idnits 2.17.1 draft-ietf-ccamp-rwa-wson-encode-13.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (October 31, 2011) is 4561 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Unused Reference: 'G.694.1' is defined on line 1297, but no explicit reference was found in the text == Unused Reference: 'G.694.2' is defined on line 1300, but no explicit reference was found in the text -- Possible downref: Non-RFC (?) normative reference: ref. 'G.694.1' Summary: 0 errors (**), 0 flaws (~~), 3 warnings (==), 2 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 1 Network Working Group G. Bernstein 2 Internet Draft Grotto Networking 3 Intended status: Standards Track Y. Lee 4 Expires: April 2012 D. Li 5 Huawei 6 W. Imajuku 7 NTT 9 October 31, 2011 11 Routing and Wavelength Assignment Information Encoding for 12 Wavelength Switched Optical Networks 14 draft-ietf-ccamp-rwa-wson-encode-13.txt 16 Status of this Memo 18 This Internet-Draft is submitted to IETF in full conformance with 19 the provisions of BCP 78 and BCP 79. 21 Internet-Drafts are working documents of the Internet Engineering 22 Task Force (IETF), its areas, and its working groups. Note that 23 other groups may also distribute working documents as Internet- 24 Drafts. 26 Internet-Drafts are draft documents valid for a maximum of six 27 months and may be updated, replaced, or obsoleted by other documents 28 at any time. It is inappropriate to use Internet-Drafts as 29 reference material or to cite them other than as "work in progress." 31 The list of current Internet-Drafts can be accessed at 32 http://www.ietf.org/ietf/1id-abstracts.txt 34 The list of Internet-Draft Shadow Directories can be accessed at 35 http://www.ietf.org/shadow.html 37 This Internet-Draft will expire on February 31, 2012. 39 Copyright Notice 41 Copyright (c) 2011 IETF Trust and the persons identified as the 42 document authors. All rights reserved. 44 This document is subject to BCP 78 and the IETF Trust's Legal 45 Provisions Relating to IETF Documents 46 (http://trustee.ietf.org/license-info) in effect on the date of 47 publication of this document. Please review these documents 48 carefully, as they describe your rights and restrictions with 49 respect to this document. Code Components extracted from this 50 document must include Simplified BSD License text as described in 51 Section 4.e of the Trust Legal Provisions and are provided without 52 warranty as described in the Simplified BSD License. 54 Abstract 56 A wavelength switched optical network (WSON) requires that certain 57 key information elements are made available to facilitate path 58 computation and the establishment of label switching paths (LSPs). 59 The information model described in "Routing and Wavelength 60 Assignment Information for Wavelength Switched Optical Networks" 61 shows what information is required at specific points in the WSON. 62 Part of the WSON information model contains aspects that may be of 63 general applicability to other technologies, while other parts are 64 fairly specific to WSONs. 66 This document provides efficient, protocol-agnostic encodings for 67 the WSON specific information elements. It is intended that 68 protocol-specific documents will reference this memo to describe how 69 information is carried for specific uses. Such encodings can be used 70 to extend GMPLS signaling and routing protocols. In addition these 71 encodings could be used by other mechanisms to convey this same 72 information to a path computation element (PCE). 74 Conventions used in this document 76 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 77 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 78 document are to be interpreted as described in RFC-2119 [RFC2119]. 80 Table of Contents 82 1. Introduction...................................................4 83 1.1. Revision History..........................................4 84 1.1.1. Changes from 00 draft................................4 85 1.1.2. Changes from 01 draft................................5 86 1.1.3. Changes from 02 draft................................5 87 1.1.4. Changes from 03 draft................................5 88 1.1.5. Changes from 04 draft................................5 89 1.1.6. Changes from 05 draft................................5 90 1.1.7. Changes from 06 draft................................5 91 1.1.8. Changes from 07 draft................................5 92 1.1.9. Changes from 08 draft................................6 93 1.1.10. Changes from 09 draft...............................6 94 1.1.11. Changes from 10 draft...............................6 95 1.1.12. Changes from 11 draft...............................6 96 2. Terminology....................................................6 97 3. Resources, Blocks, Sets, and the Resource Pool.................7 98 3.1. Resource Block Set Field..................................8 99 4. Resource Pool Accessibility/Availability.......................9 100 4.1. Resource Pool Accessibility Sub-TLV.......................9 101 4.2. Resource Block Wavelength Constraints Sub-TLV............11 102 4.3. Resource Pool State Sub-TLV..............................12 103 4.4. Block Shared Access Wavelength Availability sub-TLV......13 104 5. Resource Properties Encoding..................................15 105 5.1. Resource Block Information Sub-TLV.......................15 106 5.2. Input Modulation Format List Sub-Sub-TLV.................16 107 5.2.1. Modulation Format Field.............................17 108 5.3. Input FEC Type List Sub-Sub-TLV..........................18 109 5.3.1. FEC Type Field......................................19 110 5.4. Input Bit Range List Sub-Sub-TLV.........................21 111 5.4.1. Bit Range Field.....................................21 112 5.5. Input Client Signal List Sub-Sub-TLV.....................22 113 5.6. Processing Capability List Sub-Sub-TLV...................23 114 5.6.1. Processing Capabilities Field.......................23 115 5.7. Output Modulation Format List Sub-Sub-TLV................25 116 5.8. Output FEC Type List Sub-Sub-TLV.........................25 117 6. Security Considerations.......................................25 118 7. IANA Considerations...........................................26 119 8. Acknowledgments...............................................26 120 APPENDIX A: Encoding Examples....................................27 121 A.1. Wavelength Converter Accessibility Sub-TLV...............27 122 A.2. Wavelength Conversion Range Sub-TLV......................29 123 A.3. An OEO Switch with DWDM Optics...........................29 124 9. References....................................................33 125 9.1. Normative References.....................................33 126 9.2. Informative References...................................33 127 10. Contributors.................................................35 128 Authors' Addresses...............................................35 129 Intellectual Property Statement..................................36 130 Disclaimer of Validity...........................................37 132 1. Introduction 134 A Wavelength Switched Optical Network (WSON) is a Wavelength 135 Division Multiplexing (WDM) optical network in which switching is 136 performed selectively based on the center wavelength of an optical 137 signal. 139 [RFC6163] describes a framework for Generalized Multiprotocol Label 140 Switching (GMPLS) and Path Computation Element (PCE) control of a 141 WSON. Based on this framework, [WSON-Info] describes an information 142 model that specifies what information is needed at various points in 143 a WSON in order to compute paths and establish Label Switched Paths 144 (LSPs). 146 This document provides efficient encodings of information needed by 147 the routing and wavelength assignment (RWA) process in a WSON. Such 148 encodings can be used to extend GMPLS signaling and routing 149 protocols. In addition these encodings could be used by other 150 mechanisms to convey this same information to a path computation 151 element (PCE). Note that since these encodings are relatively 152 efficient they can provide more accurate analysis of the control 153 plane communications/processing load for WSONs looking to utilize a 154 GMPLS control plane. 156 Note that encodings of information needed by the routing and label 157 assignment process applicable to general networks beyond WSON are 158 addressed in a separate document [Gen-Encode]. 160 1.1. Revision History 162 1.1.1. Changes from 00 draft 164 Edits to make consistent with update to [RFC6205], i.e., removal of 165 sign bit. 167 Clarification of TBD on connection matrix type and possibly 168 numbering. 170 New sections for wavelength converter pool encoding: Wavelength 171 Converter Set Sub-TLV, Wavelength Converter Accessibility Sub-TLV, 172 Wavelength Conversion Range Sub-TLV, WC Usage State Sub-TLV. 174 Added optional wavelength converter pool TLVs to the composite node 175 TLV. 177 1.1.2. Changes from 01 draft 179 The encoding examples have been moved to an appendix. Classified and 180 corrected information elements as either reusable fields or sub- 181 TLVs. Updated Port Wavelength Restriction sub-TLV. Added available 182 wavelength and shared backup wavelength sub-TLVs. Changed the title 183 and scope of section 6 to recommendations since the higher level 184 TLVs that this encoding will be used in is somewhat protocol 185 specific. 187 1.1.3. Changes from 02 draft 189 Removed inconsistent text concerning link local identifiers and the 190 link set field. 192 Added E bit to the Wavelength Converter Set Field. 194 Added bidirectional connectivity matrix example. Added simple link 195 set example. Edited examples for consistency. 197 1.1.4. Changes from 03 draft 199 Removed encodings for general concepts to [Gen-Encode]. 201 Added in WSON signal compatibility and processing capability 202 information encoding. 204 1.1.5. Changes from 04 draft 206 Added encodings to deal with access to resource blocks via shared 207 fiber. 209 1.1.6. Changes from 05 draft 211 Revised the encoding for the "shared access" indicators to only use 212 one bit each for ingress and egress. 214 1.1.7. Changes from 06 draft 216 Removed section on "WSON Encoding Usage Recommendations" 218 1.1.8. Changes from 07 draft 220 Section 3: Enhanced text to clarify relationship between pools, 221 blocks and resources. Section 3.1, 3.2: Change title to clarify 222 Pool-Block relationship. Section 3.3: clarify block-resource state. 224 Section 4: Deleted reference to previously removed RBNF element. 225 Fixed TLV figures and descriptions for consistent sub-sub-TLV 226 nomenclature. 228 1.1.9. Changes from 08 draft 230 Fixed ordering of fields in second half of sub-TLV example in 231 Appendix A.1. 233 Clarifying edits in section 3 on pools, blocks, and resources. 235 1.1.10. Changes from 09 draft 237 Fixed the "Block Shared Access Wavelength Availability sub-TLV" of 238 section 3.4 to use an "RB set field" rather than a single RB ID. 239 Removed all 1st person idioms. 241 1.1.11. Changes from 10 draft 243 Removed remaining 1st person idioms. Updated IANA section. Update 244 references for newly issued RFCs. 246 1.1.12. Changes from 11 draft 248 Fixed length fields in section 4 to be 16 bits, correcting errors in 249 TLV and field figures. Added a separate section on resources, 250 blocks, sets and the resource pool. Moved definition of the resource 251 block set field to this new section. 253 1.1.13. Changes from 12 draft 255 RB Identifier field in Section 3.1 to be 32 bits from 16 bits. Added 256 Editorial changes and updated the contributor list. 258 2. Terminology 260 CWDM: Coarse Wavelength Division Multiplexing. 262 DWDM: Dense Wavelength Division Multiplexing. 264 FOADM: Fixed Optical Add/Drop Multiplexer. 266 ROADM: Reconfigurable Optical Add/Drop Multiplexer. A reduced port 267 count wavelength selective switching element featuring ingress and 268 egress line side ports as well as add/drop side ports. 270 RWA: Routing and Wavelength Assignment. 272 Wavelength Conversion. The process of converting an information 273 bearing optical signal centered at a given wavelength to one with 274 "equivalent" content centered at a different wavelength. Wavelength 275 conversion can be implemented via an optical-electronic-optical 276 (OEO) process or via a strictly optical process. 278 WDM: Wavelength Division Multiplexing. 280 Wavelength Switched Optical Network (WSON): A WDM based optical 281 network in which switching is performed selectively based on the 282 center wavelength of an optical signal. 284 3. Resources, Blocks, Sets, and the Resource Pool 286 The optical system to be encoded may contain a pool of resources of 287 different types and properties for processing optical signals. For 288 the purposes here a "resource" is an individual entity such as a 289 wavelength converter or regenerator within the optical node that 290 acts on an individual wavelength signal. 292 Since resources tend to be packaged together in blocks of similar 293 devices, e.g., on line cards or other types of modules, the 294 fundamental unit of identifiable resource in this document is the 295 "resource block". A resource block may contain one or more 296 resources. As resource blocks are the smallest identifiable unit of 297 processing resource, one should group together resources into blocks 298 if they have similar characteristics relevant to the optical system 299 being modeled, e.g., processing properties, accessibility, etc. 301 This document defines the following sub-TLVs pertaining to resources 302 within an optical node: 304 . Resource Pool Accessibility Sub-TLV 306 . Resource Block Wavelength Constraints Sub-TLV 308 . Resource Pool State Sub-TLV 310 . Block Shared Access Wavelength Availability Sub-TLV 312 . Resource Block Information Sub-TLV 314 Each of these sub-TLVs works with one or more sets of resources 315 rather than just a single resource block. This motivates the 316 following field definition. 318 3.1. Resource Block Set Field 320 In a WSON node that includes resource blocks (RB), denoting subsets 321 of these blocks allows one to efficiently describe common properties 322 the blocks and to describe the structure and characteristics, if 323 non-trivial, of the resource pool. The RB Set field is defined in a 324 similar manner to the label set concept of [RFC3471]. 326 The information carried in a RB set field is defined by: 328 0 1 2 3 329 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 330 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 331 | Action |C| Reserved | Length | 332 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 333 | RB Identifier 1 | 334 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 335 : : : 336 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 337 | RB Identifier n | 338 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 340 Action: 8 bits 342 0 - Inclusive List 344 Indicates that the TLV contains zero or more RB elements that are 345 included in the list. 347 1 - Reserved 349 2 - Inclusive Range 351 Indicates that the TLV contains a range of RBs. The object/TLV 352 contains two WC elements. The first element indicates the start of 353 the range. The second element indicates the end of the range. A 354 value of zero indicates that there is no bound on the corresponding 355 portion of the range. 357 3 - Reserved 359 C (Connectivity bit): Set to 0 to denote fixed (possibly multi- 360 cast) connectivity; Set to 1 to denote potential (switched) 361 connectivity. Used in resource pool accessibility sub-TLV. Ignored 362 elsewhere. 364 Reserved: 7 bits 366 This field is reserved. It MUST be set to zero on transmission and 367 MUST be ignored on receipt. 369 Length: 16 bits 371 The total length of this field in bytes. 373 RB Identifier: 375 The RB identifier represents the ID of the resource block which is a 376 32 bit integer. 378 Usage Note: the inclusive range "Action" can result in very compact 379 encoding of resource sets and it can be advantages to number 380 resource blocks in such a way so that status updates (dynamic 381 information) can take advantage of this efficiency. 383 4. Resource Pool Accessibility/Availability 385 This section defines the sub-TLVs for dealing with accessibility and 386 availability of resource blocks within a pool of resources. These 387 include the ResourceBlockAccessibility, ResourceWaveConstraints, and 388 RBPoolState sub-TLVs. 390 4.1. Resource Pool Accessibility Sub-TLV 392 This sub-TLV describes the structure of the resource pool in 393 relation to the switching device. In particular it indicates the 394 ability of an ingress port to reach sets of resources and of a sets 395 of resources to reach a particular egress port. This is the 396 PoolIngressMatrix and PoolEgressMatrix of [WSON-Info]. 398 The resource pool accessibility sub-TLV is defined by: 400 0 1 2 3 401 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 402 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 403 | Connectivity | Reserved | 404 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 405 | Ingress Link Set Field A #1 | 406 : : 407 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 408 | RB Set Field A #1 | 409 : : 410 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 411 | Additional Link set and RB set pairs as needed to | 412 : specify PoolIngressMatrix : 413 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 414 | Egress Link Set Field B #1 | 415 : : 416 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 417 | RB Set B Field #1 (for egress connectivity) | 418 : : 419 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 420 | Additional Link Set and RB set pairs as needed to | 421 : specify PoolEgressMatrix : 422 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 424 Where 426 Connectivity indicates how the ingress/egress ports connect to the 427 resource blocks. 429 0 -- the device is fixed (e.g., a connected port must go 430 through the resource block) 432 1 -- the device is switched (e.g., a port can be configured to 433 go through a resource but isn't required) 435 The Link Set Field is defined in [Gen-Encode]. 437 Note that the direction parameter within the Link Set Field is used 438 to indicate whether the link set is an ingress or egress link set, 439 and the bidirectional value for this parameter is not permitted in 440 this sub-TLV. 442 See Appendix A.1 for an illustration of this encoding. 444 4.2. Resource Block Wavelength Constraints Sub-TLV 446 Resources, such as wavelength converters, etc., may have a limited 447 input or output wavelength ranges. Additionally, due to the 448 structure of the optical system not all wavelengths can necessarily 449 reach or leave all the resources. These properties are described by 450 using one or more resource wavelength restrictions sub-TLVs as 451 defined below: 453 0 1 2 3 454 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 455 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 456 | RB Set Field | 457 : : 458 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 459 | Input Wavelength Set Field | 460 : : 461 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 462 | Output Wavelength Set Field | 463 : : 464 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 466 RB Set Field: 468 A set of resource blocks (RBs) which have the same wavelength 469 restrictions. 471 Input Wavelength Set Field: 473 Indicates the wavelength input restrictions of the RBs in the 474 corresponding RB set. 476 Output Wavelength Set Field: 478 Indicates the wavelength output restrictions of RBs in the 479 corresponding RB set. 481 4.3. Resource Pool State Sub-TLV 483 The state of the pool is given by the number of resources available 484 with particular characteristics. A resource block set is used to 485 encode all or a subset of the resources of interest. The usage state 486 of resources within a resource block set is encoded as either a list 487 of 16 bit integer values indicating the number of available 488 resources in the resource block, or a bit map indicating whether a 489 particular resource is available or in use. The bit map encoding is 490 appropriate when resource blocks consist of a single resource. This 491 information can be relatively dynamic, i.e., can change when a 492 connection (LSP is established or torn down. 494 0 1 2 3 495 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 496 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 497 | Action | Reserved | 498 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 499 | RB Set Field | 500 : : 501 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 502 | RB Usage state | 503 : : 504 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 506 Where Action = 0 denotes a list of 16 bit integers and Action = 1 507 denotes a bit map. In both cases the elements of the RB Set field 508 are in a one-to-one correspondence with the values in the usage RB 509 usage state area. 511 0 1 2 3 512 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 513 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 514 | Action = 0 | Reserved | 515 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 516 | RB Set Field | 517 : : 518 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 519 | RB#1 state | RB#2 state | 520 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 521 : : 522 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 523 | RB#n-1 state | RB#n state or Padding | 524 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 526 Whether the last 16 bits is a wavelength converter (RB) state or 527 padding is determined by the number of elements in the RB set field. 529 0 1 2 3 530 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 531 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 532 | Action = 1 | Reserved | 533 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 534 | RB Set Field | 535 : : 536 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 537 | RB Usage state bitmap | 538 : : 539 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 540 | ...... | Padding bits | 541 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 543 RB Usage state: Variable Length but must be a multiple of 4 bytes. 545 Each bit indicates the usage status of one RB with 0 indicating the 546 RB is available and 1 indicating the RB is in used. The sequence of 547 the bit map is ordered according to the RB Set field with this sub- 548 TLV. 550 Padding bits: Variable Length 552 4.4. Block Shared Access Wavelength Availability sub-TLV 554 Resources blocks may be accessed via a shared fiber. If this is the 555 case, then wavelength availability on these shared fibers is needed 556 to understand resource availability. 558 0 1 2 3 559 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 560 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 561 |I|E| Reserved | 562 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 563 | RB Set Field | 564 : : 565 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 566 | Ingress Available Wavelength Set Field | 567 : (Optional) : 568 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 569 | Egress Available Wavelength Set Field | 570 : (Optional) : 571 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 573 I bit: 575 Indicates whether the ingress available wavelength set field is 576 included (1) or not (0). 578 E bit: 580 Indicates whether the egress available wavelength set field is 581 included (1) or not (0). 583 RB Set Field: 585 A Resource Block set in which all the members share the same ingress 586 or egress fiber or both. 588 Ingress Available Wavelength Set Field: 590 Indicates the wavelengths currently available (not being used) on 591 the ingress fiber to this resource block. 593 Egress Available Wavelength Set Field: 595 Indicates the wavelengths currently available (not being used) on 596 the egress fiber from this resource block. 598 5. Resource Properties Encoding 600 Within a WSON network element (NE) there may be resources with 601 signal compatibility constraints. These resources be regenerators, 602 wavelength converters, etc... Such resources may also constitute the 603 network element as a whole as in the case of an electro optical 604 switch. This section primarily focuses on the signal compatibility 605 and processing properties of such a resource block. 607 The fundamental properties of a resource block, such as a 608 regenerator or wavelength converter, are: 610 (a) Input constraints (shared ingress, modulation, FEC, bit rate, 611 GPID) 613 (b) Processing capabilities (number of resources in a block, 614 regeneration, performance monitoring, vendor specific) 616 (c) Output Constraints (shared egress, modulation, FEC) 618 5.1. Resource Block Information Sub-TLV 620 Resource Block descriptor sub-TLVs are used to convey relatively 621 static information about individual resource blocks including the 622 resource block compatibility properties, processing properties, and 623 the number of resources in a block. 625 This sub-TLV has the following format: 627 0 1 2 3 628 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 629 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 630 | RB Set Field | 631 : : 632 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 633 |I|E| Reserved | 634 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 635 | Input Modulation Type List Sub-Sub-TLV (opt) | 636 : : 637 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 638 | Input FEC Type List Sub-Sub-TLV (opt) | 639 : : 640 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 641 | Input Client Signal Type Sub-Sub-TLV (opt) | 642 : : 643 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 644 | Input Bit Rate Range List Sub-Sub-TLV (opt) | 645 : : 646 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 647 | Processing Capabilities List Sub-Sub-TLV (opt) | 648 : : 649 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 650 | Output Modulation Type List Sub-Sub-TLV (opt) | 651 : : 652 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 653 | Output FEC Type List Sub-Sub-TLV (opt) | 654 : : 655 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 657 Where I and E, the shared ingress/egress indicator, is set to 1 if 658 the resource blocks identified in the RB set field utilized a shared 659 fiber for ingress/egress access and set to 0 otherwise. 661 5.2. Input Modulation Format List Sub-Sub-TLV 663 This sub-sub-TLV contains a list of acceptable input modulation 664 formats. 666 Type := Input Modulation Format List 668 Value := A list of Modulation Format Fields 669 5.2.1. Modulation Format Field 671 Two different types of modulation format fields are defined: a 672 standard modulation field and a vendor specific modulation field. 673 Both start with the same 32 bit header shown below. 675 0 1 2 3 676 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 677 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 678 |S|I| Modulation ID | Length | 679 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 681 Where S bit set to 1 indicates a standardized modulation format and 682 S bit set to 0 indicates a vendor specific modulation format. The 683 length is the length in bytes of the entire modulation type field. 685 Where I bit set to 1 indicates it is an input modulation constraint 686 and I bit set to 0 indicates it is an output modulation constraint. 688 Note that if an output modulation is not specified then it is 689 implied that it is the same as the input modulation. In such case, 690 no modulation conversion is performed. 692 The format for the standardized type for the input modulation is 693 given by: 695 0 1 2 3 696 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 697 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 698 |1|1| Modulation ID | Length | 699 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 700 | Possible additional modulation parameters depending upon | 701 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 702 : the modulation ID : 703 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 705 Modulation ID (S bit = 1); Input modulation (I bit = 1) 707 Takes on the following currently defined values: 709 0 Reserved 711 1 optical tributary signal class NRZ 1.25G 712 2 optical tributary signal class NRZ 2.5G 714 3 optical tributary signal class NRZ 10G 716 4 optical tributary signal class NRZ 40G 718 5 optical tributary signal class RZ 40G 720 Note that future modulation types may require additional parameters 721 in their characterization. 723 The format for vendor specific modulation field (for input 724 constraint) is given by: 726 0 1 2 3 727 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 728 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 729 |0|1| Vendor Modulation ID | Length | 730 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 731 | Enterprise Number | 732 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 733 : Any vendor specific additional modulation parameters : 734 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 736 Vendor Modulation ID 738 This is a vendor assigned identifier for the modulation type. 740 Enterprise Number 742 A unique identifier of an organization encoded as a 32-bit 743 integer. Enterprise Numbers are assigned by IANA and managed 744 through an IANA registry [RFC2578]. 746 Vendor Specific Additional parameters 748 There can be potentially additional parameters characterizing the 749 vendor specific modulation. 751 5.3. Input FEC Type List Sub-Sub-TLV 753 This sub-sub-TLV contains a list of acceptable FEC types. 755 Type := Input FEC Type field List 757 Value := A list of FEC type Fields 759 5.3.1. FEC Type Field 761 The FEC type Field may consist of two different formats of fields: a 762 standard FEC field or a vendor specific FEC field. Both start with 763 the same 32 bit header shown below. 765 0 1 2 3 766 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 767 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 768 |S|I| FEC ID | Length | 769 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 770 | Possible additional FEC parameters depending upon | 771 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 772 : the FEC ID : 773 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 775 Where S bit set to 1 indicates a standardized FEC format and S bit 776 set to 0 indicates a vendor specific FEC format. The length is the 777 length in bytes of the entire FEC type field. 779 Where I bit set to 1 indicates it is an input FEC constraint and I 780 bit set to 0 indicates it is an output FEC constraint. 782 Note that if an output FEC is not specified then it is implied that 783 it is the same as the input FEC. In such case, no FEC conversion is 784 performed. 786 The length is the length in bytes of the entire FEC type field. 788 The format for input standard FEC field is given by: 790 0 1 2 3 791 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 792 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 793 |1|1| FEC ID | Length | 794 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 795 | Possible additional FEC parameters depending upon | 796 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 797 : the FEC ID : 798 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 800 Takes on the following currently defined values for the standard 801 FEC ID: 803 0 Reserved 805 1 G.709 RS FEC 807 2 G.709V compliant Ultra FEC 809 3 G.975.1 Concatenated FEC 810 (RS(255,239)/CSOC(n0/k0=7/6,J=8)) 812 4 G.975.1 Concatenated FEC (BCH(3860,3824)/BCH(2040,1930)) 814 5 G.975.1 Concatenated FEC (RS(1023,1007)/BCH(2407,1952)) 816 6 G.975.1 Concatenated FEC (RS(1901,1855)/Extended Hamming 817 Product Code (512,502)X(510,500)) 819 7 G.975.1 LDPC Code 821 8 G.975.1 Concatenated FEC (Two orthogonally concatenated 822 BCH codes) 824 9 G.975.1 RS(2720,2550) 826 10 G.975.1 Concatenated FEC (Two interleaved extended BCH 827 (1020,988) codes) 829 Where RS stands for Reed-Solomon and BCH for Bose-Chaudhuri- 830 Hocquengham. 832 The format for input vendor-specific FEC field is given by: 834 0 1 2 3 835 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 836 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 837 |0|1| Vendor FEC ID | Length | 838 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 839 | Enterprise Number | 840 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 841 : Any vendor specific additional FEC parameters : 842 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 844 Vendor FEC ID 846 This is a vendor assigned identifier for the FEC type. 848 Enterprise Number 850 A unique identifier of an organization encoded as a 32-bit 851 integer. Enterprise Numbers are assigned by IANA and managed 852 through an IANA registry [RFC2578]. 854 Vendor Specific Additional FEC parameters 856 There can be potentially additional parameters characterizing the 857 vendor specific FEC. 859 5.4. Input Bit Range List Sub-Sub-TLV 861 This sub-sub-TLV contains a list of acceptable input bit rate 862 ranges. 864 Type := Input Bit Range List 866 Value := A list of Bit Range Fields 868 5.4.1. Bit Range Field 870 The bit rate range list sub-TLV makes use of the following bit rate 871 range field: 873 0 1 2 3 874 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 875 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 876 | Starting Bit Rate | 877 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 878 | Ending Bit Rate | 879 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 881 The starting and ending bit rates are given as 32 bit IEEE floating 882 point numbers in bits per second. Note that the starting bit rate is 883 less than or equal to the ending bit rate. 885 The bit rate range list sub-TLV is then given by: 887 0 1 2 3 888 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 889 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 890 | | 891 +-+-+-+-+-+-+-+-+-+-+-+-+ Bit Range Field #1 +-+-+-+-+-+-+-+-+-+ 892 | | 893 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 894 : : : 895 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 896 | | 897 +-+-+-+-+-+-+-+-+-+-+-+-+ Bit Range Field #M +-+-+-+-+-+-+-+-+-+ 898 | | 899 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 901 5.5. Input Client Signal List Sub-Sub-TLV 903 This sub-sub-TLV contains a list of acceptable input client signal 904 types. 906 Type := Input Client Signal List 908 Value := A list of GPIDs 910 The acceptable client signal list sub-TLV is a list of Generalized 911 Protocol Identifiers (GPIDs). GPIDs are assigned by IANA and many 912 are defined in [RFC3471] and [RFC4328]. 914 0 1 2 3 915 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 916 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 917 | Number of GPIDs | GPID #1 | 918 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 919 : | : 920 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 921 | GPID #N | | 922 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 924 Where the number of GPIDs is an integer greater than or equal to 925 one. 927 5.6. Processing Capability List Sub-Sub-TLV 929 This sub-sub-TLV contains a list of resource block processing 930 capabilities. 932 Type := Processing Capabilities List 934 Value := A list of Processing Capabilities Fields 936 The processing capability list sub-TLV is a list of WSON network 937 element (NE) that can perform signal processing functions including: 939 1. Number of Resources within the block 941 2. Regeneration capability 943 3. Fault and performance monitoring 945 4. Vendor Specific capability 947 Note that the code points for Fault and performance monitoring and 948 vendor specific capability are subject to further study. 950 5.6.1. Processing Capabilities Field 952 The processing capability field is then given by: 954 0 1 2 3 955 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 956 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 957 | Processing Cap ID | Length | 958 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 959 | Possible additional capability parameters depending upon | 960 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 961 : the processing ID : 962 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 964 When the processing Cap ID is "number of resources" the format is 965 simply: 967 0 1 2 3 968 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 969 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 970 | Processing Cap ID | Length = 8 | 971 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 972 | Number of resources per block | 973 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 975 When the processing Cap ID is "regeneration capability", the 976 following additional capability parameters are provided in the sub- 977 TLV: 979 0 1 2 3 980 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 981 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 982 | T | C | Reserved | 983 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 985 Where T bit indicates the type of regenerator: 987 T=0: Reserved 989 T=1: 1R Regenerator 991 T=2: 2R Regenerator 993 T=3: 3R Regenerator 995 Where C bit indicates the capability of regenerator: 997 C=0: Reserved 999 C=1: Fixed Regeneration Point 1001 C=2: Selective Regeneration Point 1003 Note that when the capability of regenerator is indicated to be 1004 Selective Regeneration Pools, regeneration pool properties such as 1005 ingress and egress restrictions and availability need to be 1006 specified. This encoding is to be determined in the later revision. 1008 5.7. Output Modulation Format List Sub-Sub-TLV 1010 This sub-sub-TLV contains a list of available output modulation 1011 formats. 1013 Type := Output Modulation Format List 1015 Value := A list of Modulation Format Fields 1017 5.8. Output FEC Type List Sub-Sub-TLV 1019 This sub-sub-TLV contains a list of output FEC types. 1021 Type := Output FEC Type field List 1023 Value := A list of FEC type Fields 1025 6. Security Considerations 1027 This document defines protocol-independent encodings for WSON 1028 information and does not introduce any security issues. 1030 However, other documents that make use of these encodings within 1031 protocol extensions need to consider the issues and risks associated 1032 with, inspection, interception, modification, or spoofing of any of 1033 this information. It is expected that any such documents will 1034 describe the necessary security measures to provide adequate 1035 protection. 1037 7. IANA Considerations 1039 This document provides general protocol independent information 1040 encodings. There is no IANA allocation request for the TLVs defined 1041 in this document. IANA allocation requests will be addressed in 1042 protocol specific documents based on the encodings defined here. 1044 8. Acknowledgments 1046 This document was prepared using 2-Word-v2.0.template.dot. 1048 APPENDIX A: Encoding Examples 1050 A.1. Wavelength Converter Accessibility Sub-TLV 1052 Example: 1054 Figure 1 shows a wavelength converter pool architecture know as 1055 "shared per fiber". In this case the ingress and egress pool 1056 matrices are simply: 1058 +-----+ +-----+ 1059 | 1 1 | | 1 0 | 1060 WI =| |, WE =| | 1061 | 1 1 | | 0 1 | 1062 +-----+ +-----+ 1064 +-----------+ +------+ 1065 | |--------------------->| | 1066 | |--------------------->| C | 1067 /| | |--------------------->| o | 1068 /D+--->| |--------------------->| m | 1069 + e+--->| | | b |=======> 1070 ========>| M| | Optical | +-----------+ | i | Port E1 1071 Port I1 + u+--->| Switch | | WC Pool | | n | 1072 \x+--->| | | +-----+ | | e | 1073 \| | +----+->|WC #1|--+---->| r | 1074 | | | +-----+ | +------+ 1075 | | | | +------+ 1076 /| | | | +-----+ | | | 1077 /D+--->| +----+->|WC #2|--+---->| C | 1078 + e+--->| | | +-----+ | | o | 1079 ========>| M| | | +-----------+ | m |=======> 1080 Port I2 + u+--->| | | b | Port E2 1081 \x+--->| |--------------------->| i | 1082 \| | |--------------------->| n | 1083 | |--------------------->| e | 1084 | |--------------------->| r | 1085 +-----------+ +------+ 1086 Figure 1 An optical switch featuring a shared per fiber wavelength 1087 converter pool architecture. 1089 This wavelength converter pool can be encoded as follows: 1091 0 1 2 3 1092 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1093 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1094 | Connectivity=1| Reserved | 1095 Note: I1,I2 can connect to either WC1 or WC2 1096 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1097 | Action=0 |0 1|0 0 0 0 0 0| Length = 12 | 1098 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1099 | Link Local Identifier = #1 | 1100 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1101 | Link Local Identifier = #2 | 1102 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1103 | Action=0 |1| Reserved | Length = 12 | 1104 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1105 | RB ID = #1 | 1106 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1107 | RB ID = #2 | 1108 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1110 Note: WC1 can only connect to E1 1111 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1112 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 | 1113 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1114 | Link Local Identifier = #1 | 1115 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1116 | Action=0 |0| Reserved | Length = 8 | 1117 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1118 | RB ID = #1 | 1119 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1121 Note: WC2 can only connect to E2 1122 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1123 | Action=0 |1 0|0 0 0 0 0 0| Length = 8 | 1124 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1125 | Link Local Identifier = #2 | 1126 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1127 | Action=0 |0| Reserved | Length = 8 | 1128 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1129 | RB ID = #2 | 1130 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1132 A.2. Wavelength Conversion Range Sub-TLV 1134 Example: 1136 This example, based on figure 1, shows how to represent the 1137 wavelength conversion range of wavelength converters. Suppose the 1138 wavelength range of input and output of WC1 and WC2 are {L1, L2, L3, 1139 L4}: 1141 0 1 2 3 1142 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1143 Note: WC Set 1144 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1145 | Action=0 |1| Reserved | Length = 12 | 1146 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1147 | WC ID = #1 | 1148 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1149 | WC ID = #2 | 1150 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1152 Note: wavelength input range 1153 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1154 | 2 | Num Wavelengths = 4 | Length = 8 | 1155 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1156 |Grid | C.S. | Reserved | n for lowest frequency = 1 | 1157 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1159 Note: wavelength output range 1160 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1161 | 2 | Num Wavelengths = 4 | Length = 8 | 1162 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1163 |Grid | C.S. | Reserved | n for lowest frequency = 1 | 1164 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1166 A.3. An OEO Switch with DWDM Optics 1168 Figure 2 shows an electronic switch fabric surrounded by DWDM 1169 optics. In this example the electronic fabric can handle either 1170 G.709 or SDH signals only (2.5 or 10 Gbps). To describe this node, 1171 the following information is needed: 1173 ::= [Other GMPLS sub- 1174 TLVs][...] [][] 1176 In this case there is complete port to port connectivity so the 1177 is not required. In addition since there are 1178 sufficient ports to handle all wavelength signals the 1179 element is not needed. 1181 Hence the attention will be focused on the sub-TLV: 1183 ::= 1184 [...][...] 1187 /| +-----------+ +-------------+ +------+ 1188 /D+--->| +--->|Tunable Laser|-->| | 1189 + e+--->| | +-------------+ | C | 1190 ========>| M| | | ... | o |=======> 1191 Port I1 + u+--->| | +-------------+ | m | Port E1 1192 \x+--->| |--->|Tunable Laser|-->| b | 1193 \| | Electric | +-------------+ +------+ 1194 | Switch | 1195 /| | | +-------------+ +------+ 1196 /D+--->| +--->|Tunable Laser|-->| | 1197 + e+--->| | +-------------+ | C | 1198 ========>| M| | | ... | o |=======> 1199 Port I2 + u+--->| | +-------------+ | m | Port E2 1200 \x+--->| +--->|Tunable Laser|-->| b | 1201 \| | | +-------------+ +------+ 1202 | | 1203 /| | | +-------------+ +------+ 1204 /D+--->| |--->|Tunable Laser|-->| | 1205 + e+--->| | +-------------+ | C | 1206 ========>| M| | | ... | o |=======> 1207 Port I3 + u+--->| | +-------------+ | m | Port E3 1208 \x+--->| |--->|Tunable Laser|-->| b | 1209 \| +-----------+ +-------------+ +------+ 1211 Figure 2 An optical switch built around an electronic switching 1212 fabric. 1214 The resource block information will tell us about the processing 1215 constraints of the receivers, transmitters and the electronic 1216 switch. The resource availability information, although very simple, 1217 tells us that all signals must traverse the electronic fabric (fixed 1218 connectivity). The resource wavelength constraints are not needed 1219 since there are no special wavelength constraints for the resources 1220 that would not appear as port/wavelength constraints. 1222 : 1224 0 1 2 3 1225 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1226 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1227 | RB Set Field | 1228 : (only one resource block in this example with shared | 1229 | input/output case) | 1230 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1231 |0|0| Reserved | 1232 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1233 | Input Modulation Type List Sub-Sub-TLV | 1234 : (The receivers can only process NRZ) : 1235 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1236 | Input FEC Type List Sub-Sub-TLV | 1237 : (Only Standard SDH and G.709 FECs ) : 1238 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1239 | Input Client Signal Type Sub-TLV | 1240 : (GPIDs for SDH and G.709) : 1241 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1242 | Input Bit Rate Range List Sub-Sub-TLV | 1243 : (2.5Gbps, 10Gbps) : 1244 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1245 | Processing Capabilities List Sub-Sub-TLV | 1246 : Fixed (non optional) 3R regeneration : 1247 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1248 | Output Modulation Type List Sub-Sub-TLV | 1249 : NRZ : 1250 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1251 | Output FEC Type List Sub-Sub-TLV | 1252 : Standard SDH, G.709 FECs : 1253 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1255 Since there is fixed connectivity to resource blocks (the electronic 1256 switch) the is: 1258 0 1 2 3 1259 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1260 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1261 | Connectivity=1|Reserved | | 1262 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1263 | Ingress Link Set Field A #1 | 1264 : (All ingress links connect to resource) : 1265 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1266 | RB Set Field A #1 | 1267 : (trivial set only one resource block) : 1268 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1269 | Egress Link Set Field B #1 | 1270 : (All egress links connect to resource) : 1271 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1273 9. References 1275 9.1. Normative References 1277 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 1278 Requirement Levels", BCP 14, RFC 2119, March 1997. 1280 [RFC2578] McCloghrie, K., Perkins, D., and J. Schoenwaelder, 1281 "Structure of Management Information Version 2 (SMIv2)", 1282 STD 58, RFC 2578, April 1999. 1284 [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching 1285 (GMPLS) Signaling Functional Description", RFC 3471, 1286 January 2003. 1288 [RFC4328] Papadimitriou, D., Ed., "Generalized Multi-Protocol Label 1289 Switching (GMPLS) Signaling Extensions for G.709 Optical 1290 Transport Networks Control", RFC 4328, January 2006. 1292 [G.694.1] ITU-T Recommendation G.694.1, "Spectral grids for WDM 1293 applications: DWDM frequency grid", June, 2002. 1295 9.2. Informative References 1297 [G.694.1] ITU-T Recommendation G.694.1, Spectral grids for WDM 1298 applications: DWDM frequency grid, June 2002. 1300 [G.694.2] ITU-T Recommendation G.694.2, Spectral grids for WDM 1301 applications: CWDM wavelength grid, December 2003. 1303 [Gen-Encode] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "General 1304 Network Element Constraint Encoding for GMPLS Controlled 1305 Networks", work in progress: draft-ietf-ccamp-general- 1306 constraint-encode. 1308 [RFC6205] T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized 1309 Labels for G.694 Lambda-Switching Capable Label Switching 1310 Routers", RFC 6205, March 2011. 1312 [RFC6163] Y. Lee, G. Bernstein, W. Imajuku, "Framework for GMPLS 1313 and PCE Control of Wavelength Switched Optical Networks", 1314 RFC 6163, April 2011. 1316 [WSON-Info] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and 1317 Wavelength Assignment Information Model for Wavelength 1318 Switched Optical Networks", work in progress: draft-ietf- 1319 ccamp-rwa-info, March 2009. 1321 10. Contributors 1323 Diego Caviglia 1324 Ericsson 1325 Via A. Negrone 1/A 16153 1326 Genoa Italy 1327 Phone: +39 010 600 3736 1328 Email: diego.caviglia@(marconi.com, ericsson.com) 1330 Anders Gavler 1331 Acreo AB 1332 Electrum 236 1333 SE - 164 40 Kista Sweden 1334 Email: Anders.Gavler@acreo.se 1336 Jonas Martensson 1337 Acreo AB 1338 Electrum 236 1339 SE - 164 40 Kista, Sweden 1340 Email: Jonas.Martensson@acreo.se 1342 Itaru Nishioka 1343 NEC Corp. 1344 1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666 1345 Japan 1346 Phone: +81 44 396 3287 1347 Email: i-nishioka@cb.jp.nec.com 1349 Cyril Margaria 1350 Nokia Siemens Networks 1351 St Martin Strasse 76 1352 Munich, 81541 1353 Germany 1354 Phone: +49 89 5159 16934 1355 Email: cyril.margaria@nsn.com 1357 Authors' Addresses 1359 Greg M. Bernstein (ed.) 1360 Grotto Networking 1361 Fremont California, USA 1363 Phone: (510) 573-2237 1364 Email: gregb@grotto-networking.com 1365 Young Lee (ed.) 1366 Huawei Technologies 1367 1700 Alma Drive, Suite 100 1368 Plano, TX 75075 1369 USA 1371 Phone: (972) 509-5599 (x2240) 1372 Email: ylee@huawei.com 1374 Dan Li 1375 Huawei Technologies Co., Ltd. 1376 F3-5-B R&D Center, Huawei Base, 1377 Bantian, Longgang District 1378 Shenzhen 518129 P.R.China 1380 Phone: +86-755-28973237 1381 Email: danli@huawei.com 1383 Wataru Imajuku 1384 NTT Network Innovation Labs 1385 1-1 Hikari-no-oka, Yokosuka, Kanagawa 1386 Japan 1388 Phone: +81-(46) 859-4315 1389 Email: imajuku.wataru@lab.ntt.co.jp 1391 Jianrui Han 1392 Huawei Technologies Co., Ltd. 1393 F3-5-B R&D Center, Huawei Base, 1394 Bantian, Longgang District 1395 Shenzhen 518129 P.R.China 1397 Phone: +86-755-28972916 1398 Email: hanjianrui@huawei.com 1400 Intellectual Property Statement 1402 The IETF Trust takes no position regarding the validity or scope of 1403 any Intellectual Property Rights or other rights that might be 1404 claimed to pertain to the implementation or use of the technology 1405 described in any IETF Document or the extent to which any license 1406 under such rights might or might not be available; nor does it 1407 represent that it has made any independent effort to identify any 1408 such rights. 1410 Copies of Intellectual Property disclosures made to the IETF 1411 Secretariat and any assurances of licenses to be made available, or 1412 the result of an attempt made to obtain a general license or 1413 permission for the use of such proprietary rights by implementers or 1414 users of this specification can be obtained from the IETF on-line 1415 IPR repository at http://www.ietf.org/ipr 1417 The IETF invites any interested party to bring to its attention any 1418 copyrights, patents or patent applications, or other proprietary 1419 rights that may cover technology that may be required to implement 1420 any standard or specification contained in an IETF Document. Please 1421 address the information to the IETF at ietf-ipr@ietf.org. 1423 Disclaimer of Validity 1425 All IETF Documents and the information contained therein are 1426 provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION 1427 HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, 1428 THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL 1429 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 1430 WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE 1431 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS 1432 FOR A PARTICULAR PURPOSE. 1434 Acknowledgment 1436 Funding for the RFC Editor function is currently provided by the 1437 Internet Society.