idnits 2.17.1 draft-ietf-ccamp-rwa-wson-encode-18.txt: Checking boilerplate required by RFC 5378 and the IETF Trust (see https://trustee.ietf.org/license-info): ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/1id-guidelines.txt: ---------------------------------------------------------------------------- No issues found here. Checking nits according to https://www.ietf.org/id-info/checklist : ---------------------------------------------------------------------------- No issues found here. Miscellaneous warnings: ---------------------------------------------------------------------------- == The copyright year in the IETF Trust and authors Copyright Line does not match the current year -- The document date (September 28, 2012) is 4228 days in the past. Is this intentional? Checking references for intended status: Proposed Standard ---------------------------------------------------------------------------- (See RFCs 3967 and 4897 for information about using normative references to lower-maturity documents in RFCs) == Missing Reference: 'ITU-G.698.1' is mentioned on line 769, but not defined == Missing Reference: 'ITU-G.698.2' is mentioned on line 771, but not defined == Missing Reference: 'ITU-G.959.1' is mentioned on line 773, but not defined == Unused Reference: 'RFC2578' is defined on line 1332, but no explicit reference was found in the text == Unused Reference: 'G.694.1' is defined on line 1349, but no explicit reference was found in the text == Unused Reference: 'G.694.2' is defined on line 1352, but no explicit reference was found in the text -- Possible downref: Non-RFC (?) normative reference: ref. 'G.694.1' Summary: 0 errors (**), 0 flaws (~~), 7 warnings (==), 2 comments (--). Run idnits with the --verbose option for more detailed information about the items above. -------------------------------------------------------------------------------- 1 Network Working Group G. Bernstein 2 Internet Draft Grotto Networking 3 Intended status: Standards Track Y. Lee 4 Expires: March 2013 D. Li 5 Huawei 6 W. Imajuku 7 NTT 9 September 28, 2012 11 Routing and Wavelength Assignment Information Encoding for 12 Wavelength Switched Optical Networks 14 draft-ietf-ccamp-rwa-wson-encode-18.txt 16 Status of this Memo 18 This Internet-Draft is submitted to IETF in full conformance with 19 the provisions of BCP 78 and BCP 79. 21 Internet-Drafts are working documents of the Internet Engineering 22 Task Force (IETF), its areas, and its working groups. Note that 23 other groups may also distribute working documents as Internet- 24 Drafts. 26 Internet-Drafts are draft documents valid for a maximum of six 27 months and may be updated, replaced, or obsoleted by other documents 28 at any time. It is inappropriate to use Internet-Drafts as 29 reference material or to cite them other than as "work in progress." 31 The list of current Internet-Drafts can be accessed at 32 http://www.ietf.org/ietf/1id-abstracts.txt 34 The list of Internet-Draft Shadow Directories can be accessed at 35 http://www.ietf.org/shadow.html 37 This Internet-Draft will expire on March 28, 2013. 39 Copyright Notice 41 Copyright (c) 2012 IETF Trust and the persons identified as the 42 document authors. All rights reserved. 44 This document is subject to BCP 78 and the IETF Trust's Legal 45 Provisions Relating to IETF Documents 46 (http://trustee.ietf.org/license-info) in effect on the date of 47 publication of this document. Please review these documents 48 carefully, as they describe your rights and restrictions with 49 respect to this document. Code Components extracted from this 50 document must include Simplified BSD License text as described in 51 Section 4.e of the Trust Legal Provisions and are provided without 52 warranty as described in the Simplified BSD License. 54 Abstract 56 A wavelength switched optical network (WSON) requires that certain 57 key information elements are made available to facilitate path 58 computation and the establishment of label switching paths (LSPs). 59 The information model described in "Routing and Wavelength 60 Assignment Information for Wavelength Switched Optical Networks" 61 shows what information is required at specific points in the WSON. 62 Part of the WSON information model contains aspects that may be of 63 general applicability to other technologies, while other parts are 64 fairly specific to WSONs. 66 This document provides efficient, protocol-agnostic encodings for 67 the WSON specific information elements. It is intended that 68 protocol-specific documents will reference this memo to describe how 69 information is carried for specific uses. Such encodings can be used 70 to extend GMPLS signaling and routing protocols. In addition these 71 encodings could be used by other mechanisms to convey this same 72 information to a path computation element (PCE). 74 Conventions used in this document 76 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", 77 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this 78 document are to be interpreted as described in RFC-2119 [RFC2119]. 80 Table of Contents 82 1. Introduction...................................................4 83 1.1. Revision History..........................................4 84 1.1.1. Changes from 00 draft................................4 85 1.1.2. Changes from 01 draft................................5 86 1.1.3. Changes from 02 draft................................5 87 1.1.4. Changes from 03 draft................................5 88 1.1.5. Changes from 04 draft................................5 89 1.1.6. Changes from 05 draft................................5 90 1.1.7. Changes from 06 draft................................6 91 1.1.8. Changes from 07 draft................................6 92 1.1.9. Changes from 08 draft................................6 93 1.1.10. Changes from 09 draft...............................6 94 1.1.11. Changes from 10 draft...............................6 95 1.1.12. Changes from 11 draft...............................6 96 1.1.13. Changes from 12 draft...............................6 97 1.1.14. Changes from 13 draft...............................7 98 1.1.15. Changes from 14 draft...............................7 99 1.1.16. Changes from 15 draft...............................7 100 1.1.17. Changes from 16 draft...............................7 101 1.1.18. Changes from 17 draft...............................7 102 2. Terminology....................................................7 103 3. Resources, Blocks, Sets, and the Resource Pool.................8 104 3.1. Resource Block Set Field..................................9 105 4. Resource Pool Accessibility/Availability......................10 106 4.1. Resource Pool Accessibility Sub-TLV......................10 107 4.2. Resource Block Wavelength Constraints Sub-TLV............12 108 4.3. Resource Pool State Sub-TLV..............................14 109 4.4. Block Shared Access Wavelength Availability sub-TLV......15 110 5. Resource Properties Encoding..................................16 111 5.1. Resource Block Information Sub-TLV.......................17 112 5.2. Optical Interface Class List(s) Sub-Sub-TLV..............17 113 5.2.1. Optical Interface Class Format......................18 114 5.2.2. ITU-G.698.1 Application Code Mapping................19 115 5.2.3. ITU-G.698.2 Application Code Mapping................21 116 5.2.4. ITU-G.959.1 Application Code Mapping................22 117 5.3. Input Client Signal List Sub-Sub-TLV.....................24 118 5.4. Processing Capability List Sub-Sub-TLV...................25 119 5.4.1. Processing Capabilities Field.......................25 120 6. Security Considerations.......................................27 121 7. IANA Considerations...........................................27 122 8. Acknowledgments...............................................27 123 APPENDIX A: Encoding Examples....................................28 124 A.1. Wavelength Converter Accessibility Sub-TLV...............28 125 A.2. Wavelength Conversion Range Sub-TLV......................30 126 A.3. An OEO Switch with DWDM Optics...........................30 127 9. References....................................................33 128 9.1. Normative References.....................................33 129 9.2. Informative References...................................33 130 10. Contributors.................................................35 131 Authors' Addresses...............................................36 132 Intellectual Property Statement..................................37 133 Disclaimer of Validity...........................................38 135 1. Introduction 137 A Wavelength Switched Optical Network (WSON) is a Wavelength 138 Division Multiplexing (WDM) optical network in which switching is 139 performed selectively based on the center wavelength of an optical 140 signal. 142 [RFC6163] describes a framework for Generalized Multiprotocol Label 143 Switching (GMPLS) and Path Computation Element (PCE) control of a 144 WSON. Based on this framework, [WSON-Info] describes an information 145 model that specifies what information is needed at various points in 146 a WSON in order to compute paths and establish Label Switched Paths 147 (LSPs). 149 This document provides efficient encodings of information needed by 150 the routing and wavelength assignment (RWA) process in a WSON. Such 151 encodings can be used to extend GMPLS signaling and routing 152 protocols. In addition these encodings could be used by other 153 mechanisms to convey this same information to a path computation 154 element (PCE). Note that since these encodings are relatively 155 efficient they can provide more accurate analysis of the control 156 plane communications/processing load for WSONs looking to utilize a 157 GMPLS control plane. 159 Note that encodings of information needed by the routing and label 160 assignment process applicable to general networks beyond WSON are 161 addressed in a separate document [Gen-Encode]. This document makes 162 use of the Label Set Field encoding of [Gen-Encode] and refers to it 163 as a Wavelength Set Field. 165 1.1. Revision History 167 1.1.1. Changes from 00 draft 169 Edits to make consistent with update to [RFC6205], i.e., removal of 170 sign bit. 172 Clarification of TBD on connection matrix type and possibly 173 numbering. 175 New sections for wavelength converter pool encoding: Wavelength 176 Converter Set Sub-TLV, Wavelength Converter Accessibility Sub-TLV, 177 Wavelength Conversion Range Sub-TLV, WC Usage State Sub-TLV. 179 Added optional wavelength converter pool TLVs to the composite node 180 TLV. 182 1.1.2. Changes from 01 draft 184 The encoding examples have been moved to an appendix. Classified and 185 corrected information elements as either reusable fields or sub- 186 TLVs. Updated Port Wavelength Restriction sub-TLV. Added available 187 wavelength and shared backup wavelength sub-TLVs. Changed the title 188 and scope of section 6 to recommendations since the higher level 189 TLVs that this encoding will be used in is somewhat protocol 190 specific. 192 1.1.3. Changes from 02 draft 194 Removed inconsistent text concerning link local identifiers and the 195 link set field. 197 Added E bit to the Wavelength Converter Set Field. 199 Added bidirectional connectivity matrix example. Added simple link 200 set example. Edited examples for consistency. 202 1.1.4. Changes from 03 draft 204 Removed encodings for general concepts to [Gen-Encode]. 206 Added in WSON signal compatibility and processing capability 207 information encoding. 209 1.1.5. Changes from 04 draft 211 Added encodings to deal with access to resource blocks via shared 212 fiber. 214 1.1.6. Changes from 05 draft 216 Revised the encoding for the "shared access" indicators to only use 217 one bit each for input and output. 219 1.1.7. Changes from 06 draft 221 Removed section on "WSON Encoding Usage Recommendations" 223 1.1.8. Changes from 07 draft 225 Section 3: Enhanced text to clarify relationship between pools, 226 blocks and resources. Section 3.1, 3.2: Change title to clarify 227 Pool-Block relationship. Section 3.3: clarify block-resource state. 229 Section 4: Deleted reference to previously removed RBNF element. 230 Fixed TLV figures and descriptions for consistent sub-sub-TLV 231 nomenclature. 233 1.1.9. Changes from 08 draft 235 Fixed ordering of fields in second half of sub-TLV example in 236 Appendix A.1. 238 Clarifying edits in section 3 on pools, blocks, and resources. 240 1.1.10. Changes from 09 draft 242 Fixed the "Block Shared Access Wavelength Availability sub-TLV" of 243 section 3.4 to use an "RB set field" rather than a single RB ID. 244 Removed all 1st person idioms. 246 1.1.11. Changes from 10 draft 248 Removed remaining 1st person idioms. Updated IANA section. Update 249 references for newly issued RFCs. 251 1.1.12. Changes from 11 draft 253 Fixed length fields in section 4 to be 16 bits, correcting errors in 254 TLV and field figures. Added a separate section on resources, 255 blocks, sets and the resource pool. Moved definition of the resource 256 block set field to this new section. 258 1.1.13. Changes from 12 draft 260 Replaced all instances of "ingress" with "input" and all instances 261 of "egress" with "output". 263 1.1.14. Changes from 13 draft 265 C bit of Resource Block Set Field is redundant and was removed, 266 i.e., has been returned to "Reserved" block and appendix examples 267 were updated to reflect the change. 269 Enhanced section 4.2 encoding to allow for optionality of input or 270 output wavelength set fields. 272 Clarified that wavelength set fields use the Label Set field 273 encoding from [Gen-Encode]. 275 Enhanced section 5.1 encoding to simplify the Modulation and FEC 276 input and output cases. 278 1.1.15. Changes from 14 draft 280 OIC changes per workgroup request. Removed FEC type and modulation 281 type. Fixed versioning error and return RB identifiers to 32 bits. 283 1.1.16. Changes from 15 draft 285 Edits of OIC related text per CCAMP list email. 287 1.1.17. Changes from 16 draft 289 Added full ITU-T string to 64 bit mapping to text from OIC draft. 291 1.1.18. Changes from 17 draft 293 Action value for Inclusive Range(s) changed to 1 from 2 for the 294 Resource Block Set Field encoding in Section 3.1. 296 Added a list of contributors who provided texts for the Optical 297 Interface Class (OIC) description. 299 2. Terminology 301 CWDM: Coarse Wavelength Division Multiplexing. 303 DWDM: Dense Wavelength Division Multiplexing. 305 FOADM: Fixed Optical Add/Drop Multiplexer. 307 ROADM: Reconfigurable Optical Add/Drop Multiplexer. A reduced port 308 count wavelength selective switching element featuring input and 309 output line side ports as well as add/drop side ports. 311 RWA: Routing and Wavelength Assignment. 313 Wavelength Conversion. The process of converting an information 314 bearing optical signal centered at a given wavelength to one with 315 "equivalent" content centered at a different wavelength. Wavelength 316 conversion can be implemented via an optical-electronic-optical 317 (OEO) process or via a strictly optical process. 319 WDM: Wavelength Division Multiplexing. 321 Wavelength Switched Optical Network (WSON): A WDM based optical 322 network in which switching is performed selectively based on the 323 center wavelength of an optical signal. 325 3. Resources, Blocks, Sets, and the Resource Pool 327 The optical system to be encoded may contain a pool of resources of 328 different types and properties for processing optical signals. For 329 the purposes here a "resource" is an individual entity such as a 330 wavelength converter or regenerator within the optical node that 331 acts on an individual wavelength signal. 333 Since resources tend to be packaged together in blocks of similar 334 devices, e.g., on line cards or other types of modules, the 335 fundamental unit of identifiable resource in this document is the 336 "resource block". A resource block may contain one or more 337 resources. As resource blocks are the smallest identifiable unit of 338 processing resource, one should group together resources into blocks 339 if they have similar characteristics relevant to the optical system 340 being modeled, e.g., processing properties, accessibility, etc. 342 This document defines the following sub-TLVs pertaining to resources 343 within an optical node: 345 Resource Pool Accessibility Sub-TLV 347 Resource Block Wavelength Constraints Sub-TLV 349 Resource Pool State Sub-TLV 350 Block Shared Access Wavelength Availability Sub-TLV 352 Resource Block Information Sub-TLV 354 Each of these sub-TLVs works with one or more sets of resources 355 rather than just a single resource block. This motivates the 356 following field definition. 358 3.1. Resource Block Set Field 360 In a WSON node that includes resource blocks (RB), denoting subsets 361 of these blocks allows one to efficiently describe common properties 362 of the blocks and to describe the structure and characteristics, if 363 non-trivial, of the resource pool. The RB Set field is defined in a 364 similar manner to the label set concept of [RFC3471]. 366 The information carried in a RB set field is defined by: 368 0 1 2 3 369 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 370 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 371 | Action |C| Reserved | Length | 372 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 373 | RB Identifier 1 | 374 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 375 : : : 376 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 377 | RB Identifier n | 378 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 380 Action: 8 bits 382 0 - Inclusive List 384 Indicates that the TLV contains one or more RB elements that are 385 included in the list. 387 1 - Inclusive Range(s) 389 Indicates that the TLV contains one or more ranges of RBs. Each 390 individual range is denoted by two 16 bit RB identifiers in a 32 bit 391 word. The first 16 bits is the RB identifier for the start of the 392 range and the next 16 bits is the RB identifier for the end of the 393 range. Note that the Length field is used to determine the number of 394 ranges. 396 C (Connectivity bit): Set to 0 to denote fixed (possibly multi- 397 cast) connectivity; Set to 1 to denote potential (switched) 398 connectivity. Used in resource pool accessibility sub-TLV. Ignored 399 elsewhere. 401 Reserved: 7 bits 403 This field is reserved. It MUST be set to zero on transmission and 404 MUST be ignored on receipt. 406 Length: 16 bits 408 The total length of this field in bytes. 410 RB Identifier: 412 The RB identifier represents the ID of the resource block which is a 413 16 bit integer. 415 Usage Note: the inclusive range "Action" can result in very compact 416 encoding of resource sets and it can be advantages to number 417 resource blocks in such a way so that status updates (dynamic 418 information) can take advantage of this efficiency. 420 4. Resource Pool Accessibility/Availability 422 This section defines the sub-TLVs for dealing with accessibility and 423 availability of resource blocks within a pool of resources. These 424 include the ResourceBlockAccessibility, ResourceWaveConstraints, and 425 RBPoolState sub-TLVs. 427 4.1. Resource Pool Accessibility Sub-TLV 429 This sub-TLV describes the structure of the resource pool in 430 relation to the switching device. In particular it indicates the 431 ability of an input port to reach sets of resources and of a sets of 432 resources to reach a particular output port. This is the 433 PoolInputMatrix and PoolOutputMatrix of [WSON-Info]. 435 The resource pool accessibility sub-TLV is defined by: 437 0 1 2 3 438 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 439 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 440 | Connectivity | Reserved | 441 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 442 | Input Link Set Field A #1 | 443 : : 444 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 445 | RB Set Field A #1 | 446 : : 447 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 448 | Additional Link set and RB set pairs as needed to | 449 : specify PoolInputMatrix : 450 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 451 | Output Link Set Field B #1 | 452 : : 453 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 454 | RB Set B Field #1 (for output connectivity) | 455 : : 456 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 457 | Additional Link Set and RB set pairs as needed to | 458 : specify PoolOutputMatrix : 459 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 461 Where 463 Connectivity indicates how the input/output ports connect to the 464 resource blocks. 466 0 -- the device is fixed (e.g., a connected port must go 467 through the resource block) 469 1 -- the device is switched (e.g., a port can be configured to 470 go through a resource but isn't required) 472 The For the Input and Output Link Set Fields, the Link Set Field 473 encoding defined in [Gen-Encode] is to be used. 475 Note that the direction parameter within the Link Set Field is used 476 to indicate whether the link set is an input or output link set, and 477 the bidirectional value for this parameter is not permitted in this 478 sub-TLV. 480 See Appendix A.1 for an illustration of this encoding. 482 4.2. Resource Block Wavelength Constraints Sub-TLV 484 Resources, such as wavelength converters, etc., may have a limited 485 input or output wavelength ranges. Additionally, due to the 486 structure of the optical system not all wavelengths can necessarily 487 reach or leave all the resources. These properties are described by 488 using one or more resource wavelength restrictions sub-TLVs as 489 defined below: 491 0 1 2 3 492 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 493 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 494 |I|O|B| Reserved | 495 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 496 | RB Set Field | 497 : : 498 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 499 | Input Wavelength Set Field | 500 : : 501 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 502 | Output Wavelength Set Field | 503 : : 504 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 506 I = 1 or 0 indicates the presence or absence of the Input Wavelength 507 Set Field. 509 O = 1 or 0 indicates the presence or absence of the Output 510 Wavelength Set Field. 512 B = 1 indicates that a single wavelength set field represents both 513 input and output wavelength constraints. 515 Currently the only valid combinations of (I,O,B) are (1,0,0), 516 (0,1,0), (1,1,0), (0,0,1). 518 RB Set Field: 520 A set of resource blocks (RBs) which have the same wavelength 521 restrictions. 523 Input Wavelength Set Field: 525 Indicates the wavelength input restrictions of the RBs in the 526 corresponding RB set. This field is encoded via the Label Set field 527 of [Gen-Encode]. 529 Output Wavelength Set Field: 531 Indicates the wavelength output restrictions of RBs in the 532 corresponding RB set. This field is encoded via the Label Set field 533 of [Gen-Encode]. 535 4.3. Resource Pool State Sub-TLV 537 The state of the pool is given by the number of resources available 538 with particular characteristics. A resource block set is used to 539 encode all or a subset of the resources of interest. The usage state 540 of resources within a resource block set is encoded as either a list 541 of 16 bit integer values or a bit map indicating whether a single 542 resource is available or in use. The bit map encoding is appropriate 543 when resource blocks consist of a single resource. This information 544 can be relatively dynamic, i.e., can change when a connection (LSP 545 is established or torn down. 547 0 1 2 3 548 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 549 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 550 | Action | Reserved | 551 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 552 | RB Set Field | 553 : : 554 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 555 | RB Usage state | 556 : : 557 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 559 Where Action = 0 denotes a list of 16 bit integers and Action = 1 560 denotes a bit map. In both cases the elements of the RB Set field 561 are in a one-to-one correspondence with the values in the usage RB 562 usage state area. 564 0 1 2 3 565 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 566 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 567 | Action = 0 | Reserved | 568 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 569 | RB Set Field | 570 : : 571 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 572 | RB#1 state | RB#2 state | 573 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 574 : : 575 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 576 | RB#n-1 state | RB#n state or Padding | 577 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 579 Whether the last 16 bits is a wavelength converter (RB) state or 580 padding is determined by the number of elements in the RB set field. 582 0 1 2 3 583 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 584 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 585 | Action = 1 | Reserved | 586 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 587 | RB Set Field | 588 : : 589 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 590 | RB Usage state bitmap | 591 : : 592 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 593 | ...... | Padding bits | 594 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 596 RB Usage state: Variable Length but must be a multiple of 4 byes. 598 Each bit indicates the usage status of one RB with 0 indicating the 599 RB is available and 1 indicating the RB is in used. The sequence of 600 the bit map is ordered according to the RB Set field with this sub- 601 TLV. 603 Padding bits: Variable Length 605 4.4. Block Shared Access Wavelength Availability sub-TLV 607 Resources blocks may be accessed via a shared fiber. If this is the 608 case, then wavelength availability on these shared fibers is needed 609 to understand resource availability. 611 0 1 2 3 612 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 613 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 614 |I|E| Reserved | 615 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 616 | RB Set Field | 617 : : 618 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 619 | Input Available Wavelength Set Field | 620 : (Optional) : 621 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 622 | Output Available Wavelength Set Field | 623 : (Optional) : 624 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 625 I bit: 627 Indicates whether the input available wavelength set field is 628 included (1) or not (0). 630 E bit: 632 Indicates whether the output available wavelength set field is 633 included (1) or not (0). 635 RB Set Field: 637 A Resource Block set in which all the members share the same input 638 or output fiber or both. 640 Input Available Wavelength Set Field: 642 Indicates the wavelengths currently available (not being used) on 643 the input fiber to this resource block. This field is encoded via 644 the Label Set field of [Gen-Encode]. 646 Output Available Wavelength Set Field: 648 Indicates the wavelengths currently available (not being used) on 649 the output fiber from this resource block. This field is encoded via 650 the Label Set field of [Gen-Encode]. 652 5. Resource Properties Encoding 654 Within a WSON network element (NE) there may be resources with 655 signal compatibility constraints. These resources be regenerators, 656 wavelength converters, etc... Such resources may also constitute the 657 network element as a whole as in the case of an electro optical 658 switch. This section primarily focuses on the signal compatibility 659 and processing properties of such a resource block. 661 The fundamental properties of a resource block, such as a 662 regenerator or wavelength converter, are: 664 (a) Input constraints (shared input, modulation, FEC, bit rate, 665 GPID) 667 (b) Processing capabilities (number of resources in a block, 668 regeneration, performance monitoring, vendor specific) 670 (c) Output Constraints (shared output, modulation, FEC) 672 5.1. Resource Block Information Sub-TLV 674 Resource Block descriptor sub-TLVs are used to convey relatively 675 static information about individual resource blocks including the 676 resource block compatibility properties, processing properties, and 677 the number of resources in a block. 679 This sub-TLV has the following format: 681 0 1 2 3 682 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 683 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 684 | RB Set Field | 685 : : 686 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 687 |I|E| Reserved | 688 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 689 | Optical Interface Class List(s) Sub-Sub-TLV (opt) | 690 : : 691 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 692 | Input Client Signal Type Sub-Sub-TLV (opt) | 693 : : 694 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 695 | Input Bit Rate Range List Sub-Sub-TLV (opt) | 696 : : 697 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 698 | Processing Capabilities List Sub-Sub-TLV (opt) | 699 : : 700 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 702 Where I and E, the shared input/output indicator, is set to 1 if the 703 resource blocks identified in the RB set field utilized a shared 704 fiber for input/output access and set to 0 otherwise. 706 5.2. Optical Interface Class List(s) Sub-Sub-TLV 708 The list of Optical Interface Class sub-sub-TLV has the following 709 format: 711 0 1 2 3 712 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 713 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 714 | Type | Length | Reserved |I|E| 715 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 716 | Optical Interface Classes | 717 : : 718 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 720 The following I and E combination are defined: 722 I E 724 0 0 Invalid 726 1 0 Optical Interface Class List acceptable in input 728 0 1 Optical Interface Class List available in output 730 1 1 Optical Interface Class List available on both input and 731 output. 733 The Resource Block MAY contain one or more lists according to 734 input/output flags. 736 5.2.1. Optical Interface Class Format 738 0 1 2 3 739 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 740 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 741 |S| Reserved | OI Code Points | 742 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 743 | Optical Interface Class | 744 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 745 | Optical Interface Class (Cont.) | 746 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 748 Where the first 32 bits of the encoding shall be used to identify 749 the semantic of the Optical Interface Class in the following way: 751 S Standard bit. 753 S=0, identify not ITU code points 755 S=1, identify ITU application codes 757 With S=0, the OI Code Points field can take the following 758 values: 760 0: reserved 762 1: Vendor Specific Optical Interface Class. 764 With S=1, the OI Code Points field can take the following 765 values: 767 0: reserved 769 1: [ITU-G.698.1] application code. 771 2: [ITU-G.698.2] application code. 773 3: [ITU-G.959.1] application code. 775 In case of ITU Application Code, the mapping between the string 776 defining the application code and the 64 bits number implementing 777 the optical interface class is given in the following sections. 779 5.2.2. ITU-G.698.1 Application Code Mapping 781 Recommendation ITU-G.698.1 defines (the Application Codes: DScW- 782 ytz(v) and B-DScW-ytz(v). Where: 784 B: means Bidirectionals. 786 D: means a DWDM application. 788 S: take values N (narrow spectral excursion), W (wide spectral 789 excursion). 791 c: Channel Spacing (GHz). 793 W: take values S (short-haul), L (long-haul). 795 y: take values 1 (NRZ 2.5G), 2 (indicating NRZ 10G). 797 t: take only D value is defined (link does not contain optical 798 amplifier) 800 z: take values 2 (ITU-T G.652 fibre), 3 (ITU-T G.653 fibre), 5 801 (indicating ITU-T G.655 fibre). 803 v: take values S (Short wavelength), C (Conventional), L (Long 804 wavelength). 806 An Optional F can be added indicating a FEC Encoding. 808 These get mapped into the 64 bit OIC field as follows: 810 0 1 2 3 811 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 812 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 813 |B| p |S| c | W | y | t | z | v | s | 814 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 815 | reserved | 816 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 818 Where (values between parenthesis refer to ITU defined values as 819 reported above): 821 B: = 1 bidirectional, 0 otherwise 823 p (prefix): = 0 reserved, = 1 (D) 825 S: = 0 (N), = 1 (W) 827 c: Channel Spacing, 4 bits mapped according to same definition 828 in [RFC6205] (note that DWDM spacing apply here) 830 W: = 0 reserved, = 2 (S), = 3 (L) 832 y: = 0 reserved, = 1 (1), = 2 (2) 834 t: = 0 reserved, = 4 (D) 836 z: = 0 reserved, = 2 (2), = 3 (3), = 5 (5) 838 v: = 0 reserved, = 1 (S), = 2 (C), = 3 (L) 839 s (suffix): = 0 reserved, = 1 Fec Encoding 841 Values not mentioned here are not allowed in this application 842 code, the last 32 bits are reserved and shall be set to zero. 844 5.2.3. ITU-G.698.2 Application Code Mapping 846 Recommendation ITU-G.698.2 defines the Application Codes: DScW- 847 ytz(v) and B-DScW-ytz(v). 849 B: means Bidirectional. 851 D: means a DWDM application. 853 S: take values N (narrow spectral excursion), W (wide spectral 854 excursion). 856 c: Channel Spacing (GHz). 858 W: take values C (link is dispersion compensated), U (link is 859 dispersion uncompensated). 861 y: take values 1 (NRZ 2.5G), 2 (indicating NRZ 10G). 863 t: take value A (link may contains optical amplifier) 865 z: take values 2 (ITU-T G.652 fibre), 3 (ITU-T G.653 fibre), 5 866 (indicating ITU-T G.655 fibre). 868 v: take values S (Short wavelength), C (Conventional), L (Long 869 wavelength). 871 An Optional F can be added indicating a FEC Encoding. 873 These get mapped into the 64 bit OIC field as follows: 875 0 1 2 3 876 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 877 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 878 |B| p |S| c | W | y | t | z | v | s | 879 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 880 | reserved | 881 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 883 Where (values between parenthesis refer to ITU defined values as 884 reported above): 886 B: = 1 bidirectional, 0 otherwise 888 p (prefix): = 0 reserved, = 1 (D) 890 S: = 0 (N), = 1 (W) 892 c: Channel Spacing, 4 bits mapped according to same definition 893 in [RFC6205] (note that DWDM spacing apply here) 895 W: = 0 reserved, = 10 (C), = 11 (U) 897 y: = 0 reserved, = 1 (1), = 2 (2) 899 t: = 0 reserved, = 1 (A) 901 z: = 0 reserved, = 2 (2), = 3 (3), = 5 (5) 903 v: = 0 reserved, = 1 (S), = 2 (C), = 3 (L) 905 s (suffix): = 0 reserved, = 1 Fec Encoding 907 Values not mentioned here are not allowed in this application 908 code, the last 32 bits are reserved and shall be set to zero. 910 5.2.4. ITU-G.959.1 Application Code Mapping 912 Recommendation ITU-G.959.1 defines the Application Codes: PnWx-ytz 913 and BnWx-ytz. Where: 915 P,B: when present indicate Plural or Bidirectional 917 n: maximum number of channels supported by the application code 918 (i.e. an integer number) 920 W: take values I (intra-office), S (short-haul), L (long-haul), V 921 (very long-haul), U (ultra long-haul). 923 x: maximum number of spans allowed within the application code 924 (i.e. an integer number) 926 y: take values 1 (NRZ 2.5G), 2 (NRZ 10G), 9 (NRZ 25G), 3 (NRZ 927 40G), 7 (RZ 40G). 929 t: take values A (power levels suitable for a booster amplifier 930 in the originating ONE and power levels suitable for a pre-amplifier 931 in the terminating ONE), B (booster amplifier only), C (pre- 932 amplifier only), D (no amplifiers). 934 z: take values 1 (1310 nm sources on ITU-T G.652 fibre), 2 (1550 935 nm sources on ITU-T G.652 fibre), 3 (1550 nm sources on ITU-T 936 G.653 fibre), 5 (1550 nm sources on ITU-T G.655 fibre). 938 The following list of suffixes can be added to these application 939 codes: 941 F: FEC encoding. 943 D: Adaptive dispersion compensation. 945 E: receiver capable of dispersion compensation. 947 r: reduced target distance. 949 a: power levels appropriate to APD receivers. 951 b: power levels appropriate to PIN receivers. 953 These values are encoded as follows: 955 0 1 2 3 956 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 957 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 958 |B| p | n | W | x | reserved | 959 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 960 | y | t | z | suffix | reserved | 961 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 963 Where (values between parenthesis refer to ITU defined values as 964 reported above): 966 B: = 1 bidirectional, = 0 otherwise. 968 p (prefix): = 0 reserved, = 2 (P). 970 n: maximum number of channels (10 bits, up to 1024 channels) 972 W: = 0 reserved, = 1 (I), = 2 (S), = 3 (L), = 4 (V), = 5 (U) 974 x: = number of spans (6 bits, up to 64 spans) 976 y: = 0 reserved, = 1 (1), = 2 (2), = 3 (3), = 7 (7), = 9 (9) 978 t: = 0 reserved, = 1 (A), = 2 (B), = 3 (C), = 4 (D) 980 z: = 0 reserved, = 1 (1), = 2 (2), = 3 (3), = 5 (5) 982 suffix is an 6 bit, bit map: 984 0 1 2 3 4 5 985 +-+-+-+-+-+-+ 986 |F|D|E|r|a|b| 987 +-+-+-+-+-+-+ 988 where a 1 in the appropriate slot indicates that the corresponding 989 suffix has been added. 991 5.3. Input Client Signal List Sub-Sub-TLV 993 This sub-sub-TLV contains a list of acceptable input client signal 994 types. 996 Type := Input Client Signal List 998 Value := A list of GPIDs 1000 The acceptable client signal list sub-TLV is a list of Generalized 1001 Protocol Identifiers (GPIDs). GPIDs are assigned by IANA and many 1002 are defined in [RFC3471] and [RFC4328]. 1004 0 1 2 3 1005 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1006 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1007 | Number of GPIDs | GPID #1 | 1008 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1009 : | : 1010 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1011 | GPID #N | | 1012 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1014 Where the number of GPIDs is an integer greater than or equal to 1015 one. 1017 5.4. Processing Capability List Sub-Sub-TLV 1019 This sub-sub-TLV contains a list of resource processing 1020 capabilities. 1022 Type := Processing Capabilities List 1024 Value := A list of Processing Capabilities Fields 1026 The processing capability list sub-sub-TLV is a list of capabilities 1027 that can be achieved through the referred resources:: 1029 1. Regeneration capability 1031 2. Fault and performance monitoring 1033 3. Vendor Specific capability 1035 Note that the code points for Fault and performance monitoring and 1036 vendor specific capability are subject to further study. 1038 5.4.1. Processing Capabilities Field 1040 The processing capability field is then given by: 1042 0 1 2 3 1043 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1044 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1045 | Processing Cap ID | Length | 1046 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1047 | Possible additional capability parameters depending upon | 1048 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1049 : the processing ID : 1050 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1052 When the processing Cap ID is "regeneration capability", the 1053 following additional capability parameters are provided in the sub- 1054 TLV: 1056 0 1 2 3 1057 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1058 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1059 | T | C | Reserved | 1060 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1062 Where T bit indicates the type of regenerator: 1064 T=0: Reserved 1066 T=1: 1R Regenerator 1068 T=2: 2R Regenerator 1070 T=3: 3R Regenerator 1072 Where C bit indicates the capability of regenerator: 1074 C=0: Reserved 1076 C=1: Fixed Regeneration Point 1078 C=2: Selective Regeneration Point 1080 Note that when the capability of regenerator is indicated to be 1081 Selective Regeneration Pools, regeneration pool properties such as 1082 input and output restrictions and availability need to be specified. 1083 This encoding is to be determined in the later revision. 1085 6. Security Considerations 1087 This document defines protocol-independent encodings for WSON 1088 information and does not introduce any security issues. 1090 However, other documents that make use of these encodings within 1091 protocol extensions need to consider the issues and risks associated 1092 with, inspection, interception, modification, or spoofing of any of 1093 this information. It is expected that any such documents will 1094 describe the necessary security measures to provide adequate 1095 protection. 1097 7. IANA Considerations 1099 This document provides general protocol independent information 1100 encodings. There is no IANA allocation request for the TLVs defined 1101 in this document. IANA allocation requests will be addressed in 1102 protocol specific documents based on the encodings defined here. 1104 8. Acknowledgments 1106 This document was prepared using 2-Word-v2.0.template.dot. 1108 APPENDIX A: Encoding Examples 1110 A.1. Wavelength Converter Accessibility Sub-TLV 1112 Example: 1114 Figure 1 shows a wavelength converter pool architecture know as 1115 "shared per fiber". In this case the input and output pool matrices 1116 are simply: 1118 +-----+ +-----+ 1119 | 1 1 | | 1 0 | 1120 WI =| |, WE =| | 1121 | 1 1 | | 0 1 | 1122 +-----+ +-----+ 1124 +-----------+ +------+ 1125 | |--------------------->| | 1126 | |--------------------->| C | 1127 /| | |--------------------->| o | 1128 /D+--->| |--------------------->| m | 1129 + e+--->| | | b 1130 |========> 1131 ========>| M| | Optical | +-----------+ | i | Port E1 1132 Port I1 + u+--->| Switch | | WC Pool | | n | 1133 \x+--->| | | +-----+ | | e | 1134 \| | +----+->|WC #1|--+---->| r | 1135 | | | +-----+ | +------+ 1136 | | | | +------+ 1137 /| | | | +-----+ | | | 1138 /D+--->| +----+->|WC #2|--+---->| C | 1139 + e+--->| | | +-----+ | | o | 1140 ========>| M| | | +-----------+ | m 1141 |========> 1142 Port I2 + u+--->| | | b | Port E2 1143 \x+--->| |--------------------->| i | 1144 \| | |--------------------->| n | 1145 | |--------------------->| e | 1146 | |--------------------->| r | 1147 +-----------+ +------+ 1148 Figure 1 An optical switch featuring a shared per fiber wavelength 1149 converter pool architecture. 1151 This wavelength converter pool can be encoded as follows: 1153 0 1 2 3 1154 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1155 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1156 | Connectivity=1| Reserved | 1157 Note: I1,I2 can connect to either WC1 or WC2 1158 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1159 | Action=0 |0| Reserved | Length = 12 | 1160 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1161 | Link Local Identifier = #1 | 1162 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1163 | Link Local Identifier = #2 | 1164 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1165 | Action=0 |1| Reserved | Length = 8 | 1166 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1167 | RB ID = #1 | RB ID = #2 | 1168 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1169 Note: WC1 can only connect to E1 1170 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1171 | Action=0 |1| Reserved | Length = 8 | 1172 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1173 | Link Local Identifier = #1 | 1174 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1175 | Action=0 |0| Reserved | Length = 8 | 1176 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1177 | RB ID = #1 | zero padding | 1178 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1179 Note: WC2 can only connect to E2 1180 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1181 | Action=0 |1| Reserved | Length = 8 | 1182 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1183 | Link Local Identifier = #2 | 1184 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1185 | Action=0 |0| | Length = 8 | 1186 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1187 | RB ID = #2 | zero padding | 1188 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1190 A.2. Wavelength Conversion Range Sub-TLV 1192 Example: 1194 This example, based on figure 1, shows how to represent the 1195 wavelength conversion range of wavelength converters. Suppose the 1196 wavelength range of input and output of WC1 and WC2 are {L1, L2, L3, 1197 L4}: 1199 0 1 2 3 1200 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1201 Note: WC Set 1202 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1203 | Action=0 |1| Reserved | Length = 8 | 1204 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1205 | WC ID = #1 | WC ID = #2 | 1206 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1207 Note: wavelength input range 1208 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1209 | 2 | Num Wavelengths = 4 | Length = 8 | 1210 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1211 |Grid | C.S. | Reserved | n for lowest frequency = 1 | 1212 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1213 Note: wavelength output range 1214 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1215 | 2 | Num Wavelengths = 4 | Length = 8 | 1216 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1217 |Grid | C.S. | Reserved | n for lowest frequency = 1 | 1218 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1220 A.3. An OEO Switch with DWDM Optics 1222 Figure 2 shows an electronic switch fabric surrounded by DWDM 1223 optics. In this example the electronic fabric can handle either 1224 G.709 or SDH signals only (2.5 or 10 Gbps). To describe this node, 1225 the following information is needed: 1227 ::= [Other GMPLS sub- 1228 TLVs][...] [][] 1230 In this case there is complete port to port connectivity so the 1231 is not required. In addition since there are 1232 sufficient ports to handle all wavelength signals the 1233 element is not needed. 1235 Hence the attention will be focused on the sub-TLV: 1237 ::= 1238 [...][...] 1241 /| +-----------+ +-------------+ +------+ 1242 /D+--->| +--->|Tunable Laser|-->| | 1243 + e+--->| | +-------------+ | C | 1244 ========>| M| | | ... | o 1245 |========> 1246 Port I1 + u+--->| | +-------------+ | m | Port E1 1247 \x+--->| |--->|Tunable Laser|-->| b | 1248 \| | Electric | +-------------+ +------+ 1249 | Switch | 1250 /| | | +-------------+ +------+ 1251 /D+--->| +--->|Tunable Laser|-->| | 1252 + e+--->| | +-------------+ | C | 1253 ========>| M| | | ... | o 1254 |========> 1255 Port I2 + u+--->| | +-------------+ | m | Port E2 1256 \x+--->| +--->|Tunable Laser|-->| b | 1257 \| | | +-------------+ +------+ 1258 | | 1259 /| | | +-------------+ +------+ 1260 /D+--->| |--->|Tunable Laser|-->| | 1261 + e+--->| | +-------------+ | C | 1262 ========>| M| | | ... | o 1263 |========> 1264 Port I3 + u+--->| | +-------------+ | m | Port E3 1265 \x+--->| |--->|Tunable Laser|-->| b | 1266 \| +-----------+ +-------------+ +------+ 1268 Figure 2 An optical switch built around an electronic switching 1269 fabric. 1271 The resource block information will tell us about the processing 1272 constraints of the receivers, transmitters and the electronic 1273 switch. The resource availability information, although very simple, 1274 tells us that all signals must traverse the electronic fabric (fixed 1275 connectivity). The resource wavelength constraints are not needed 1276 since there are no special wavelength constraints for the resources 1277 that would not appear as port/wavelength constraints. 1279 : 1281 0 1 2 3 1282 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1283 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1284 | RB Set Field | 1285 : (only one resource block in this example with shared | 1286 | input/output case) | 1287 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1288 |0|1|1| Reserved | 1289 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1290 | Modulation Type List Sub-Sub-TLV | 1291 : NRZ : 1292 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1293 | FEC Type List Sub-Sub-TLV | 1294 : Standard SDH, G.709 FEC : 1295 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1296 | Input Client Signal Type Sub-TLV | 1297 : (GPIDs for SDH and G.709) : 1298 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1299 | Input Bit Rate Range List Sub-Sub-TLV | 1300 : (2.5Gbps, 10Gbps) : 1301 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1302 | Processing Capabilities List Sub-Sub-TLV | 1303 : Fixed (non optional) 3R regeneration : 1304 : : 1305 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1307 Since there is fixed connectivity to resource blocks (the electronic 1308 switch) the is: 1310 0 1 2 3 1311 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1312 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1313 | Connectivity=0|Reserved | 1314 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1315 | Input Link Set Field A #1 | 1316 : (All input links connect to resource) : 1317 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1318 | RB Set Field A #1 | 1319 : (trivial set only one resource block) : 1320 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1321 | Output Link Set Field B #1 | 1322 : (All output links connect to resource) : 1323 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 1325 9. References 1327 9.1. Normative References 1329 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 1330 Requirement Levels", BCP 14, RFC 2119, March 1997. 1332 [RFC2578] McCloghrie, K., Perkins, D., and J. Schoenwaelder, 1333 "Structure of Management Information Version 2 (SMIv2)", 1334 STD 58, RFC 2578, April 1999. 1336 [RFC3471] Berger, L., "Generalized Multi-Protocol Label Switching 1337 (GMPLS) Signaling Functional Description", RFC 3471, 1338 January 2003. 1340 [RFC4328] Papadimitriou, D., Ed., "Generalized Multi-Protocol Label 1341 Switching (GMPLS) Signaling Extensions for G.709 Optical 1342 Transport Networks Control", RFC 4328, January 2006. 1344 [G.694.1] ITU-T Recommendation G.694.1, "Spectral grids for WDM 1345 applications: DWDM frequency grid", June, 2002. 1347 9.2. Informative References 1349 [G.694.1] ITU-T Recommendation G.694.1, Spectral grids for WDM 1350 applications: DWDM frequency grid, June 2002. 1352 [G.694.2] ITU-T Recommendation G.694.2, Spectral grids for WDM 1353 applications: CWDM wavelength grid, December 2003. 1355 [Gen-Encode] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "General 1356 Network Element Constraint Encoding for GMPLS Controlled 1357 Networks", work in progress: draft-ietf-ccamp-general- 1358 constraint-encode. 1360 [RFC6205] T. Otani, H. Guo, K. Miyazaki, D. Caviglia, "Generalized 1361 Labels for G.694 Lambda-Switching Capable Label Switching 1362 Routers", RFC 6205, March 2011. 1364 [RFC6163] Y. Lee, G. Bernstein, W. Imajuku, "Framework for GMPLS 1365 and PCE Control of Wavelength Switched Optical Networks", 1366 RFC 6163, April 2011. 1368 [WSON-Info] G. Bernstein, Y. Lee, D. Li, W. Imajuku, "Routing and 1369 Wavelength Assignment Information Model for Wavelength 1370 Switched Optical Networks", work in progress: draft-ietf- 1371 ccamp-rwa-info, March 2009. 1373 10. Contributors 1375 Diego Caviglia 1376 Ericsson 1377 Via A. Negrone 1/A 16153 1378 Genoa Italy 1380 Phone: +39 010 600 3736 1381 Email: diego.caviglia@(marconi.com, ericsson.com) 1383 Anders Gavler 1384 Acreo AB 1385 Electrum 236 1386 SE - 164 40 Kista Sweden 1388 Email: Anders.Gavler@acreo.se 1390 Jonas Martensson 1391 Acreo AB 1392 Electrum 236 1393 SE - 164 40 Kista, Sweden 1395 Email: Jonas.Martensson@acreo.se 1397 Itaru Nishioka 1398 NEC Corp. 1399 1753 Simonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666 1400 Japan 1402 Phone: +81 44 396 3287 1403 Email: i-nishioka@cb.jp.nec.com 1405 Pierre Peloso 1406 ALU 1408 Email: pierre.peloso@alcatel-lucent.com 1410 Cyril Margaria 1411 NSN 1413 Email: cyril.margaria@nsn.com 1415 Giovanni Martinelli 1416 Cisco 1417 Email: giomarti@cisco.com 1419 Gabriele M Galimberti 1420 Cisco 1421 Email: ggalimbe@cisco.com 1423 Lyndon Ong 1424 Ciena Corporation 1425 Email: lyong@ciena.com 1427 Daniele Ceccarelli 1428 Ericsson 1429 Email: daniele.ceccarelli@ericsson.com 1431 Authors' Addresses 1433 Greg M. Bernstein (ed.) 1434 Grotto Networking 1435 Fremont California, USA 1437 Phone: (510) 573-2237 1438 Email: gregb@grotto-networking.com 1440 Young Lee (ed.) 1441 Huawei Technologies 1442 5340 Legacy Drive Build 3 1443 Plano, TX 75024 1444 USA 1446 Phone: (469) 277-5838 1447 Email: leeyoung@huawei.com 1448 Dan Li 1449 Huawei Technologies Co., Ltd. 1450 F3-5-B R&D Center, Huawei Base, 1451 Bantian, Longgang District 1452 Shenzhen 518129 P.R.China 1454 Phone: +86-755-28973237 1455 Email: danli@huawei.com 1457 Wataru Imajuku 1458 NTT Network Innovation Labs 1459 1-1 Hikari-no-oka, Yokosuka, Kanagawa 1460 Japan 1462 Phone: +81-(46) 859-4315 1463 Email: imajuku.wataru@lab.ntt.co.jp 1465 Jianrui Han 1466 Huawei Technologies Co., Ltd. 1467 F3-5-B R&D Center, Huawei Base, 1468 Bantian, Longgang District 1469 Shenzhen 518129 P.R.China 1471 Phone: +86-755-28972916 1472 Email: hanjianrui@huawei.com 1474 Intellectual Property Statement 1476 The IETF Trust takes no position regarding the validity or scope of 1477 any Intellectual Property Rights or other rights that might be 1478 claimed to pertain to the implementation or use of the technology 1479 described in any IETF Document or the extent to which any license 1480 under such rights might or might not be available; nor does it 1481 represent that it has made any independent effort to identify any 1482 such rights. 1484 Copies of Intellectual Property disclosures made to the IETF 1485 Secretariat and any assurances of licenses to be made available, or 1486 the result of an attempt made to obtain a general license or 1487 permission for the use of such proprietary rights by implementers or 1488 users of this specification can be obtained from the IETF on-line 1489 IPR repository at http://www.ietf.org/ipr 1490 The IETF invites any interested party to bring to its attention any 1491 copyrights, patents or patent applications, or other proprietary 1492 rights that may cover technology that may be required to implement 1493 any standard or specification contained in an IETF Document. Please 1494 address the information to the IETF at ietf-ipr@ietf.org. 1496 Disclaimer of Validity 1498 All IETF Documents and the information contained therein are 1499 provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION 1500 HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, 1501 THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL 1502 WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY 1503 WARRANTY THAT THE USE OF THE INFORMATION THEREIN WILL NOT INFRINGE 1504 ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS 1505 FOR A PARTICULAR PURPOSE. 1507 Acknowledgment 1509 Funding for the RFC Editor function is currently provided by the 1510 Internet Society.