183 link set field. 185 Added E bit to the Wavelength Converter Set Field. 187 Added bidirectional connectivity matrix example. Added simple link 188 set example. Edited examples for consistency. 190 1.1.4. Changes from 03 draft 192 Removed encodings for general concepts to [Gen-Encode]. 194 Added in WSON signal compatibility and processing capability 195 information encoding. 197 1.1.5. Changes from 04 draft 199 Added encodings to deal with access to resource blocks via shared 200 fiber. 202 1.1.6. Changes from 05 draft 204 Revised the encoding for the "shared access" indicators to only use 205 one bit each for ingress and egress. 207 1.1.7. Changes from 06 draft 209 Removed section on "WSON Encoding Usage Recommendations" 211 1.1.8. Changes from 07 draft 213 Section 3: Enhanced text to clarify relationship between pools, 214 blocks and resources. Section 3.1, 3.2: Change title to clarify Pool- 215 Block relationship. Section 3.3: clarify block-resource state. 217 Section 4: Deleted reference to previously removed RBNF element. 218 Fixed TLV figures and descriptions for consistent sub-sub-TLV 219 nomenclature. 221 1.1.9. Changes from 08 draft 223 Fixed ordering of fields in second half of sub-TLV example in 224 Appendix A.1. 226 Clarifying edits in section 3 on pools, blocks, and resources. 228 2. Terminology 230 CWDM: Coarse Wavelength Division Multiplexing. 232 DWDM: Dense Wavelength Division Multiplexing. 234 FOADM: Fixed Optical Add/Drop Multiplexer. 236 ROADM: Reconfigurable Optical Add/Drop Multiplexer. A reduced port 237 count wavelength selective switching element featuring ingress and 238 egress line side ports as well as add/drop side ports. 240 RWA: Routing and Wavelength Assignment. 242 Wavelength Conversion. The process of converting an information 243 bearing optical signal centered at a given wavelength to one with 244 "equivalent" content centered at a different wavelength. Wavelength 245 conversion can be implemented via an optical-electronic-optical (OEO) 246 process or via a strictly optical process. 248 WDM: Wavelength Division Multiplexing. 250 Wavelength Switched Optical Network (WSON): A WDM based optical 251 network in which switching is performed selectively based on the 252 center wavelength of an optical signal. 254 3. Resource Pool Accessibility/Availability 256 In this section we define the sub-TLVs for dealing with accessibility 257 and availability of resource blocks within a pool of resources. These 258 include the ResourceBlockAccessibility, ResourceWaveConstraints, and 259 RBPoolState sub-TLVs. All these sub-TLVs are concerned with sets of 260 resources. As described in [WSON-Info] a resource pool is composed of 261 blocks of resources with similar properties and accessibility 262 characteristics. 264 In a WSON node that includes resource blocks (RB) we will want to 265 denote subsets these blocks to efficiently describe common properties 266 the blocks and to describe the structure, if non-trivial, of the 267 resource pool. The RB Set field is defined in a similar manner to the 268 label set concept of [RFC3471]. 270 The information carried in a RB set field is defined by: 272 0 1 2 3 273 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 274 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 275 | Action |E|C| Reserved | Length | 276 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 277 | RB Identifier 1 | RB Identifier 2 | 278 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 279 : : : 280 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 281 | RB Identifier n-1 | RB Identifier n | 282 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 284 Action: 8 bits 286 0 - Inclusive List 288 Indicates that the TLV contains one or more RB elements that are 289 included in the list. 291 2 - Inclusive Range 293 Indicates that the TLV contains a range of RBs. The object/TLV 294 contains two WC elements. The first element indicates the start of 295 the range. The second element indicates the end of the range. A value 296 of zero indicates that there is no bound on the corresponding portion 297 of the range. 299 E (Even bit): Set to 0 denotes an odd number of RB identifiers in 300 the list (last entry zero pad); Set to 1 denotes an even number of RB 301 identifiers in the list (no zero padding). 303 C (Connectivity bit): Set to 0 to denote fixed (possibly multi- 304 cast) connectivity; Set to 1 to denote potential (switched) 305 connectivity. Used in resource pool accessibility sub-TLV. Ignored 306 elsewhere. 308 Reserved: 6 bits 310 This field is reserved. It MUST be set to zero on transmission and 311 MUST be ignored on receipt. 313 Length: 16 bits 315 The total length of this field in bytes. 317 RB Identifier: 319 The RB identifier represents the ID of the resource block which is a 320 16 bit integer. 322 3.1. Resource Pool Accessibility Sub-TLV 324 This sub-TLV describes the structure of the resource pool in relation 325 to the switching device. In particular it indicates the ability of an 326 ingress port to reach a resource block and of a resource block to 327 reach a particular egress port. This is the PoolIngressMatrix and 328 PoolEgressMatrix of [WSON-Info]. 330 The resource pool accessibility sub-TLV is defined by: 332 0 1 2 3 333 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 334 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 335 | Connectivity | Reserved | 336 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 337 | Ingress Link Set Field A #1 | 338 : : 339 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 340 | RB Set Field A #1 | 341 : : 342 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 343 | Additional Link set and RB set pairs as needed to | 344 : specify PoolIngressMatrix : 345 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 346 | Egress Link Set Field B #1 | 347 : : 348 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 349 | RB Set B Field #1 (for egress connectivity) | 350 : : 351 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 352 | Additional Link Set and RB set pairs as needed to | 353 : specify PoolEgressMatrix : 354 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 356 Where 358 Connectivity indicates how the ingress/egress ports connect to the 359 resource blocks. 361 0 -- the device is fixed (e.g. a connected port must go through 362 the resource block) 364 1 -- the device is switched(e.g., a port can be configured to 365 go through a resource but isn't required ) 367 The Link Set Field is defined in [Gen-Encode]. 369 Note that the direction parameter within the Link Set Field is used 370 to indicate whether the link set is an ingress or egress link set, 371 and the bidirectional value for this parameter is not permitted in 372 this sub-TLV. 374 See Appendix A.1 for an illustration of this encoding. 376 3.2. Resource Block Wavelength Constraints Sub-TLV 378 Resources, such as wavelength converters, etc., may have a limited 379 input or output wavelength ranges. Additionally, due to the structure 380 of the optical system not all wavelengths can necessarily reach or 381 leave all the resources. These properties are described by using one 382 or more resource wavelength restrictions sub-TLVs as defined below: 384 0 1 2 3 385 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 386 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 387 | RB Set Field | 388 : : 389 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 390 | Input Wavelength Set Field | 391 : : 392 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 393 | Output Wavelength Set Field | 394 : : 395 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 397 RB Set Field: 399 A set of resource blocks (RBs) which have the same wavelength 400 restrictions. 402 Input Wavelength Set Field: 404 Indicates the wavelength input restrictions of the RBs in the 405 corresponding RB set. 407 Output Wavelength Set Field: 409 Indicates the wavelength output restrictions of RBs in the 410 corresponding RB set. 412 3.3. Resource Pool State Sub-TLV 414 The state of the pool is given by the number of resources available 415 in each block. The usage state of resources within a block is encoded 416 as either a list of 16 bit integer values or a bit map indicating 417 whether a single resource is available or in use. The bit map 418 encoding is appropriate when resource blocks consist of a single 419 resource. This information can be relatively dynamic, i.e., can 420 change when a connection is established or torn down. 422 0 1 2 3 423 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 424 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 425 | Action | Reserved | 426 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 427 | RB Set Field | 428 : : 429 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 430 | RB Usage state | 431 : : 432 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 434 Where Action = 0 denotes a list of 16 bit integers and Action = 1 435 denotes a bit map. In both cases the elements of the RB Set field are 436 in a one-to-one correspondence with the values in the usage RB usage 437 state area. 439 0 1 2 3 440 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 441 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 442 | Action = 0 | Reserved | 443 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 444 | RB Set Field | 445 : : 446 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 447 | RB#1 state | RB#2 state | 448 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 449 : : 450 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 451 | RB#n-1 state | RB#n state or Padding | 452 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 454 Whether the last 16 bits is a wavelength converter (RB) state or 455 padding is determined by the number of elements in the RB set field. 457 0 1 2 3 458 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 459 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 460 | Action = 1 | Reserved | 461 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 462 | RB Set Field | 463 : : 464 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 465 | RB Usage state bitmap | 466 : : 468 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 469 | ...... | Padding bits | 470 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 472 RB Usage state: Variable Length but must be a multiple of 4 byes. 474 Each bit indicates the usage status of one RB with 0 indicating the 475 RB is available and 1 indicating the RB is in used. The sequence of 476 the bit map is ordered according to the RB Set field with this sub- 477 TLV. 479 Padding bits: Variable Length 481 3.4. Block Shared Access Wavelength Availability sub-TLV 483 Resources blocks may be accessed via a shared fiber. If this is the 484 case then wavelength availability on these shared fibers is needed to 485 understand resource availability. 487 0 1 2 3 488 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 489 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 490 | Resource Block ID |I|E| Reserved | 491 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 492 | Ingress Available Wavelength Set Field | 493 : : 494 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 495 | Egress Available Wavelength Set Field | 496 : : 497 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 499 Resource Block ID: 501 The 16 bit integer used to identify a particular resource block. 503 I bit: 505 Indicates whether the ingress available wavelength set field is 506 included (1) or not (0). 508 E bit: 510 Indicates whether the egress available wavelength set field is 511 included (1) or not (0). 513 Ingress Available Wavelength Set Field: 515 Indicates the wavelengths currently available (not being used) on the 516 ingress fiber to this resource block. 518 Egress Available Wavelength Set Field: 520 Indicates the wavelengths currently available (not being used) on the 521 egress fiber from this resource block. 523 4. Resource Properties Encoding 525 Within a WSON network element (NE) there may be resources with signal 526 compatibility constraints. Such resources typically come in "blocks" 527 which contain a group on identical and indistinguishable individual 528 resources. These resource blocks may consist of regenerators, 529 wavelength converters, etc... Such resource blocks may also 530 constitute the network element as a whole as in the case of an 531 electro optical switch. In this section we primarily focus on the 532 signal compatibility and processing properties of such a resource 533 block, the accessibility aspects of a resource in a shared pool, 534 except for the shared access indicators, were encoded in the previous 535 section. 537 The fundamental properties of a resource block, such as a regenerator 538 or wavelength converter, are: 540 (a)Input constraints (shared ingress, modulation, FEC, bit rate, 541 GPID) 543 (b)Processing capabilities (number of resources in a block, 544 regeneration, performance monitoring, vendor specific) 546 (c)Output Constraints (shared egress, modulation, FEC) 548 4.1. Resource Block Information Sub-TLV 550 Resource Block descriptor sub-TLVs are used to convey relatively 551 static information about individual resource blocks including the 552 resource block properties of section 3. and the number of resources 553 in a block. 555 This sub-TLV has the following format: 557 0 1 2 3 558 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 559 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 560 | RB Set Field | 561 : : 562 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 563 |I|E| Reserved | 564 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 565 | Input Modulation Type List Sub-Sub-TLV (opt) | 566 : : 567 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 568 | Input FEC Type List Sub-Sub-TLV (opt) | 569 : : 570 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 571 | Input Client Signal Type Sub-Sub-TLV (opt) | 572 : : 573 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 574 | Input Bit Rate Range List Sub-Sub-TLV (opt) | 575 : : 576 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 577 | Processing Capabilities List Sub-Sub-TLV (opt) | 578 : : 579 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 580 | Output Modulation Type List Sub-Sub-TLV (opt) | 581 : : 582 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 583 | Output FEC Type List Sub-Sub-TLV (opt) | 584 : : 585 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 587 Where I and E, the shared ingress/egress indicator, is set to 1 if 588 the resource blocks identified in the RB set field utilized a shared 589 fiber for ingress/egress access and set to 0 otherwise. 591 4.2. Input Modulation Format List Sub-Sub-TLV 593 This sub-sub-TLV contains a list of acceptable input modulation 594 formats. 596 Type := Input Modulation Format List 598 Value := A list of Modulation Format Fields 599 4.2.1. Modulation Format Field 601 Two different types of modulation format fields are defined: a 602 standard modulation field and a vendor specific modulation field. 603 Both start with the same 32 bit header shown below. 605 0 1 2 3 606 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 607 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 608 |S|I| Modulation ID | Length | 609 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 611 Where S bit set to 1 indicates a standardized modulation format and S 612 bit set to 0 indicates a vendor specific modulation format. The 613 length is the length in bytes of the entire modulation type field. 615 Where I bit set to 1 indicates it is an input modulation constraint 616 and I bit set to 0 indicates it is an output modulation constraint. 618 Note that if an output modulation is not specified then it is implied 619 that it is the same as the input modulation. In such case, no 620 modulation conversion is performed. 622 The format for the standardized type for the input modulation is 623 given by: 625 0 1 2 3 626 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 627 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 628 |1|1| Modulation ID | Length | 629 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 630 | Possible additional modulation parameters depending upon | 631 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 632 : the modulation ID : 633 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 635 Modulation ID (S bit = 1); Input modulation (I bit = 1) 637 Takes on the following currently defined values: 639 0 Reserved 641 1 optical tributary signal class NRZ 1.25G 642 2 optical tributary signal class NRZ 2.5G 644 3 optical tributary signal class NRZ 10G 646 4 optical tributary signal class NRZ 40G 648 5 optical tributary signal class RZ 40G 650 Note that future modulation types may require additional parameters 651 in their characterization. 653 The format for vendor specific modulation field (for input 654 constraint) is given by: 656 0 1 2 3 657 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 658 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 659 |0|1| Vendor Modulation ID | Length | 660 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 661 | Enterprise Number | 662 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 663 : Any vendor specific additional modulation parameters : 664 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 666 Vendor Modulation ID 668 This is a vendor assigned identifier for the modulation type. 670 Enterprise Number 672 A unique identifier of an organization encoded as a 32-bit integer. 673 Enterprise Numbers are assigned by IANA and managed through an IANA 674 registry [RFC2578]. 676 Vendor Specific Additional parameters 678 There can be potentially additional parameters characterizing the 679 vendor specific modulation. 681 4.3. Input FEC Type List Sub-Sub-TLV 683 This sub-sub-TLV contains a list of acceptable FEC types. 685 Type := Input FEC Type field List 687 Value:= A list of FEC type Fields 689 4.3.1. FEC Type Field 691 The FEC type Field may consist of two different formats of fields: a 692 standard FEC field or a vendor specific FEC field. Both start with 693 the same 32 bit header shown below. 695 0 1 2 3 696 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 697 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 698 |S|I| FEC ID | Length | 699 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 700 | Possible additional FEC parameters depending upon | 701 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 702 : the FEC ID : 703 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 705 Where S bit set to 1 indicates a standardized FEC format and S bit 706 set to 0 indicates a vendor specific FEC format. The length is the 707 length in bytes of the entire FEC type field. 709 Where I bit set to 1 indicates it is an input FEC constraint and I 710 bit set to 0 indicates it is an output FEC constraint. 712 Note that if an output FEC is not specified then it is implied that 713 it is the same as the input FEC. In such case, no FEC conversion is 714 performed. 716 The length is the length in bytes of the entire FEC type field. 718 The format for input standard FEC field is given by: 720 0 1 2 3 721 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 722 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 723 |1|1| FEC ID | Length | 724 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 725 | Possible additional FEC parameters depending upon | 726 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 727 : the FEC ID : 728 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 730 Takes on the following currently defined values for the standard 731 FEC ID: 733 0 Reserved 735 1 G.709 RS FEC 737 2 G.709V compliant Ultra FEC 739 3 G.975.1 Concatenated FEC 740 (RS(255,239)/CSOC(n0/k0=7/6,J=8)) 742 4 G.975.1 Concatenated FEC (BCH(3860,3824)/BCH(2040,1930)) 744 5 G.975.1 Concatenated FEC (RS(1023,1007)/BCH(2407,1952)) 746 6 G.975.1 Concatenated FEC (RS(1901,1855)/Extended Hamming 747 Product Code (512,502)X(510,500)) 749 7 G.975.1 LDPC Code 751 8 G.975.1 Concatenated FEC (Two orthogonally concatenated 752 BCH codes) 754 9 G.975.1 RS(2720,2550) 756 10 G.975.1 Concatenated FEC (Two interleaved extended BCH 757 (1020,988) codes) 759 Where RS stands for Reed-Solomon and BCH for Bose-Chaudhuri- 760 Hocquengham. 762 The format for input vendor-specific FEC field is given by: 764 0 1 2 3 765 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 766 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 767 |0|1| Vendor FEC ID | Length | 768 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 769 | Enterprise Number | 770 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 771 : Any vendor specific additional FEC parameters : 772 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 774 Vendor FEC ID 776 This is a vendor assigned identifier for the FEC type. 778 Enterprise Number 780 A unique identifier of an organization encoded as a 32-bit integer. 781 Enterprise Numbers are assigned by IANA and managed through an IANA 782 registry [RFC2578]. 784 Vendor Specific Additional FEC parameters 786 There can be potentially additional parameters characterizing the 787 vendor specific FEC. 789 4.4. Input Bit Range List Sub-Sub-TLV 791 This sub-sub-TLV contains a list of acceptable input bit rate ranges. 793 Type := Input Bit Range List 795 Value:= A list of Bit Range Fields 797 4.4.1. Bit Range Field 799 The bit rate range list sub-TLV makes use of the following bit rate 800 range field: 802 0 1 2 3 803 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 804 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 805 | Starting Bit Rate | 806 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 807 | Ending Bit Rate | 808 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 810 The starting and ending bit rates are given as 32 bit IEEE floating 811 point numbers in bits per second. Note that the starting bit rate is 812 less than or equal to the ending bit rate. 814 The bit rate range list sub-TLV is then given by: 816 0 1 2 3 817 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 818 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 819 | | 820 +-+-+-+-+-+-+-+-+-+-+-+-+ Bit Range Field #1 +-+-+-+-+-+-+-+-+-+ 821 | | 822 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 823 : : : 824 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 825 | | 826 +-+-+-+-+-+-+-+-+-+-+-+-+ Bit Range Field #M +-+-+-+-+-+-+-+-+-+ 827 | | 828 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 830 4.5. Input Client Signal List Sub-Sub-TLV 832 This sub-sub-TLV contains a list of acceptable input client signal 833 types. 835 Type := Input Client Signal List 837 Value:= A list of GPIDs 839 The acceptable client signal list sub-TLV is a list of Generalized 840 Protocol Identifiers (GPIDs). GPIDs are assigned by IANA and many are 841 defined in [RFC3471] and [RFC4328]. 843 0 1 2 3 844 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 845 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 846 | Number of GPIDs | GPID #1 | 847 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 848 : | : 849 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 850 | GPID #N | | 851 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 853 Where the number of GPIDs is an integer greater than or equal to one. 855 4.6. Processing Capability List Sub-Sub-TLV 857 This sub-sub-TLV contains a list of resource block processing 858 capabilities. 860 Type := Processing Capabilities List 862 Value:= A list of Processing Capabilities Fields 864 The processing capability list sub-TLV is a list of WSON network 865 element (NE) that can perform signal processing functions including: 867 1. Number of Resources within the block 869 2. Regeneration capability 871 3. Fault and performance monitoring 873 4. Vendor Specific capability 875 Note that the code points for Fault and performance monitoring and 876 vendor specific capability are subject to further study. 878 4.6.1. Processing Capabilities Field 880 The processing capability field is then given by: 882 0 1 2 3 883 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 884 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 885 | Processing Cap ID | Length | 886 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 887 | Possible additional capability parameters depending upon | 888 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 889 : the processing ID : 890 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 892 When the processing Cap ID is "number of resources" the format is 893 simply: 895 0 1 2 3 896 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 897 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 898 | Processing Cap ID | Length = 8 | 899 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 900 | Number of resources per block | 901 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 903 When the processing Cap ID is "regeneration capability", the 904 following additional capability parameters are provided in the sub- 905 TLV: 907 0 1 2 3 908 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 909 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 910 | T | C | Reserved | 911 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 913 Where T bit indicates the type of regenerator: 915 T=0: Reserved 917 T=1: 1R Regenerator 919 T=2: 2R Regenerator 921 T=3: 3R Regenerator 923 Where C bit indicates the capability of regenerator: 925 C=0: Reserved 927 C=1: Fixed Regeneration Point 929 C=2: Selective Regeneration Point 931 Note that when the capability of regenerator is indicated to be 932 Selective Regeneration Pools, regeneration pool properties such as 933 ingress and egress restrictions and availability need to be 934 specified. This encoding is to be determined in the later revision. 936 4.7. Output Modulation Format List Sub-Sub-TLV 938 This sub-sub-TLV contains a list of available output modulation 939 formats. 941 Type := Output Modulation Format List 943 Value:= A list of Modulation Format Fields 945 4.8. Output FEC Type List Sub-Sub-TLV 947 This sub-sub-TLV contains a list of output FEC types. 949 Type := Output FEC Type field List 951 Value:= A list of FEC type Fields 953 5. Security Considerations 955 This document defines protocol-independent encodings for WSON 956 information and does not introduce any security issues. 958 However, other documents that make use of these encodings within 959 protocol extensions need to consider the issues and risks associated 960 with, inspection, interception, modification, or spoofing of any of 961 this information. It is expected that any such documents will 962 describe the necessary security measures to provide adequate 963 protection. 965 6. IANA Considerations 967 TBD. Once our approach is finalized we may need identifiers for the 968 various sub-sub-TLVs. 970 7. Acknowledgments 972 This document was prepared using 2-Word-v2.0.template.dot. 974 APPENDIX A: Encoding Examples 976 A.1. Wavelength Converter Accessibility Sub-TLV 978 Example: 980 Figure 1 shows a wavelength converter pool architecture know as 981 "shared per fiber". In this case the ingress and egress pool matrices 982 are simply: 984 +-----+ +-----+ 985 | 1 1 | | 1 0 | 986 WI =| |, WE =| | 987 | 1 1 | | 0 1 | 988 +-----+ +-----+ 990 +-----------+ +------+ 991 | |--------------------->| | 992 | |--------------------->| C | 993 /| | |--------------------->| o | 994 /D+--->| |--------------------->| m | 995 + e+--->| | | b |========> 996 ========>| M| | Optical | +-----------+ | i | Port E1 997 Port I1 + u+--->| Switch | | WC Pool | | n | 998 \x+--->| | | +-----+ | | e | 999 \| | +----+->|WC #1|--+---->| r | 1000 | | | +-----+ | +------+ 1001 | | | | +------+ 1002 /| | | | +-----+ | | | 1003 /D+--->| +----+->|WC #2|--+---->| C | 1004 + e+--->| | | +-----+ | | o | 1005 ========>| M| | | +-----------+ | m |========> 1006 Port I2 + u+--->| | | b | Port E2 1007 \x+--->| |--------------------->| i | 1008 \| | |--------------------->| n | 1009 | |--------------------->| e | 1010 | |--------------------->| r | 1011 +-----------+ +------+ 1012 Figure 1 An optical switch featuring a shared per fiber wavelength 1013 converter pool architecture. 1015 This wavelength converter pool can be encoded as follows: 1017 0 1 2 3 1018 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1019 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1020 | Connectivity=1| Reserved | 1021 Note: I1,I2 can connect to either WC1 or WC2 1022 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1023 | Action=0 |0 1|0 0 0 0 0 0| Length = 12 | 1024 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1025 | Link Local Identifier = #1 | 1026 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1027 | Link Local Identifier = #2 | 1028 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1029 | Action=0 |1| Reserved | Length = 8 | 1030 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1031 | RB ID = #1 | RB ID = #2 | 1032 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1033 Note: WC1 can only connect to E1 1034 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1035 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 | 1036 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1037 | Link Local Identifier = #1 | 1038 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1039 | Action=0 |0| Reserved | Length = 8 | 1040 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1041 | RB ID = #1 | zero padding | 1042 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1043 Note: WC2 can only connect to E2 1044 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1045 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 | 1046 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1047 | Link Local Identifier = #2 | 1048 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1049 | Action=0 |0| | Length = 8 | 1050 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1051 | RB ID = #2 | zero padding | 1052 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1054 A.2. Wavelength Conversion Range Sub-TLV 1056 Example: 1058 We give an example based on figure 1 about how to represent the 1059 wavelength conversion range of wavelength converters. Suppose the 1060 wavelength range of input and output of WC1 and WC2 are {L1, L2, L3, 1061 L4}: 1063 0 1 2 3 1064 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1065 Note: WC Set 1066 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1067 | Action=0 |1| Reserved | Length = 8 | 1068 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1069 | WC ID = #1 | WC ID = #2 | 1070 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1071 Note: wavelength input range 1072 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1073 | 2 | Num Wavelengths = 4 | Length = 8 | 1074 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1075 |Grid | C.S. | Reserved | n for lowest frequency = 1 | 1076 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1077 Note: wavelength output range 1078 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1079 | 2 | Num Wavelengths = 4 | Length = 8 | 1080 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1081 |Grid | C.S. | Reserved | n for lowest frequency = 1 | 1082 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1084 A.3. An OEO Switch with DWDM Optics 1086 In Figure 2 we show an electronic switch fabric surrounded by DWDM 1087 optics. In this example the electronic fabric can can handle either 1088 G.709 or SDH signals only (2.5 or 10 Gbps). To describe this node we 1089 have the potential information: 1091 ::= [Other GMPLS sub- 1092 TLVs][...] [][] 1094 In this case there is complete port to port connectivity so the 1095 is not required. In addition since there are 1096 sufficient ports to handle all wavelength signals we will not need 1097 the element. 1099 Hence our attention will be focused on the sub-TLV: 1101 ::= 1102 [...][...] 1104 /| +-----------+ +-------------+ +------+ 1105 /D+--->| +--->|Tunable Laser|-->| | 1106 + e+--->| | +-------------+ | C | 1107 ========>| M| | | ... | o |========> 1108 Port I1 + u+--->| | +-------------+ | m | Port E1 1109 \x+--->| |--->|Tunable Laser|-->| b | 1110 \| | Electric | +-------------+ +------+ 1111 | Switch | 1112 /| | | +-------------+ +------+ 1113 /D+--->| +--->|Tunable Laser|-->| | 1114 + e+--->| | +-------------+ | C | 1115 ========>| M| | | ... | o |========> 1116 Port I2 + u+--->| | +-------------+ | m | Port E2 1117 \x+--->| +--->|Tunable Laser|-->| b | 1118 \| | | +-------------+ +------+ 1119 | | 1120 /| | | +-------------+ +------+ 1121 /D+--->| |--->|Tunable Laser|-->| | 1122 + e+--->| | +-------------+ | C | 1123 ========>| M| | | ... | o |========> 1124 Port I3 + u+--->| | +-------------+ | m | Port E3 1125 \x+--->| |--->|Tunable Laser|-->| b | 1126 \| +-----------+ +-------------+ +------+ 1128 Figure 2 An optical switch built around an electronic switching 1129 fabric. 1131 The resource block information will tell us about the processing 1132 constraints of the receivers, transmitters and the electronic switch. 1133 The resource availability information, although very simple, tells us 1134 that all signals must traverse the electronic fabric (fixed 1135 connectivity). The resource wavelength constraints are not needed 1136 since there are no special wavelength constraints for the resources 1137 that would not appear as port/wavelength constraints. 1139 : 1141 0 1 2 3 1142 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1143 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1144 | RB Set Field | 1145 : (only one resource block in this example with shared | 1146 | input/output case) | 1147 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1148 |0|0| Reserved | 1149 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1150 | Input Modulation Type List Sub-Sub-TLV | 1151 : (The receivers can only process NRZ) : 1152 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1153 | Input FEC Type List Sub-Sub-TLV | 1154 : (Only Standard SDH and G.709 FECs) : 1155 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1156 | Input Client Signal Type Sub-TLV | 1157 : (GPIDs for SDH and G.709) : 1158 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1159 | Input Bit Rate Range List Sub-Sub-TLV | 1160 : (2.5Gbps, 10Gbps) : 1161 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1162 | Processing Capabilities List Sub-Sub-TLV | 1163 : Fixed (non optional) 3R regeneration : 1164 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1165 | Output Modulation Type List Sub-Sub-TLV | 1166 : NRZ : 1167 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1168 | Output FEC Type List Sub-Sub-TLV | 1169 : Standard SDH, G.709 FECs : 1170 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1172 Since we have fixed connectivity to resource block (the electronic 1173 switch) we get : 1175 0 1 2 3 1176 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1177 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1178 | Connectivity=1|Reserved | 1179 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1180 | Ingress Link Set Field A #1 | 1181 : (All ingress links connect to resource) : 1182 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1183 | RB Set Field A #1 | 1184 : (trivial set only one resource block) : 1185 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1186 | Egress Link Set Field B #1 | 1187 : (All egress links connect to resource) : 1188 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1190 8. References 1192 8.1. Normative References 1194 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 1195 Requirement Levels", BCP 14, RFC 2119, March 1997. 1197 [RFC2578] McCloghrie, K., Perkins, D., and J. Schoenwaelder, 1198 "Structure of Management Information Version 2 (SMIv2)", 1199 STD 58, RFC 2578, April 1999. 1201 [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching 1202 (GMPLS) Signaling Functional Description", RFC 3471, 1203 January 2003. 1205 [RFC4328] Papadimitriou, D., Ed., "Generalized Multi-Protocol Label 1206 Switching (GMPLS) Signaling Extensions for G.709 Optical 1207 Transport Networks Control", RFC 4328, January 2006. 1209 [G.694.1] ITU-T Recommendation G.694.1, "Spectral grids for WDM 1210 applications: DWDM frequency grid", June, 2002. 1212 8.2. Informative References 1214 [G.694.1] ITU-T Recommendation G.694.1, Spectral grids for WDM 1215 applications: DWDM frequency grid, June 2002. 1217 [G.694.2] ITU-T Recommendation G.694.2, Spectral grids for WDM 1218 applications: CWDM wavelength grid, December 2003. 1220 [Gen-Encode] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "General 1221 Network Element Constraint Encoding for GMPLS Controlled 1222 Networks", work in progress: draft-ietf-ccamp-general-ext- 1223 encode-00.txt. 1225 [Otani] T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized 1226 Labels for G.694 Lambda-Switching Capable Label Switching 1227 Routers", work in progress: draft-ietf-ccamp-gmpls-g-694- 1228 lambda-labels. 1230 [WSON-Frame] Y. Lee, G. Bernstein, W. Imajuku, "Framework for GMPLS 1231 and PCE Control of Wavelength Switched Optical Networks", 1232 work in progress: draft-ietf-ccamp-wavelength-switched- 1233 framework, Marh 2009. 1235 [WSON-Info] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and 1236 Wavelength Assignment Information Model for Wavelength 1237 Switched Optical Networks", work in progress: draft-ietf- 1238 ccamp-rwa-info, March 2009. 1240 9. Contributors 1242 Diego Caviglia 1243 Ericsson 1244 Via A. Negrone 1/A 16153 1245 Genoa Italy 1247 Phone: +39 010 600 3736 1248 Email: diego.caviglia@(marconi.com, ericsson.com) 1250 Anders Gavler 1251 Acreo AB 1252 Electrum 236 1253 SE - 164 40 Kista Sweden 1255 Email: Anders.Gavler@acreo.se 1257 Jonas Martensson 1258 Acreo AB 1259 Electrum 236 1260 SE - 164 40 Kista, Sweden 1262 Email: Jonas.Martensson@acreo.se 1264 Itaru Nishioka 1265 NEC Corp. 1266 1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666 1267 Japan 1269 Phone: +81 44 396 3287 1270 Email: i-nishioka@cb.jp.nec.com 1272 Authors' Addresses 1274 Greg M. Bernstein (ed.) 1275 Grotto Networking 1276 Fremont California, USA 1278 Phone: (510) 573-2237 1279 Email: gregb@grotto-networking.com 1281 Young Lee (ed.) 1282 Huawei Technologies 1283 1700 Alma Drive, Suite 100 1284 Plano, TX 75075 1285 USA 1287 Phone: (972) 509-5599 (x2240) 1288 Email: ylee@huawei.com 1290 Dan Li 1291 Huawei Technologies Co., Ltd. 1292 F3-5-B R&D Center, Huawei Base, 1293 Bantian, Longgang District 1294 Shenzhen 518129 P.R.China 1296 Phone: +86-755-28973237 1297 Email: danli@huawei.com 1299 Wataru Imajuku 1300 NTT Network Innovation Labs 1301 1-1 Hikari-no-oka, Yokosuka, Kanagawa 1302 Japan 1304 Phone: +81-(46) 859-4315 1305 Email: imajuku.wataru@lab.ntt.co.jp 1306 Jianrui Han 1307 Huawei Technologies Co., Ltd. 1308 F3-5-B R&D Center, Huawei Base, 1309 Bantian, Longgang District 1310 Shenzhen 518129 P.R.China 1312 Phone: +86-755-28972916 1313 Email: hanjianrui@huawei.com 1315 Intellectual Property Statement 1317 The IETF Trust takes no position regarding the validity or scope of 1318 any Intellectual Property Rights or other rights that might be 1319 claimed to pertain to the implementation or use of the technology 1320 described in any IETF Document or the extent to which any license 1321 under such rights might or might not be available; nor does it 1322 represent that it has made any independent effort to identify any 1323 such rights. 1325 Copies of Intellectual Property disclosures made to the IETF 1326 Secretariat and any assurances of licenses to be made available, or 1327 the result of an attempt made to obtain a general license or 1328 permission for the use of such proprietary rights by implementers or 1329 users of this specification can be obtained from the IETF on-line IPR 1330 repository at http://www.ietf.org/ipr 1332 The IETF invites any interested party to bring to its attention any 1333 copyrights, patents or patent applications, or other proprietary 1334 rights that may cover technology that may be required to implement 1335 any standard or specification contained in an IETF Document. Please 1336 address the information to the IETF at ietf-ipr@ietf.org. 1338 Disclaimer of Validity 1340 All IETF Documents and the information contained therein are provided 1341 on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE 1342 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE 1343 IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL 1344 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 1345 WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE 1346 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS 1347 FOR A PARTICULAR PURPOSE. 1349 Acknowledgment 1351 Funding for the RFC Editor function is currently provided by the 1352 Internet Society.