idnits 2.17.1 draft-ietf-ccamp-rwa-wson-encode-11.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (March 14, 2011) is 4790 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Unused Reference: 'G.694.1' is defined on line 1231, but no explicit reference was found in the text == Unused Reference: 'G.694.2' is defined on line 1234, but no explicit reference was found in the text -- Possible downref: Non-RFC (?) normative reference: ref. 'G.694.1' Summary: 0 errors (**), 0 flaws (~~), 3 warnings (==), 2 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 1 Network Working Group G. Bernstein 2 Internet Draft Grotto Networking 3 Intended status: Standards Track Y. Lee 4 Expires: September 2011 D. Li 5 Huawei 6 W. Imajuku 7 NTT 9 March 14, 2011 11 Routing and Wavelength Assignment Information Encoding for 12 Wavelength Switched Optical Networks 14 draft-ietf-ccamp-rwa-wson-encode-11.txt 16 Status of this Memo 18 This Internet-Draft is submitted to IETF in full conformance with the 19 provisions of BCP 78 and BCP 79. 21 Internet-Drafts are working documents of the Internet Engineering 22 Task Force (IETF), its areas, and its working groups. Note that 23 other groups may also distribute working documents as Internet- 24 Drafts. 26 Internet-Drafts are draft documents valid for a maximum of six months 27 and may be updated, replaced, or obsoleted by other documents at any 28 time. It is inappropriate to use Internet-Drafts as reference 29 material or to cite them other than as "work in progress." 31 The list of current Internet-Drafts can be accessed at 32 http://www.ietf.org/ietf/1id-abstracts.txt 34 The list of Internet-Draft Shadow Directories can be accessed at 35 http://www.ietf.org/shadow.html 37 This Internet-Draft will expire on September 14, 2011. 39 Copyright Notice 41 Copyright (c) 2011 IETF Trust and the persons identified as the 42 document authors. All rights reserved. 44 This document is subject to BCP 78 and the IETF Trust's Legal 45 Provisions Relating to IETF Documents 46 (http://trustee.ietf.org/license-info) in effect on the date of 47 publication of this document. Please review these documents 48 carefully, as they describe your rights and restrictions with respect 49 to this document. Code Components extracted from this document must 50 include Simplified BSD License text as described in Section 4.e of 51 the Trust Legal Provisions and are provided without warranty as 52 described in the Simplified BSD License. 54 Abstract 56 A wavelength switched optical network (WSON) requires that certain 57 key information elements are made available to facilitate path 58 computation and the establishment of label switching paths (LSPs). 59 The information model described in "Routing and Wavelength Assignment 60 Information for Wavelength Switched Optical Networks" shows what 61 information is required at specific points in the WSON. Part of the 62 WSON information model contains aspects that may be of general 63 applicability to other technologies, while other parts are fairly 64 specific to WSONs. 66 This document provides efficient, protocol-agnostic encodings for the 67 WSON specific information elements. It is intended that protocol- 68 specific documents will reference this memo to describe how 69 information is carried for specific uses. Such encodings can be used 70 to extend GMPLS signaling and routing protocols. In addition these 71 encodings could be used by other mechanisms to convey this same 72 information to a path computation element (PCE). 74 Conventions used in this document 76 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 77 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 78 document are to be interpreted as described in RFC-2119 [RFC2119]. 80 Table of Contents 82 1. Introduction...................................................4 83 1.1. Revision History..........................................4 84 1.1.1. Changes from 00 draft................................4 85 1.1.2. Changes from 01 draft................................5 86 1.1.3. Changes from 02 draft................................5 87 1.1.4. Changes from 03 draft................................5 88 1.1.5. Changes from 04 draft................................5 89 1.1.6. Changes from 05 draft................................5 90 1.1.7. Changes from 06 draft................................5 91 1.1.8. Changes from 07 draft................................5 92 1.1.9. Changes from 08 draft................................6 93 1.1.10. Changes from 09 draft...............................6 94 1.1.11. Changes from 10 draft...............................6 95 2. Terminology....................................................6 96 3. Resource Pool Accessibility/Availability.......................7 97 3.1. Resource Pool Accessibility Sub-TLV.......................8 98 3.2. Resource Block Wavelength Constraints Sub-TLV............10 99 3.3. Resource Pool State Sub-TLV..............................10 100 3.4. Block Shared Access Wavelength Availability sub-TLV......12 101 4. Resource Properties Encoding..................................13 102 4.1. Resource Block Information Sub-TLV.......................13 103 4.2. Input Modulation Format List Sub-Sub-TLV.................14 104 4.2.1. Modulation Format Field.............................15 105 4.3. Input FEC Type List Sub-Sub-TLV..........................17 106 4.3.1. FEC Type Field......................................17 107 4.4. Input Bit Range List Sub-Sub-TLV.........................19 108 4.4.1. Bit Range Field.....................................19 109 4.5. Input Client Signal List Sub-Sub-TLV.....................20 110 4.6. Processing Capability List Sub-Sub-TLV...................21 111 4.6.1. Processing Capabilities Field.......................21 112 4.7. Output Modulation Format List Sub-Sub-TLV................23 113 4.8. Output FEC Type List Sub-Sub-TLV.........................23 114 5. Security Considerations.......................................23 115 6. IANA Considerations...........................................23 116 7. Acknowledgments...............................................23 117 APPENDIX A: Encoding Examples....................................23 118 A.1. Wavelength Converter Accessibility Sub-TLV...............23 119 A.2. Wavelength Conversion Range Sub-TLV......................23 120 A.3. An OEO Switch with DWDM Optics...........................23 121 8. References....................................................23 122 8.1. Normative References.....................................23 123 8.2. Informative References...................................23 124 9. Contributors..................................................23 125 Authors' Addresses...............................................23 126 Intellectual Property Statement..................................23 127 Disclaimer of Validity...........................................23 129 1. Introduction 131 A Wavelength Switched Optical Network (WSON) is a Wavelength Division 132 Multiplexing (WDM) optical network in which switching is performed 133 selectively based on the center wavelength of an optical signal. 135 [WSON-Frame] describes a framework for Generalized Multiprotocol 136 Label Switching (GMPLS) and Path Computation Element (PCE) control of 137 a WSON. Based on this framework, [WSON-Info] describes an information 138 model that specifies what information is needed at various points in 139 a WSON in order to compute paths and establish Label Switched Paths 140 (LSPs). 142 This document provides efficient encodings of information needed by 143 the routing and wavelength assignment (RWA) process in a WSON. Such 144 encodings can be used to extend GMPLS signaling and routing 145 protocols. In addition these encodings could be used by other 146 mechanisms to convey this same information to a path computation 147 element (PCE). Note that since these encodings are relatively 148 efficient they can provide more accurate analysis of the control 149 plane communications/processing load for WSONs looking to utilize a 150 GMPLS control plane. 152 Note that encodings of information needed by the routing and label 153 assignment process applicable to general networks beyond WSON are 154 addressed in a separate document [Gen-Encode]. 156 1.1. Revision History 158 1.1.1. Changes from 00 draft 160 Edits to make consistent with update to [Otani], i.e., removal of 161 sign bit. 163 Clarification of TBD on connection matrix type and possibly 164 numbering. 166 New sections for wavelength converter pool encoding: Wavelength 167 Converter Set Sub-TLV, Wavelength Converter Accessibility Sub-TLV, 168 Wavelength Conversion Range Sub-TLV, WC Usage State Sub-TLV. 170 Added optional wavelength converter pool TLVs to the composite node 171 TLV. 173 1.1.2. Changes from 01 draft 175 The encoding examples have been moved to an appendix. Classified and 176 corrected information elements as either reusable fields or sub-TLVs. 177 Updated Port Wavelength Restriction sub-TLV. Added available 178 wavelength and shared backup wavelength sub-TLVs. Changed the title 179 and scope of section 6 to recommendations since the higher level TLVs 180 that this encoding will be used in is somewhat protocol specific. 182 1.1.3. Changes from 02 draft 184 Removed inconsistent text concerning link local identifiers and the 185 link set field. 187 Added E bit to the Wavelength Converter Set Field. 189 Added bidirectional connectivity matrix example. Added simple link 190 set example. Edited examples for consistency. 192 1.1.4. Changes from 03 draft 194 Removed encodings for general concepts to [Gen-Encode]. 196 Added in WSON signal compatibility and processing capability 197 information encoding. 199 1.1.5. Changes from 04 draft 201 Added encodings to deal with access to resource blocks via shared 202 fiber. 204 1.1.6. Changes from 05 draft 206 Revised the encoding for the "shared access" indicators to only use 207 one bit each for ingress and egress. 209 1.1.7. Changes from 06 draft 211 Removed section on "WSON Encoding Usage Recommendations" 213 1.1.8. Changes from 07 draft 215 Section 3: Enhanced text to clarify relationship between pools, 216 blocks and resources. Section 3.1, 3.2: Change title to clarify Pool- 217 Block relationship. Section 3.3: clarify block-resource state. 219 Section 4: Deleted reference to previously removed RBNF element. 220 Fixed TLV figures and descriptions for consistent sub-sub-TLV 221 nomenclature. 223 1.1.9. Changes from 08 draft 225 Fixed ordering of fields in second half of sub-TLV example in 226 Appendix A.1. 228 Clarifying edits in section 3 on pools, blocks, and resources. 230 1.1.10. Changes from 09 draft 232 Fixed the "Block Shared Access Wavelength Availability sub-TLV" of 233 section 3.4 to use an "RB set field" rather than a single RB ID. 234 Removed all 1st person idioms. 236 1.1.11. Changes from 10 draft 238 Removed remaining 1st person idioms. Updated IANA section. 240 2. Terminology 242 CWDM: Coarse Wavelength Division Multiplexing. 244 DWDM: Dense Wavelength Division Multiplexing. 246 FOADM: Fixed Optical Add/Drop Multiplexer. 248 ROADM: Reconfigurable Optical Add/Drop Multiplexer. A reduced port 249 count wavelength selective switching element featuring ingress and 250 egress line side ports as well as add/drop side ports. 252 RWA: Routing and Wavelength Assignment. 254 Wavelength Conversion. The process of converting an information 255 bearing optical signal centered at a given wavelength to one with 256 "equivalent" content centered at a different wavelength. Wavelength 257 conversion can be implemented via an optical-electronic-optical (OEO) 258 process or via a strictly optical process. 260 WDM: Wavelength Division Multiplexing. 262 Wavelength Switched Optical Network (WSON): A WDM based optical 263 network in which switching is performed selectively based on the 264 center wavelength of an optical signal. 266 3. Resource Pool Accessibility/Availability 268 This section defines the sub-TLVs for dealing with accessibility and 269 availability of resource blocks within a pool of resources. These 270 include the ResourceBlockAccessibility, ResourceWaveConstraints, and 271 RBPoolState sub-TLVs. All these sub-TLVs are concerned with sets of 272 resources. As described in [WSON-Info] a resource pool is composed of 273 blocks of resources with similar properties and accessibility 274 characteristics. 276 In a WSON node that includes resource blocks (RB) denoting subsets of 277 these blocks allows one to efficiently describe common properties the 278 blocks and to describe the structure, if non-trivial, of the resource 279 pool. The RB Set field is defined in a similar manner to the label 280 set concept of [RFC3471]. 282 The information carried in a RB set field is defined by: 284 0 1 2 3 285 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 286 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 287 | Action |E|C| Reserved | Length | 288 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 289 | RB Identifier 1 | RB Identifier 2 | 290 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 291 : : : 292 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 293 | RB Identifier n-1 | RB Identifier n | 294 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 296 Action: 8 bits 298 0 - Inclusive List 300 Indicates that the TLV contains one or more RB elements that are 301 included in the list. 303 2 - Inclusive Range 305 Indicates that the TLV contains a range of RBs. The object/TLV 306 contains two WC elements. The first element indicates the start of 307 the range. The second element indicates the end of the range. A value 308 of zero indicates that there is no bound on the corresponding portion 309 of the range. 311 E (Even bit): Set to 0 denotes an odd number of RB identifiers in 312 the list (last entry zero pad); Set to 1 denotes an even number of RB 313 identifiers in the list (no zero padding). 315 C (Connectivity bit): Set to 0 to denote fixed (possibly multi- 316 cast) connectivity; Set to 1 to denote potential (switched) 317 connectivity. Used in resource pool accessibility sub-TLV. Ignored 318 elsewhere. 320 Reserved: 6 bits 322 This field is reserved. It MUST be set to zero on transmission and 323 MUST be ignored on receipt. 325 Length: 16 bits 327 The total length of this field in bytes. 329 RB Identifier: 331 The RB identifier represents the ID of the resource block which is a 332 16 bit integer. 334 3.1. Resource Pool Accessibility Sub-TLV 336 This sub-TLV describes the structure of the resource pool in relation 337 to the switching device. In particular it indicates the ability of an 338 ingress port to reach a resource block and of a resource block to 339 reach a particular egress port. This is the PoolIngressMatrix and 340 PoolEgressMatrix of [WSON-Info]. 342 The resource pool accessibility sub-TLV is defined by: 344 0 1 2 3 345 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 346 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 347 | Connectivity | Reserved | 348 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 349 | Ingress Link Set Field A #1 | 350 : : 351 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 352 | RB Set Field A #1 | 353 : : 354 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 355 | Additional Link set and RB set pairs as needed to | 356 : specify PoolIngressMatrix : 357 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 358 | Egress Link Set Field B #1 | 359 : : 360 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 361 | RB Set B Field #1 (for egress connectivity) | 362 : : 363 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 364 | Additional Link Set and RB set pairs as needed to | 365 : specify PoolEgressMatrix : 366 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 368 Where 370 Connectivity indicates how the ingress/egress ports connect to the 371 resource blocks. 373 0 -- the device is fixed (e.g., a connected port must go 374 through the resource block) 376 1 -- the device is switched (e.g., a port can be configured to 377 go through a resource but isn't required) 379 The Link Set Field is defined in [Gen-Encode]. 381 Note that the direction parameter within the Link Set Field is used 382 to indicate whether the link set is an ingress or egress link set, 383 and the bidirectional value for this parameter is not permitted in 384 this sub-TLV. 386 See Appendix A.1 for an illustration of this encoding. 388 3.2. Resource Block Wavelength Constraints Sub-TLV 390 Resources, such as wavelength converters, etc., may have a limited 391 input or output wavelength ranges. Additionally, due to the structure 392 of the optical system not all wavelengths can necessarily reach or 393 leave all the resources. These properties are described by using one 394 or more resource wavelength restrictions sub-TLVs as defined below: 396 0 1 2 3 397 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 398 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 399 | RB Set Field | 400 : : 401 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 402 | Input Wavelength Set Field | 403 : : 404 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 405 | Output Wavelength Set Field | 406 : : 407 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 409 RB Set Field: 411 A set of resource blocks (RBs) which have the same wavelength 412 restrictions. 414 Input Wavelength Set Field: 416 Indicates the wavelength input restrictions of the RBs in the 417 corresponding RB set. 419 Output Wavelength Set Field: 421 Indicates the wavelength output restrictions of RBs in the 422 corresponding RB set. 424 3.3. Resource Pool State Sub-TLV 426 The state of the pool is given by the number of resources available 427 in each block. The usage state of resources within a block is encoded 428 as either a list of 16 bit integer values or a bit map indicating 429 whether a single resource is available or in use. The bit map 430 encoding is appropriate when resource blocks consist of a single 431 resource. This information can be relatively dynamic, i.e., can 432 change when a connection is established or torn down. 434 0 1 2 3 435 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 436 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 437 | Action | Reserved | 438 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 439 | RB Set Field | 440 : : 441 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 442 | RB Usage state | 443 : : 444 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 446 Where Action = 0 denotes a list of 16 bit integers and Action = 1 447 denotes a bit map. In both cases the elements of the RB Set field are 448 in a one-to-one correspondence with the values in the usage RB usage 449 state area. 451 0 1 2 3 452 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 453 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 454 | Action = 0 | Reserved | 455 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 456 | RB Set Field | 457 : : 458 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 459 | RB#1 state | RB#2 state | 460 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 461 : : 462 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 463 | RB#n-1 state | RB#n state or Padding | 464 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 466 Whether the last 16 bits is a wavelength converter (RB) state or 467 padding is determined by the number of elements in the RB set field. 469 0 1 2 3 470 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 471 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 472 | Action = 1 | Reserved | 473 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 474 | RB Set Field | 475 : : 476 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 477 | RB Usage state bitmap | 478 : : 480 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 481 | ...... | Padding bits | 482 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 484 RB Usage state: Variable Length but must be a multiple of 4 byes. 486 Each bit indicates the usage status of one RB with 0 indicating the 487 RB is available and 1 indicating the RB is in used. The sequence of 488 the bit map is ordered according to the RB Set field with this sub- 489 TLV. 491 Padding bits: Variable Length 493 3.4. Block Shared Access Wavelength Availability sub-TLV 495 Resources blocks may be accessed via a shared fiber. If this is the 496 case then wavelength availability on these shared fibers is needed to 497 understand resource availability. 499 0 1 2 3 500 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 501 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 502 |I|E| Reserved | 503 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 504 | RB Set Field | 505 : : 506 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 507 | Ingress Available Wavelength Set Field | 508 : (Optional) : 509 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 510 | Egress Available Wavelength Set Field | 511 : (Optional) : 512 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 514 I bit: 516 Indicates whether the ingress available wavelength set field is 517 included (1) or not (0). 519 E bit: 521 Indicates whether the egress available wavelength set field is 522 included (1) or not (0). 524 RB Set Field: 526 A Resource Block set in which all the members share the same ingress 527 or egress fiber or both. 529 Ingress Available Wavelength Set Field: 531 Indicates the wavelengths currently available (not being used) on the 532 ingress fiber to this resource block. 534 Egress Available Wavelength Set Field: 536 Indicates the wavelengths currently available (not being used) on the 537 egress fiber from this resource block. 539 4. Resource Properties Encoding 541 Within a WSON network element (NE) there may be resources with signal 542 compatibility constraints. Such resources typically come in "blocks" 543 which contain a group on identical and indistinguishable individual 544 resources. These resource blocks may consist of regenerators, 545 wavelength converters, etc... Such resource blocks may also 546 constitute the network element as a whole as in the case of an 547 electro optical switch. This section primarily focuses on the signal 548 compatibility and processing properties of such a resource block, the 549 accessibility aspects of a resource in a shared pool, except for the 550 shared access indicators, were encoded in the previous section. 552 The fundamental properties of a resource block, such as a regenerator 553 or wavelength converter, are: 555 (a)Input constraints (shared ingress, modulation, FEC, bit rate, 556 GPID) 558 (b)Processing capabilities (number of resources in a block, 559 regeneration, performance monitoring, vendor specific) 561 (c)Output Constraints (shared egress, modulation, FEC) 563 4.1. Resource Block Information Sub-TLV 565 Resource Block descriptor sub-TLVs are used to convey relatively 566 static information about individual resource blocks including the 567 resource block properties of section 3. and the number of resources 568 in a block. 570 This sub-TLV has the following format: 572 0 1 2 3 573 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 574 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 575 | RB Set Field | 576 : : 577 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 578 |I|E| Reserved | 579 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 580 | Input Modulation Type List Sub-Sub-TLV (opt) | 581 : : 582 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 583 | Input FEC Type List Sub-Sub-TLV (opt) | 584 : : 585 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 586 | Input Client Signal Type Sub-Sub-TLV (opt) | 587 : : 588 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 589 | Input Bit Rate Range List Sub-Sub-TLV (opt) | 590 : : 591 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 592 | Processing Capabilities List Sub-Sub-TLV (opt) | 593 : : 594 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 595 | Output Modulation Type List Sub-Sub-TLV (opt) | 596 : : 597 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 598 | Output FEC Type List Sub-Sub-TLV (opt) | 599 : : 600 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 602 Where I and E, the shared ingress/egress indicator, is set to 1 if 603 the resource blocks identified in the RB set field utilized a shared 604 fiber for ingress/egress access and set to 0 otherwise. 606 4.2. Input Modulation Format List Sub-Sub-TLV 608 This sub-sub-TLV contains a list of acceptable input modulation 609 formats. 611 Type := Input Modulation Format List 612 Value := A list of Modulation Format Fields 614 4.2.1. Modulation Format Field 616 Two different types of modulation format fields are defined: a 617 standard modulation field and a vendor specific modulation field. 618 Both start with the same 32 bit header shown below. 620 0 1 2 3 621 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 622 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 623 |S|I| Modulation ID | Length | 624 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 626 Where S bit set to 1 indicates a standardized modulation format and S 627 bit set to 0 indicates a vendor specific modulation format. The 628 length is the length in bytes of the entire modulation type field. 630 Where I bit set to 1 indicates it is an input modulation constraint 631 and I bit set to 0 indicates it is an output modulation constraint. 633 Note that if an output modulation is not specified then it is implied 634 that it is the same as the input modulation. In such case, no 635 modulation conversion is performed. 637 The format for the standardized type for the input modulation is 638 given by: 640 0 1 2 3 641 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 642 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 643 |1|1| Modulation ID | Length | 644 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 645 | Possible additional modulation parameters depending upon | 646 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 647 : the modulation ID : 648 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 650 Modulation ID (S bit = 1); Input modulation (I bit = 1) 652 Takes on the following currently defined values: 654 0 Reserved 655 1 optical tributary signal class NRZ 1.25G 657 2 optical tributary signal class NRZ 2.5G 659 3 optical tributary signal class NRZ 10G 661 4 optical tributary signal class NRZ 40G 663 5 optical tributary signal class RZ 40G 665 Note that future modulation types may require additional parameters 666 in their characterization. 668 The format for vendor specific modulation field (for input 669 constraint) is given by: 671 0 1 2 3 672 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 673 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 674 |0|1| Vendor Modulation ID | Length | 675 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 676 | Enterprise Number | 677 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 678 : Any vendor specific additional modulation parameters : 679 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 681 Vendor Modulation ID 683 This is a vendor assigned identifier for the modulation type. 685 Enterprise Number 687 A unique identifier of an organization encoded as a 32-bit integer. 688 Enterprise Numbers are assigned by IANA and managed through an IANA 689 registry [RFC2578]. 691 Vendor Specific Additional parameters 693 There can be potentially additional parameters characterizing the 694 vendor specific modulation. 696 4.3. Input FEC Type List Sub-Sub-TLV 698 This sub-sub-TLV contains a list of acceptable FEC types. 700 Type := Input FEC Type field List 702 Value := A list of FEC type Fields 704 4.3.1. FEC Type Field 706 The FEC type Field may consist of two different formats of fields: a 707 standard FEC field or a vendor specific FEC field. Both start with 708 the same 32 bit header shown below. 710 0 1 2 3 711 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 712 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 713 |S|I| FEC ID | Length | 714 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 715 | Possible additional FEC parameters depending upon | 716 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 717 : the FEC ID : 718 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 720 Where S bit set to 1 indicates a standardized FEC format and S bit 721 set to 0 indicates a vendor specific FEC format. The length is the 722 length in bytes of the entire FEC type field. 724 Where I bit set to 1 indicates it is an input FEC constraint and I 725 bit set to 0 indicates it is an output FEC constraint. 727 Note that if an output FEC is not specified then it is implied that 728 it is the same as the input FEC. In such case, no FEC conversion is 729 performed. 731 The length is the length in bytes of the entire FEC type field. 733 The format for input standard FEC field is given by: 735 0 1 2 3 736 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 737 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 738 |1|1| FEC ID | Length | 739 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 740 | Possible additional FEC parameters depending upon | 741 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 742 : the FEC ID : 743 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 745 Takes on the following currently defined values for the standard 746 FEC ID: 748 0 Reserved 750 1 G.709 RS FEC 752 2 G.709V compliant Ultra FEC 754 3 G.975.1 Concatenated FEC 755 (RS(255,239)/CSOC(n0/k0=7/6,J=8)) 757 4 G.975.1 Concatenated FEC (BCH(3860,3824)/BCH(2040,1930)) 759 5 G.975.1 Concatenated FEC (RS(1023,1007)/BCH(2407,1952)) 761 6 G.975.1 Concatenated FEC (RS(1901,1855)/Extended Hamming 762 Product Code (512,502)X(510,500)) 764 7 G.975.1 LDPC Code 766 8 G.975.1 Concatenated FEC (Two orthogonally concatenated 767 BCH codes) 769 9 G.975.1 RS(2720,2550) 771 10 G.975.1 Concatenated FEC (Two interleaved extended BCH 772 (1020,988) codes) 774 Where RS stands for Reed-Solomon and BCH for Bose-Chaudhuri- 775 Hocquengham. 777 The format for input vendor-specific FEC field is given by: 779 0 1 2 3 780 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 781 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 782 |0|1| Vendor FEC ID | Length | 783 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 784 | Enterprise Number | 785 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 786 : Any vendor specific additional FEC parameters : 787 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 789 Vendor FEC ID 791 This is a vendor assigned identifier for the FEC type. 793 Enterprise Number 795 A unique identifier of an organization encoded as a 32-bit integer. 796 Enterprise Numbers are assigned by IANA and managed through an IANA 797 registry [RFC2578]. 799 Vendor Specific Additional FEC parameters 801 There can be potentially additional parameters characterizing the 802 vendor specific FEC. 804 4.4. Input Bit Range List Sub-Sub-TLV 806 This sub-sub-TLV contains a list of acceptable input bit rate ranges. 808 Type := Input Bit Range List 810 Value := A list of Bit Range Fields 812 4.4.1. Bit Range Field 814 The bit rate range list sub-TLV makes use of the following bit rate 815 range field: 817 0 1 2 3 818 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 819 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 820 | Starting Bit Rate | 821 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 822 | Ending Bit Rate | 823 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 825 The starting and ending bit rates are given as 32 bit IEEE floating 826 point numbers in bits per second. Note that the starting bit rate is 827 less than or equal to the ending bit rate. 829 The bit rate range list sub-TLV is then given by: 831 0 1 2 3 832 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 833 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 834 | | 835 +-+-+-+-+-+-+-+-+-+-+-+-+ Bit Range Field #1 +-+-+-+-+-+-+-+-+-+ 836 | | 837 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 838 : : : 839 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 840 | | 841 +-+-+-+-+-+-+-+-+-+-+-+-+ Bit Range Field #M +-+-+-+-+-+-+-+-+-+ 842 | | 843 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 845 4.5. Input Client Signal List Sub-Sub-TLV 847 This sub-sub-TLV contains a list of acceptable input client signal 848 types. 850 Type := Input Client Signal List 852 Value := A list of GPIDs 854 The acceptable client signal list sub-TLV is a list of Generalized 855 Protocol Identifiers (GPIDs). GPIDs are assigned by IANA and many are 856 defined in [RFC3471] and [RFC4328]. 858 0 1 2 3 859 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 860 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 861 | Number of GPIDs | GPID #1 | 862 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 863 : | : 864 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 865 | GPID #N | | 866 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 868 Where the number of GPIDs is an integer greater than or equal to one. 870 4.6. Processing Capability List Sub-Sub-TLV 872 This sub-sub-TLV contains a list of resource block processing 873 capabilities. 875 Type := Processing Capabilities List 877 Value := A list of Processing Capabilities Fields 879 The processing capability list sub-TLV is a list of WSON network 880 element (NE) that can perform signal processing functions including: 882 1. Number of Resources within the block 884 2. Regeneration capability 886 3. Fault and performance monitoring 888 4. Vendor Specific capability 890 Note that the code points for Fault and performance monitoring and 891 vendor specific capability are subject to further study. 893 4.6.1. Processing Capabilities Field 895 The processing capability field is then given by: 897 0 1 2 3 898 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 899 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 900 | Processing Cap ID | Length | 901 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 902 | Possible additional capability parameters depending upon | 903 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 904 : the processing ID : 905 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 907 When the processing Cap ID is "number of resources" the format is 908 simply: 910 0 1 2 3 911 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 912 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 913 | Processing Cap ID | Length = 8 | 914 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 915 | Number of resources per block | 916 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 918 When the processing Cap ID is "regeneration capability", the 919 following additional capability parameters are provided in the sub- 920 TLV: 922 0 1 2 3 923 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 924 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 925 | T | C | Reserved | 926 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 928 Where T bit indicates the type of regenerator: 930 T=0: Reserved 932 T=1: 1R Regenerator 934 T=2: 2R Regenerator 936 T=3: 3R Regenerator 938 Where C bit indicates the capability of regenerator: 940 C=0: Reserved 942 C=1: Fixed Regeneration Point 944 C=2: Selective Regeneration Point 946 Note that when the capability of regenerator is indicated to be 947 Selective Regeneration Pools, regeneration pool properties such as 948 ingress and egress restrictions and availability need to be 949 specified. This encoding is to be determined in the later revision. 951 4.7. Output Modulation Format List Sub-Sub-TLV 953 This sub-sub-TLV contains a list of available output modulation 954 formats. 956 Type := Output Modulation Format List 958 Value := A list of Modulation Format Fields 960 4.8. Output FEC Type List Sub-Sub-TLV 962 This sub-sub-TLV contains a list of output FEC types. 964 Type := Output FEC Type field List 966 Value := A list of FEC type Fields 968 5. Security Considerations 970 This document defines protocol-independent encodings for WSON 971 information and does not introduce any security issues. 973 However, other documents that make use of these encodings within 974 protocol extensions need to consider the issues and risks associated 975 with, inspection, interception, modification, or spoofing of any of 976 this information. It is expected that any such documents will 977 describe the necessary security measures to provide adequate 978 protection. 980 6. IANA Considerations 982 This document provides general protocol independent information 983 encodings. There is no IANA allocation request for the TLVs defined 984 in this document. IANA allocation requests will be addressed in 985 protocol specific documents based on the encodings defined here. 987 7. Acknowledgments 989 This document was prepared using 2-Word-v2.0.template.dot. 991 APPENDIX A: Encoding Examples 993 A.1. Wavelength Converter Accessibility Sub-TLV 995 Example: 997 Figure 1 shows a wavelength converter pool architecture know as 998 "shared per fiber". In this case the ingress and egress pool matrices 999 are simply: 1001 +-----+ +-----+ 1002 | 1 1 | | 1 0 | 1003 WI =| |, WE =| | 1004 | 1 1 | | 0 1 | 1005 +-----+ +-----+ 1007 +-----------+ +------+ 1008 | |--------------------->| | 1009 | |--------------------->| C | 1010 /| | |--------------------->| o | 1011 /D+--->| |--------------------->| m | 1012 + e+--->| | | b |========> 1013 ========>| M| | Optical | +-----------+ | i | Port E1 1014 Port I1 + u+--->| Switch | | WC Pool | | n | 1015 \x+--->| | | +-----+ | | e | 1016 \| | +----+->|WC #1|--+---->| r | 1017 | | | +-----+ | +------+ 1018 | | | | +------+ 1019 /| | | | +-----+ | | | 1020 /D+--->| +----+->|WC #2|--+---->| C | 1021 + e+--->| | | +-----+ | | o | 1022 ========>| M| | | +-----------+ | m |========> 1023 Port I2 + u+--->| | | b | Port E2 1024 \x+--->| |--------------------->| i | 1025 \| | |--------------------->| n | 1026 | |--------------------->| e | 1027 | |--------------------->| r | 1028 +-----------+ +------+ 1029 Figure 1 An optical switch featuring a shared per fiber wavelength 1030 converter pool architecture. 1032 This wavelength converter pool can be encoded as follows: 1034 0 1 2 3 1035 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1036 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1037 | Connectivity=1| Reserved | 1038 Note: I1,I2 can connect to either WC1 or WC2 1039 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1040 | Action=0 |0 1|0 0 0 0 0 0| Length = 12 | 1041 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1042 | Link Local Identifier = #1 | 1043 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1044 | Link Local Identifier = #2 | 1045 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1046 | Action=0 |1| Reserved | Length = 8 | 1047 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1048 | RB ID = #1 | RB ID = #2 | 1049 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1050 Note: WC1 can only connect to E1 1051 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1052 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 | 1053 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1054 | Link Local Identifier = #1 | 1055 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1056 | Action=0 |0| Reserved | Length = 8 | 1057 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1058 | RB ID = #1 | zero padding | 1059 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1060 Note: WC2 can only connect to E2 1061 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1062 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 | 1063 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1064 | Link Local Identifier = #2 | 1065 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1066 | Action=0 |0| | Length = 8 | 1067 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1068 | RB ID = #2 | zero padding | 1069 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1071 A.2. Wavelength Conversion Range Sub-TLV 1073 Example: 1075 This example, based on figure 1, shows how to represent the 1076 wavelength conversion range of wavelength converters. Suppose the 1077 wavelength range of input and output of WC1 and WC2 are {L1, L2, L3, 1078 L4}: 1080 0 1 2 3 1081 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1082 Note: WC Set 1083 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1084 | Action=0 |1| Reserved | Length = 8 | 1085 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1086 | WC ID = #1 | WC ID = #2 | 1087 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1088 Note: wavelength input range 1089 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1090 | 2 | Num Wavelengths = 4 | Length = 8 | 1091 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1092 |Grid | C.S. | Reserved | n for lowest frequency = 1 | 1093 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1094 Note: wavelength output range 1095 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1096 | 2 | Num Wavelengths = 4 | Length = 8 | 1097 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1098 |Grid | C.S. | Reserved | n for lowest frequency = 1 | 1099 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1101 A.3. An OEO Switch with DWDM Optics 1103 Figure 2 shows an electronic switch fabric surrounded by DWDM optics. 1104 In this example the electronic fabric can handle either G.709 or SDH 1105 signals only (2.5 or 10 Gbps). To describe this node, the following 1106 information is needed: 1108 ::= [Other GMPLS sub- 1109 TLVs][...] [][] 1111 In this case there is complete port to port connectivity so the 1112 is not required. In addition since there are 1113 sufficient ports to handle all wavelength signals the 1114 element is not needed. 1116 Hence the attention will be focused on the sub-TLV: 1118 ::= 1119 [...][...] 1121 /| +-----------+ +-------------+ +------+ 1122 /D+--->| +--->|Tunable Laser|-->| | 1123 + e+--->| | +-------------+ | C | 1124 ========>| M| | | ... | o |========> 1125 Port I1 + u+--->| | +-------------+ | m | Port E1 1126 \x+--->| |--->|Tunable Laser|-->| b | 1127 \| | Electric | +-------------+ +------+ 1128 | Switch | 1129 /| | | +-------------+ +------+ 1130 /D+--->| +--->|Tunable Laser|-->| | 1131 + e+--->| | +-------------+ | C | 1132 ========>| M| | | ... | o |========> 1133 Port I2 + u+--->| | +-------------+ | m | Port E2 1134 \x+--->| +--->|Tunable Laser|-->| b | 1135 \| | | +-------------+ +------+ 1136 | | 1137 /| | | +-------------+ +------+ 1138 /D+--->| |--->|Tunable Laser|-->| | 1139 + e+--->| | +-------------+ | C | 1140 ========>| M| | | ... | o |========> 1141 Port I3 + u+--->| | +-------------+ | m | Port E3 1142 \x+--->| |--->|Tunable Laser|-->| b | 1143 \| +-----------+ +-------------+ +------+ 1145 Figure 2 An optical switch built around an electronic switching 1146 fabric. 1148 The resource block information will tell us about the processing 1149 constraints of the receivers, transmitters and the electronic switch. 1150 The resource availability information, although very simple, tells us 1151 that all signals must traverse the electronic fabric (fixed 1152 connectivity). The resource wavelength constraints are not needed 1153 since there are no special wavelength constraints for the resources 1154 that would not appear as port/wavelength constraints. 1156 : 1158 0 1 2 3 1159 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1160 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1161 | RB Set Field | 1162 : (only one resource block in this example with shared | 1163 | input/output case) | 1164 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1165 |0|0| Reserved | 1166 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1167 | Input Modulation Type List Sub-Sub-TLV | 1168 : (The receivers can only process NRZ) : 1169 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1170 | Input FEC Type List Sub-Sub-TLV | 1171 : (Only Standard SDH and G.709 FECs) : 1172 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1173 | Input Client Signal Type Sub-TLV | 1174 : (GPIDs for SDH and G.709) : 1175 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1176 | Input Bit Rate Range List Sub-Sub-TLV | 1177 : (2.5Gbps, 10Gbps) : 1178 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1179 | Processing Capabilities List Sub-Sub-TLV | 1180 : Fixed (non optional) 3R regeneration : 1181 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1182 | Output Modulation Type List Sub-Sub-TLV | 1183 : NRZ : 1184 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1185 | Output FEC Type List Sub-Sub-TLV | 1186 : Standard SDH, G.709 FECs : 1187 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1189 Since there is fixed connectivity to resource blocks (the electronic 1190 switch) the is: 1192 0 1 2 3 1193 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1194 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1195 | Connectivity=1|Reserved | 1196 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1197 | Ingress Link Set Field A #1 | 1198 : (All ingress links connect to resource) : 1199 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1200 | RB Set Field A #1 | 1201 : (trivial set only one resource block) : 1202 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1203 | Egress Link Set Field B #1 | 1204 : (All egress links connect to resource) : 1205 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1207 8. References 1209 8.1. Normative References 1211 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 1212 Requirement Levels", BCP 14, RFC 2119, March 1997. 1214 [RFC2578] McCloghrie, K., Perkins, D., and J. Schoenwaelder, 1215 "Structure of Management Information Version 2 (SMIv2)", 1216 STD 58, RFC 2578, April 1999. 1218 [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching 1219 (GMPLS) Signaling Functional Description", RFC 3471, 1220 January 2003. 1222 [RFC4328] Papadimitriou, D., Ed., "Generalized Multi-Protocol Label 1223 Switching (GMPLS) Signaling Extensions for G.709 Optical 1224 Transport Networks Control", RFC 4328, January 2006. 1226 [G.694.1] ITU-T Recommendation G.694.1, "Spectral grids for WDM 1227 applications: DWDM frequency grid", June, 2002. 1229 8.2. Informative References 1231 [G.694.1] ITU-T Recommendation G.694.1, Spectral grids for WDM 1232 applications: DWDM frequency grid, June 2002. 1234 [G.694.2] ITU-T Recommendation G.694.2, Spectral grids for WDM 1235 applications: CWDM wavelength grid, December 2003. 1237 [Gen-Encode] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "General 1238 Network Element Constraint Encoding for GMPLS Controlled 1239 Networks", work in progress: draft-ietf-ccamp-general- 1240 constraint-encode. 1242 [Otani] T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized 1243 Labels for G.694 Lambda-Switching Capable Label Switching 1244 Routers", work in progress: draft-ietf-ccamp-gmpls-g-694- 1245 lambda-labels. 1247 [WSON-Frame] Y. Lee, G. Bernstein, W. Imajuku, "Framework for GMPLS 1248 and PCE Control of Wavelength Switched Optical Networks", 1249 work in progress: draft-ietf-ccamp-wavelength-switched- 1250 framework. 1252 [WSON-Info] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and 1253 Wavelength Assignment Information Model for Wavelength 1254 Switched Optical Networks", work in progress: draft-ietf- 1255 ccamp-rwa-info. 1257 9. Contributors 1259 Diego Caviglia 1260 Ericsson 1261 Via A. Negrone 1/A 16153 1262 Genoa Italy 1264 Phone: +39 010 600 3736 1265 Email: diego.caviglia@(marconi.com, ericsson.com) 1267 Anders Gavler 1268 Acreo AB 1269 Electrum 236 1270 SE - 164 40 Kista Sweden 1272 Email: Anders.Gavler@acreo.se 1274 Jonas Martensson 1275 Acreo AB 1276 Electrum 236 1277 SE - 164 40 Kista, Sweden 1279 Email: Jonas.Martensson@acreo.se 1281 Itaru Nishioka 1282 NEC Corp. 1283 1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666 1284 Japan 1286 Phone: +81 44 396 3287 1287 Email: i-nishioka@cb.jp.nec.com 1289 Authors' Addresses 1291 Greg M. Bernstein (ed.) 1292 Grotto Networking 1293 Fremont California, USA 1295 Phone: (510) 573-2237 1296 Email: gregb@grotto-networking.com 1298 Young Lee (ed.) 1299 Huawei Technologies 1300 1700 Alma Drive, Suite 100 1301 Plano, TX 75075 1302 USA 1304 Phone: (972) 509-5599 (x2240) 1305 Email: ylee@huawei.com 1307 Dan Li 1308 Huawei Technologies Co., Ltd. 1309 F3-5-B R&D Center, Huawei Base, 1310 Bantian, Longgang District 1311 Shenzhen 518129 P.R.China 1313 Phone: +86-755-28973237 1314 Email: danli@huawei.com 1316 Wataru Imajuku 1317 NTT Network Innovation Labs 1318 1-1 Hikari-no-oka, Yokosuka, Kanagawa 1319 Japan 1321 Phone: +81-(46) 859-4315 1322 Email: imajuku.wataru@lab.ntt.co.jp 1323 Jianrui Han 1324 Huawei Technologies Co., Ltd. 1325 F3-5-B R&D Center, Huawei Base, 1326 Bantian, Longgang District 1327 Shenzhen 518129 P.R.China 1329 Phone: +86-755-28972916 1330 Email: hanjianrui@huawei.com 1332 Intellectual Property Statement 1334 The IETF Trust takes no position regarding the validity or scope of 1335 any Intellectual Property Rights or other rights that might be 1336 claimed to pertain to the implementation or use of the technology 1337 described in any IETF Document or the extent to which any license 1338 under such rights might or might not be available; nor does it 1339 represent that it has made any independent effort to identify any 1340 such rights. 1342 Copies of Intellectual Property disclosures made to the IETF 1343 Secretariat and any assurances of licenses to be made available, or 1344 the result of an attempt made to obtain a general license or 1345 permission for the use of such proprietary rights by implementers or 1346 users of this specification can be obtained from the IETF on-line IPR 1347 repository at http://www.ietf.org/ipr 1349 The IETF invites any interested party to bring to its attention any 1350 copyrights, patents or patent applications, or other proprietary 1351 rights that may cover technology that may be required to implement 1352 any standard or specification contained in an IETF Document. Please 1353 address the information to the IETF at ietf-ipr@ietf.org. 1355 Disclaimer of Validity 1357 All IETF Documents and the information contained therein are provided 1358 on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE 1359 REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE 1360 IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL 1361 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 1362 WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE 1363 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS 1364 FOR A PARTICULAR PURPOSE. 1366 Acknowledgment 1368 Funding for the RFC Editor function is currently provided by the 1369 Internet Society.